
Abstract. Background/Aim: Angiotensinogen (AGT), a 
precursor of angiotensin II (AngII), contributes to regulating 
(patho)physiological conditions, including blood pressure 
changes, inflammation, and kidney fibrosis. However, the precise 
role of tissue-specific AGT in kidney fibrosis independent of 
blood pressure remains to be fully understood. This study 
investigated the source of intrarenal AGT and its role in kidney 
injury and fibrosis during obstructive nephropathy. Materials 
and Methods: Proximal tubule- (PT, major source secreting AGT 
in the kidney; PKO) or liver- (major source of circulating AGT; 
LKO) AGT knockout (KO) mice were subjected to unilateral 
ureteral obstruction (UUO), a blood pressure-independent 
fibrosis model. Results: UUO increased AGT mRNA and protein 
levels in the kidneys. PKO decreased AGT mRNA, but LKO 
enhanced it in UUO kidneys compared with the control. In 
contrast, the intrarenal protein levels of AGT increased in PKO, 
but not in LKO in UUO kidneys, indicating that the liver is a 
major source of intrarenal AGT protein. Expression of megalin, 
a PT receptor involved in the uptake of circulating AGT, was 
down-regulated in UUO kidneys and was independent of PKO 

or LKO. However, none of these changes prevented UUO-
induced tubular injury and kidney fibrosis. Conclusion: Hepatic 
and proximal tubule AGT play distinct roles in contributing to 
intrarenal AGT levels during UUO, and their genetic inhibitions 
fail to prevent kidney injury and fibrosis, suggesting a highly 
complicated signaling pathway of the renin-angiotensin system 
and an associated compensatory mechanism in obstructive 
nephropathy. 
 
Chronic kidney disease (CKD) is a life-threatening disease with 
no effective treatable option except renal replacement therapy, 
such as kidney transplant and dialysis (1-3). CKD accompanied 
by fibrosis progression is a common feature along with tubular 
injury and inflammation, which causes chronic loss of kidney 
function (4-6). Several drugs targeting the renin-angiotensin 
system (RAS), such as angiotensin (Ang)-converting enzyme 
inhibitor (ACEi) and Ang II type 1 receptor inhibitor (ARB), 
are clinically used not only for controlling blood pressure, but 
also for halting CKD progression. However, this approach may, 
at best, reduce proteinuria, a surrogate marker of renal disease, 
but it only partially reduces progression of CKD and can have 
harmful side effects (7-9). Considering the incomplete efficacy 
of RAS blockade, it is necessary to find new drugs that could 
either exert a complementary action to ACEi and ARB or better 
define the cellular and molecular mechanism by which RAS 
signaling exerts the pathophysiological processes of CKD 
progression. 

Angiotensinogen (AGT) is a precursor of AngII, a well-
established molecule driving diverse signaling pathways, 
including tissue fibrosis. A growing body of evidence reveals 
that both systemically and locally generated AGTs contribute 
to intrarenal AGT levels and disease progression, primarily 
through blood pressure (BP) effects (10-12). We and others 
have reported that liver-derived AGT is a major source of 
circulating AGT and plays a major role in BP regulation, 
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whereas proximal tubule (PT)-derived AGT acts locally in the 
kidney with minor or no contribution to the levels of 
circulating AGT and the regulation of BP (13-15). However, 
despite considerable efforts, the mechanism by which 
intrarenal AGT contributes to CKD pathogenesis, particularly 
in a BP-independent manner, remains undefined.  

The present study aimed to investigate the precise role of 
liver- and PT-derived AGT in obstructive nephropathy, a BP-
independent kidney fibrosis model.   
 
Materials and Methods 
 
Animal and surgical procedure. Mice were cared for according to 
the principles and guidelines of the Institutional Animal Care and 
Use Committee (IACUC), University of Nebraska Medical Center 
(UNMC), and the National Institutes of Health (NIH) Guide for the 
Care and Use of Laboratory Animals. All protocols were approved 
by the UNMC-IACUC prior to the experiments (#14-023). 
Angiotensinogen (AGT) floxed mice (Jackson Lab, Bar Harbor, ME) 
were crossed with Pepck Cre mice, a kind gift from Dr. Volker Haase 
at Vanderbilt University (16), or Albumin Cre mice (Jackson Lab, 
Bar Harbor, ME, USA) to create PT- and liver-specific knockouts of 
AGT, respectively. A cocktail containing ketamine (200 mg/kg body 
weight) and xylazine (16 mg/kg body weight) was intraperitoneally 
administered to anesthetize the AGT knockouts and their controls. 
As described previously (17-19), to generate unilateral ureteral 
obstruction, the right ureter near the renal pelvis was ligated 
completely using a 5-0 silk. The same surgical procedure except for 
the ureter ligation was performed to generate sham controls. Seven 
days post-surgery, the mice were sacrificed, and kidney samples were 
collected for analysis as described previously (17). 
 
