
Abstract. Background/Aim: Inflammatory bowel diseases 
and colorectal cancer are a major cause of morbidity and 
mortality. Amine oxidase, copper-containing 3 (AOC3) is a 
critical enzyme in the physiological trafficking of leukocytes 
and the regulation of inflammation. This study aimed to 
examine the effects of Aoc3 deficiency in mice models of 
colitis and colorectal tumorigenesis. Materials and Methods: 
C57BL/6 and Aoc3 knockout mice were used for Dextran 
Sodium Sulfate (DSS) induced acute colitis and the 
Azoxymethane (AOM)/DSS model of inflammation-related 
colon cancer. We also evaluated the effect of Aoc3 in an Apc 
mutant mice model of intestinal and colonic tumorigenesis. 
Results: We observed that Aoc3 deficient mice were more 
prone to colitis induced by DSS in early phases and their 
survival was shorter. We also showed that Aoc3 deficient 
mice developed more tumors both in AOM/DSS and Apc 
mutant mice models. Furthermore, colonic tumors in the 
AOM/DSS groups in Aoc3 mutant mice were generally 
invasive type adenocarcinomas. Conclusion: Aoc3 deficiency 
promotes colitis and colonic tumorigenesis in mouse models. 
 
Ulcerative colitis and Crohn’s disease are called inflammatory 
bowel diseases (IBDs), and are an important cause of major 

morbidity (1). Although IBDs are diseases with well-defined 
clinical, endoscopic and morphological features, their 
etiology and pathogenesis have not yet been fully elucidated. 
Many factors, such as the genetic predisposition of affected 
individuals, immune system, intestinal microbiota, nutritional 
habits, and environmental factors can affect the underlying 
disease process (2). Tissue damage due to excessive 
inflammation can cause complications related to both 
structural and neoplastic processes. IBD patients are at 
increased risk for the development of colorectal cancer (CRC) 
(3). The pathogenesis of CRC and the affected signaling 
pathways have been studied in great detail, and tumors 
develop as a result of alterations in signaling pathways, such 
as Wnt, TGF, TP53, PI3K, and RTK-Ras (4). Chronic colonic 
inflammation caused by infections, dysregulated immune 
responses, IBDs, or environmental factors can initiate and 
promote the inflammation-related CRC development. 
Although it is well known that inflammation facilitates tumor 
progression, the underlying pathogenesis of this process still 
requires further investigation to be fully defined (3). 

Amine oxidases are a group of enzymes that control the 
oxidation of some important biologically active amines 
present in all living systems. Due to their pivotal role, they 
have been the focus of research related to human diseases (5). 
One important subgroup of amine oxidases are copper amine 
oxidases (CAOs), which need Cu+2 and a tyrosine-derived 
quinone cofactor to generate other biologically active 
molecules from amines, such as hydrogen peroxide and 
ammonia. The byproducts of these enzymes either directly or 
indirectly influence tissues and regulate inflammation, 
fibrosis, tumor invasion, and other disease processes (6). 
Amine oxidase, copper-containing 3 (AOC3)/vascular 
adhesion protein-1 (VAP-1), also called as semicarbazide-
sensitive amine oxidase (SSAO) is mainly expressed in the 
lung, aorta, and liver, but it can also be found in adipocytes, 
smooth muscle cells, and endothelial cells. It is involved in 
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leukocyte trafficking between blood and tissues under 
physiological and pathological conditions. AOC3 catalyzes 
the oxidative deamination of primary amines in a reaction 
that produces aldehyde, ammonium, and hydrogen peroxide 
(7). The absence of AOC3 leads to a decrease in lymphocyte 
traveling to the lymphoid organs and reduced AOC3 levels 
attenuate the inflammatory response in peritonitis (8). The 
soluble form of it is released by degradation with 
metalloproteinases and its circulating level is known to be 
increased in rheumatoid arthritis, inflammatory bowel 
diseases, and inflammatory liver diseases (9). However, 
knowledge on the expression of tissue-dependent Aoc3 and 
soluble Aoc3 in CRCs (10, 11) and IBDs is very limited (12). 

The dextran sulfate sodium (DSS)-induced colitis (13, 14) 
and inflammation-related mouse colon carcinogenesis model 
induced by azoxymethane and dextran sodium sulfate 
(AOM/DSS) (15) are well studied animal models. In mice, 
acute and chronic colitis may be induced with oral 
administration of 2-5% DSS in drinking water for different 
time periods based on the experimental procedure. Because 
of that, dose optimization for different experiments and DSS 
batches from different vendors should be performed before 
specific experiments (16). Murine models of CRCs are a 
very well studied subject, based on specific underlying 
molecular mechanisms of CRCs (17). Most of these models 
target and modify the mouse Apc gene in different 
experimental approaches (18). Association of Apc mutation 
and colitis is also well studied in mouse models in the 
context of colon cancer development (19). 

Although the role of Aoc3 in inflammatory diseases is very 
well studied, its role in IBDs and CRCs has not been studied 
in preclinical disease models. In addition to that, since Aoc3 is 
a potential treatment target (20), it increases the importance of 
knowing its role in inflammatory and neoplastic diseases of the 
colon. Therefore, this study aimed to elucidate the effect of 
Aoc3 in mouse models of colitis and colon cancer. 

 
Materials and Methods 
 
Mouse colony, genotyping and establishment of experimental 
cohorts. Mice homozygous for a null mutation of Aoc3–/– were 

previously described (8) and donated by Dr. Sirpa Jalkanen as a 
kind gift from the University of Turku. Apc+/– mutant mice with an 
8-nucleotide deletion at codon 750 were generated in our laboratory 
using the CRISPR/Cas9 system. These mice have been used as a 
model for intestinal and colon polyposis in previous studies (21). 
Genotyping of Aoc3 and Apc+/– mutant mice was performed with 
multiplex polymerase chain reaction (PCR) from genomic tail DNA 
isolated from each mouse and primer sequences are shown in Table 
I. In order to establish Aoc3–/–, Aoc3+/–, and Aoc3+/+ mice in the 
Apc+/– background, Aoc3+/– mice were mated with Apc+/– mice. All 
mice were housed in individually ventilated cages under the 
standard 12 h light and 12 h dark cycle, at room temperature, ad-
libitum feeding with standard diet and water. All experimental 
procedures were carried out in accordance with the regulations of 
Hacettepe University Animal Experimentations Ethics Board 
(Approval number: 2020/60). 
 
Chemicals, induction of colitis and colitis-induced tumorigenesis. 
Acute colitis induction was performed by using DSS in drinking 
water (TdB Consultancy AB, Uppsala, Sweden). In order to 
determine the optimal dose for induction of acute colitis, C57BL/6 
(wild-type, WT) and Aoc3–/– mice were treated with 2%, 2.5%, and 
3% DSS for five days. For the experimental cohorts of acute colitis, 
2.5% DSS was administered for 8 days and animals were terminated 
on the 9th day. In colitis induction experiments, all mice were 
weighted daily; stool consistency and rectal bleeding were also 
evaluated. AOM/DSS was used for the colitis-induced tumor model. 
In this model, mice were treated 10 mg AOM (Sigma-Aldrich, St. 
Louis, MO, USA) per kg body weight with intraperitoneal injection 
at the beginning, followed by 5 days with drinking water containing 
2% DSS. After that normal drinking water was provided for the next 
9 days. This regimen (2% DSS and normal drinking water) repeated 
for 3 cycles. Afterward, all animals were provided with normal 
drinking water until termination at the 14th week for dissection and 
analysis of colonic tumors. 
 
Dissection of mice, polyp counting and collection of tissue samples 
and histopathological assessment of colitis. All experimental groups 
were sacrificed under anesthesia and dissections were performed. 
The entire gastrointestinal tract was removed and put into 1X PBS 
at +4˚C for the experimental groups in which DSS was applied. 
Then, the colon from the anus to the cecum was opened 
longitudinally and washed with 1X PBS. The opened specimens 
were photographed and the length of the colons was measured. In 
the cohort that was formed with Apc+/– and Aoc3+/– mice matings, 
the entire gastrointestinal tract was removed and opened. The 
samples were fixed in 10% buffered formalin. One day later, the 
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Table I. Primers that were used for mice genotyping and expected amplicon sizes. 
 

Multiplex PCR primer sequences (5’→3’) 
 
                                                              Forward                                                                              Reverse                                                  Amplicon size 
 