Genomic PCR and electrophoresis. Tail biopsies were collected to 
determine the genotype of mice using electrophoresis, as previously 
described (20).  
 
Collagen deposition. Sirius red staining was used for evaluating 
collagen deposition, as previously described (21). In five randomly 
chosen fields per kidney, Sirius red-positive areas were calculated 
by a ratio of Sirius red-positive area to total area. ImageJ software 
(NIH, Bethesda, MD, USA) was used to isolate Sirius red-positive 
areas and quantify their area. 
 
Histology and evaluation of tubular injury. Tubular injury was 
calculated using PAS-stained sections (20). Tubular atrophy and 
dilatation were evaluated as injury markers in five randomly chosen 
fields per kidney. The ratio of the number of atrophied or dilated 
tubules to the total number of tubules was calculated for analysis.  

Immunohistochemistry. Paraffin-embedded kidney sections were 
used for immunohistochemistry to detect AGT (22). Briefly, the 
kidney sections were rehydrated, and incubated with antibodies 
against AGT (IBL, Minneapolis, MN, USA) overnight at 4˚C. 
Meyer’s hematoxylin (Electron Microscopy Sciences, Hatfield, PA, 
USA) was used for counterstaining. The representative images were 
chosen from five randomly selected fields per kidney. ImageJ 
software (NIH) was used for evaluating AGT-positive areas. 
 
Western blot analysis. Western blot analysis was performed as we 
recently described (22). Antibodies were used for evaluating kidney 
fibrosis-related factors, including α-SMA (Sigma, St. Louis, MO, 
USA) and p-Smad3 (Abcam, Cambridge, MA, USA). For loading 
control, GAPDH immunoblotting was used on stripped membranes. 
ImageJ software (NIH, Bethesda, MD, USA) was used for analyzing 
band intensities. 
 
RNA extraction. Total RNA from kidneys was isolated using 
RNeasy mini kit (Qiagen, Hilden, Germany) as we recently 
described (22). Complementary DNA (cDNA) was synthesized from 
1 μg total RNA using iScript cDNA synthesis kit (Bio-Rad, 
Hercules, CA, USA).  

Quantitative reverse transcription-PCR. Quantitative real-time 
PCR was performed with 1 μl cDNA using SYBR Premix Ex Taq 
(Applied Biosystems, Foster City, CA, USA) and specific primers 
(Table I) as we have previously described (22). mRNA level as a 
relative expression (R) to an internal control gene (GAPDH) was 
calculated using the 2–ΔΔCt method. 
 
Statistical analyses. Data are presented as the mean±SD. Differences 
were assessed by 2-tailed unpaired Student’s t-test between two groups 
and by ordinary one-way analysis of variance followed by Bonferroni 
analysis for multiple group comparison (GraphPrism 10 software). p-
Values less than 0.05 were considered statistically significant. 
 
Results 

Distinct role of PT- and liver-derived AGT in kidney 
expression levels of AGT and megalin. We generated tissue-
specific AGT KO in PT (PKO) or liver (LKO) by crossing 
AGT floxed mice with Pepck- or albumin-cre recombinase 
and the genotypes were confirmed using RT-PCR (data not 
shown). To determine how PT- or liver-derived AGT 
contributes to AGT mRNA and protein levels in sham and 
UUO kidneys, we carried out immunohistochemistry and RT-
PCR for AGT in the kidneys. UUO increased both AGT 
mRNA and protein levels (Figure 1 and Figure 2A and B). 
PKO, not LKO, suppressed AGT mRNA in sham kidneys, 
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Table I. Primer sequences used for quantitative PCR. 
 
Primers                                        Forward                                                                                             Reverse 
 
AGT                                             5’-CGA GTG GGA GAG GTT CTC AA-3’                                   5’-CCA CAC TCT GGG GGT TAT TC-3’ 
Megalin                                       5’-AAC CCA AGC AGA CAA CGA AC-3’                                   5’-CTT CAC AAG GTT TGC GGT GT-3’ 
Gapdh                                          5’-AAGGTCATCCCAGAGCTGAA-3’                                          5’-AGGAGACAACCTGGTCCTCA-3’



compared with those of WT control (Figure 2A and B). In 
UUO kidneys, PKO inhibited UUO-induced up-regulation of 
AGT mRNA. Intriguingly, LKO enhanced the UUO-induced 
increase in AGT mRNA (Figure 2A and B). These data 
indicate that PT is the main source of AGT mRNA in sham 
and UUO kidneys. The level of AGT protein was completely 
absent in LKO kidneys, but increased in PKO (Figure 1A 
and B), suggesting that liver-derived circulating AGT 
primarily contributes to kidney AGT protein level in UUO.  