Apc+/+                             CAGCAGCTTTAAGGAATCTCA                                 TCTGACCTACTATCATCATGTCG                                 268 bp 
Apc+/–                                   GTCTGCCATCCAGGAAA                                      TCTGACCTACTATCATCATGTCG                                 185 bp 
Aoc3+/+                           GCCCACAAGGAAGAAGACAC                                  CAAACACCAGGGACAGAACC                                   405 bp 
Aoc3–/–                              GGCTGCTGATCTCGTTCTTC                                      TCTGGATTCATCGACTGTGG                                    604 bp



formalin-fixed samples were examined under a stereo microscope 
(ZEISS Stemi 305 Model Stereomicroscope, Carl Zeiss AG) for 
colonic polyp counts. The number and location of polyps were 
recorded. After this, the entire colon was used to prepare formalin-
fixed paraffin-embedded (FFPE) blocks to make H&E sections for 
histomorphological analysis. H&E-stained slides of colon samples 
were evaluated for histological activity score of colitis based on 
three parameters: the severity of inflammation, crypt damage, and 
ulceration. Severity of inflammation was scored as 0 to 3 (rare to 
transmural extension of the inflammatory infiltrate). Crypt damage 
was scored as 0 to 5 (intact crypts to confluent erosion) and 
ulceration was scored as 0 to 3 (absence of ulcer to confluent or 
extensive ulceration). The scores were summed up to obtain a 
histological activity score ranging 0-11, as described previously 
(22). Other internal organs of sacrificed mice were also evaluated 
histomorphologically under a light microscope. 

 
Total RNA isolation, cDNA synthesis, and qPCR analysis on colon 
epithelium samples. Fresh distal colon samples from C57BL/6 and 
Aoc3–/– mice were collected into the RNAlater solution (Thermo 
Fisher Scientific, Waltham, MA, USA) and stored at –80˚C. Total 
RNA extraction was performed by TRIzol reagent (Thermo Fisher 
Scientific). RNA clean-up was done using the Qiagen RNeasy Kit 
(Qiagen, Germantown, MD, USA) as instructed in the vendors’ 
manual. cDNA synthesis from total RNA was performed by using 
the High-Capacity cDNA Reverse Transcription kit (Thermo Fisher 
Scientific) with random primers. qPCR experiments were 
performed with the Stratagene Mx3005P thermocycler system 
(Agilent Technologies, Palo Alto, CA, USA). Forward (F) and 
Reverse (R) primers (5’-3’ sequence) for Aoc3 (F:GTGGTCAGAT 
CCGTGTCTACCTT and R:CCTGTGGCGTGGAATTTGA) and 
Actb (F:AGCCATGTACGTAGCCATCC and R:CTCTCAGCT 
GTGGTGGTGAA) were used. For the qPCR reaction, Luminaris 
Color HiGreen Low ROX qPCR Master Mix (Thermo Scientific, 
LSG-K0373) kit was used as the vendor’s manual. All reactions 
were performed in triplicate, and relative expression levels were 
determined by the ΔCT method. The 2–ΔΔCt method was used to 
calculate the relative fold gene expression of the samples. 

 
BrdU assay. Proliferation in tumor tissues was examined by using 
BrdU labeling. Mice to be tested were weighed, and BrdU (BrdU 
(5-Bromo-2´-Deoxyuridine, Catalog number: B23151, Invitrogen, 
Thermo Fisher Scientific) was injected intraperitoneally at the 
appropriate dose according to their body weight (100 mg/kg). 
Dissection was performed 1 h after injection and then histological 
sample sections were prepared from the gastrointestinal tract. 
Unstained sections from FFPE blocks were immunostained with 
anti-BrdU antibody (BrdU Polyclonal Antibody, Catalog # PA5-
32256, invitrogen, Thermo Fisher Scientific) as described in 
detail (21). 

 
Statistical analysis. Descriptive analyses were presented as mean 
and standard error of mean. Differences between the two groups 
were compared using the t-test. Survival analyses were performed 
using the Kaplan-Meier method and the survival curves were 
compared for time-to-event measures with a log-rank test. p-Value 
<0.05 was used to infer statistical significance. Sample size 
estimates were not used. GraphPad Prism version 10.2.1 
(GraphPad Software Inc.) for Windows was used for statistical 
analyses. 

Results 
 
Aoc3 knockout mice, genotyping, histological analysis, and 
gene expression. Multiplex PCR results confirmed the 
genotypes of C57BL/6 wild-type (wt), Aoc3 heterozygous 
and knockout mice (Figure 1A). Histological evaluation of 
the internal organs and gastrointestinal tract of these three 
groups of mice did not show any specific finding. 
Histological staining of the colon of Aoc3–/– and wt mice  is 
shown in Figure 1B and C, respectively. Aoc3 expression 
was examined using qPCR and found to be 5-fold lower in 
Aoc3–/– mice when compared to wt mice (Figure 1D). 
 