Next, we examined the expression level of megalin, a 
major receptor involved in the absorption of circulating 
AGT, since it can affect the intrarenal protein levels of AGT 
through PT absorption (23, 24). The expression of megalin 
was similar among sham kidneys of WT, PKO, and LKO 
mice (Figure 2C and D). However, UUO significantly down-
regulated megalin expression in the kidneys, with no 
significant difference observed among the groups (Figure 2C 
and D). These data demonstrate that liver-derived AGT plays 
a major role in the intrarenal expression of AGT protein, in 
both sham and UUO mice. 
 
Tubular injury and tubulointerstitial fibrosis in PT- and liver-
specific AGT KO mice during UUO. To evaluate whether tissue-

derived AGTs affect obstructive nephropathy, we confirmed 
tubular injury and tubulointerstitial fibrosis in UUO kidneys. 
UUO resulted in a significant increase in kidney injury, tubular 
atrophy, and dilation (Figure 3). In parallel, kidney fibrosis was 
markedly up-regulated in the kidneys of WT UUO mice (Figure 
4). This was accompanied by an increase in fibroblast 
activation, as indicated by elevated expression levels of alpha-
SMA, a marker of myofibroblasts, and p-Smad3, a well-
established pro-fibrogenic molecule (Figure 4 and Figure 5). 
The UUO-induced tubular injury and fibrosis progression was 
not changed in the kidneys of PKO and LKO mice, compared 
with those of WT control (Figure 4 and Figure 5). These 
findings suggest that in the absence of PT- or liver-derived AGT, 
the obstructed kidney could develop tubular injury and fibrosis 
through complementary mechanisms or other source(s) of AGT 
and components of the RAS such as Ang II. 
 
Discussion 
 
In the present study, we showed the distinct role of liver- and 
PT-derived AGT in intrarenal AGT expression during 
obstructive nephropathy. PT-specific AGT increased intrarenal 
AGT mRNA expression during UUO and that was enhanced 
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Figure 1. Expression of angiotensinogen (AGT) in unilateral ureteral obstruction (UUO) kidneys of WT, proximal tubule-specific AGT KO (PKO) 
and liver-specific AGT KO (LKO) mice. WT control, PKO, and LKO mice were subjected to UUO or sham operation for seven days. (A) Paraffin-
embedded kidney sections were used to carry out immunohistochemistry for evaluating AGT expression. Brown color indicates AGT localization. 
(B) Expression levels were evaluated using Image J software (n=5-7). Scale bar, 50 μm. Data are expressed as means±SD. *p<0.05 vs. WT-Sham; 
#p<0.05 vs. WT-UUO.



when liver-derived AGT is blocked. However, intrarenal AGT 
protein, which was derived from liver, was not compensated 
by inhibition of PT-derived AGT during UUO. Interestingly, 
in PT-specific AGT-KO, intrarenal AGT protein level was 
increased due to megalin-mediated uptake of circulating liver-
derived AGT during UUO. Nevertheless, UUO-induced 
tubular injury and fibrosis progression was comparable 
among WT, PT-, and liver-AGT KO, suggesting a 
compensatory mechanism by systemic AGT or RAS 
components from other sources. These findings suggest that 
during obstructive nephropathy, intrarenal levels of AGT and 
AngII can be compensated by diverse sources, other than the 
liver and kidney. This compensation contributes to kidney 
injury and fibrosis progression. 

RAS components, including AGT and Ang II, serve as 
regulators in a number of cellular and molecular signaling 
pathways as well as in BP regulation. Our research and 
others have demonstrated that blockage of AGT or Ang II 
can halt CKD progression and reduce BP in diverse clinical 
and experimental models (12, 20, 25-28). Systemic inhibition 

of AGT or Ang II type 1 receptor modestly suppresses the 
pathogenesis of CKD, but also has unwanted side effects, 
such as hypotension-related issues and fatigue, or limited 
efficacy in the treatment of CKD (7-9), suggesting the need 
for elucidating the precise mechanism of intrarenal RAS. 
Recently, significant efforts have been committed to define 
the respective role of systemic and local AGT in kidney 
diseases, but our understanding remains incomplete due to 
their complexity (29). Studies have demonstrated that liver- 
or adipocyte-derived AGT affects BP regulation, whereas 
kidney-derived AGT does not (14, 30, 31). However, over-
expression of AGT or Ang II in the kidneys is likely to 
overcome its limited effect on BP control (13, 32), 
suggesting a potential renal mechanism involving 
AGT/AngII that can affect BP regulation.  

However, BP-independent mechanisms of intrarenal 
AGT have rarely been studied in kidney injury and fibrosis. 
In the present study, we sought to delineate the precise role 
of tissue-specific AGT in obstructive nephropathy using 
genetic deletion of AGT in the PT or liver, which are major 
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Figure 2. Changes in angiotensinogen (AGT) and megalin mRNA expression in unilateral ureteral obstruction (UUO) kidneys of WT, proximal 
tubule-specific AGT KO (PKO), and liver-specific AGT KO (LKO) mice. WT control, PKO, and LKO mice were subjected to UUO or sham operation 
for seven days. (A-B) Kidney AGT mRNA levels were measured using quantitative real time RT-PCR. The levels are expressed as a fold increase to 
Sham (n=5-9). (C-D) Levels of megalin mRNA were measured using quantitative real time RT-PCR. The levels are expressed as a fold increase to 
Sham in WT control (n=5-7). Data are expressed as means±SD. *p<0.05 vs. WT-Sham; #p<0.05 vs. WT-UUO.



sites generating systemic or intrarenal AGT in mice. The 
mouse models with tissue-specific AGT deletion were 
useful in defining the role of AGT during UUO, a BP-
independent established model of kidney tubular injury and 

fibrosis. We demonstrated that PT-derived AGT is required 
for maintaining intrarenal levels of AGT mRNA under 
normal conditions and that its expression increases in the 
kidney during UUO. In contrast, liver-derived AGT is 
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Figure 3. Effect of proximal tubule-specific angiotensinogen (AGT) KO (PKO) and liver-specific AGT KO (LKO) in unilateral ureteral obstruction 
(UUO)-induced kidney tubular injury and fibrosis. WT control, PKO, and LKO mice were subjected to UUO or sham operation for seven days. (A) 
Paraffin-embedded kidney sections were used for PAS staining (n=6-7). (B) Ratios of atrophied and dilated tubule to total tubules were evaluated 
as described in the Methods section. Insets indicate atrophied tubule. Scale bar, 50 μm. Data are expressed as means±SD. *p<0.05 vs. WT-Sham.

Figure 4. Effect of proximal tubule-specific angiotensinogen (AGT) KO (PKO) and liver-specific AGT KO (LKO) in unilateral ureteral obstruction 
(UUO)-induced kidney fibrosis. WT control, PKO, and LKO mice were subjected to UUO or sham operation for seven days. (A) Paraffin-embedded 
kidney section was used to carry out Sirius Red stain (n=6-7). (B) Sirius Red-positive collagen deposition was quantified from randomly chosen 
five fields per kidney. Scale bar, 50 μm. Data are expressed as means±SD. *p<0.05 vs. WT-Sham.



necessary for maintaining the intrarenal levels of AGT 
protein in both normal and UUO kidneys. In addition, when 
liver-derived AGT was absent during UUO, it was 
compensated by PT-derived AGT, as evidenced by the 
increased intrarenal AGT mRNA levels. However, unlike in 
BP-dependent CKD models (20), these changes did not 
prevent kidney injury and fibrosis, which may be associated 
to the dynamics of renal AGT observed in UUO kidneys. 
Further studies are required to define other potential 
sources of AGT and AngII, such as interstitial fibroblast-
like cells, glomerular cells, or adipocytes (31, 33-37), and 
to elucidate their compensatory roles and detailed 
mechanisms in kidney injury and fibrosis during 
obstructive nephropathy (32, 38-41).  
 
Conclusion 

Collectively, our findings demonstrate the roles of liver- or 
PT-derived AGT and its downstream signaling in the 
progression of kidney injury and fibrosis during obstructive 
nephropathy. This highlights the complexity of the signaling 
pathways involved and the compensatory mechanisms 
associated with them. Understanding these mechanisms is 
crucial for developing effective therapeutics for treating 
kidney injury and fibrosis in cases of UUO. 
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Figure 5. Expression of α-SMA and p-Smad3 in unilateral ureteral obstruction (UUO) kidneys of WT, proximal tubule-specific angiotensinogen 
(AGT) KO (PKO), and liver-specific AGT KO (LKO) mice. (A-C) Levels of α-SMA and p-Smad3 were examined by western blot analysis using 
specific antibodies. Representative western blots are shown (n=5). Anti-GAPDH antibody was used as a loading control. Expression levels were 
evaluated using Image J software. S: Sham; Con: control. Data are expressed as means±SD. *p<0.05 vs. WT-Sham.
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