Optimisation of DSS dose for the induction of acute and 
chronic colitis in C57BL/6 and Aoc3 knockout mice. A 
preliminary experiment was conducted to determine which 
of 2%, 2.5% and 3% DSS concentrations was optimal for the 
induction of acute and chronic colitis (n=2 for each group 
for both wt and Aoc3–/– mice). The severity of colitis was 
evaluated by assessing weight loss, rectal bleeding, colon 
length, and histological activity index. The weight loss of the 
mice was between 10-15%, stool was watery, and bleeding 
was evident in both wt and Aoc3–/– groups administered 3% 
DSS. All animals were sacrificed after six days of follow-up 
and colon lengths were compared. The colon length 
shortened with increasing DSS concentration in both wt and 
Aoc3–/– mice (Figure 1E and F). At the same time, increasing 
DSS concentrations caused increased weight loss in both 
cohorts. Wt and Aoc3–/– mice given 3% DSS started to lose 
weight rapidly after day 4 (Figure 1G). Histological activity 
score including inflammation severity, crypt damage, and 
ulceration were also found to be higher with increasing DSS 
concentration. It was also observed that Aoc3–/– mice were 
more prone to acute colitis (Figure 1H). Since 3% DSS 
caused severe colitis, which was more prominent in the 
Aoc3–/– group, 2.5% DSS was used for the subsequent acute 
colitis experiments (Figure 1I-K). 2% DSS was chosen for 
the long-term induction for tumorigenesis experiments using 
the AOM/DSS colitis model. 
 
Aoc3 knockout mice showed shorter survival in acute colitis 
experiments. In acute colitis experiments, C57BL/6 wild-type 
mice and Aoc3 knockout mice (n=4 male mice in each group) 
were administered 2.5% DSS in drinking water and the 
similar age and body weight-matched control group was 
administered normal drinking water. Mice were followed for 
nine days and those treated with 2.5% DSS showed rapid 
weight loss starting from day 4. Aoc3–/– mice treated with 
2.5% DSS showed more weight loss compared with C57BL/6 
wild-type mice (Figure 2A). Furthermore, rectal bleeding 
started on day 4 (Figure 2B). In survival analysis, three of the 
C57BL/6 wild-type mice (n=4) in the 2.5% DSS group died 
on day 8 and only 1 mouse survived until day 9 in an acute 
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Figure 1. Aoc3 knockout mice genotyping-phenotyping, Aoc3 expression in distal colon and optimization of dextran sulfate sodium (DSS) concentration 
for colitis induction. Genotyping of Aoc3 wild-type (wt), heterozygous and knockout mice by multiplex PCR (A). Histological examination of colon 
revealed no difference between C57BL/6 wt and Aoc3–/– mice, respectively (B-C). Comparison of Aoc3 expression in wild type and Aoc3–/– mice 
(normalized to housekeeping gene Actb) (t-test, p-Value=0.0048) (D). Colon lengths shortened with increasing DSS concentration (2%, 2.5% and 
3% DSS) in both wt and Aoc3–/– mice (E-F). Body weight loss is also more prominent in higher concentrations of DSS in drinking water (G). 
Histologic activity index (HAI) increased in parallel with increasing DSS dose (2%, 2.5% and 3%, respectively) in wild-type mice groups. In Aoc3 
mice, HAI was at maximum score at all doses and was relatively higher in their control wild-type groups (H). H&E representative images of the 
distal colon from control, 2.5% DSS-treated wt, and 2.5% DSS-treated Aoc3–/– mice, respectively (I-K). Scale bars: 50 μm.



colitis experiment. All mice in the control group (n=4) given 
normal drinking water survived until the end of the 
experiment (Figure 2C). When the survival of Aoc3–/– mice 
(n=4) in the 2.5% DSS group was examined, it was observed 
that all mice died starting from day 3 until day 8, while all of 
the Aoc3–/– mice (n=4) in this group given normal drinking 
water survived until the end of the experiment (Figure 2D). 
It was found that Aoc3–/– mice were more affected by DSS-
induced acute colitis than C57BL/6 wild-type mice (p 
value=0.0385) (Figure 2E). Since almost all mice were dead 
at the end of the experimental follow-up, no further colon 
length and histological activity could be evaluated. 
 
AOM/DSS induction caused more colonic tumors which were 
mostly invasive adenocarcinomas in Aoc3 knockout mice. In 

colitis-induced tumorigenesis experiments, C57BL/6 wild-
type (n=28) and Aoc3 knockout (n=36) mice were subdivided 
into four groups (0.9% NaCl control: n=6 and n=9; only 
AOM: n=8 and n=9; only 2% DSS: n=7 and n=9; and 
AOM+2% DSS: n=7 and n=9; wt and Aoc3 knockout mice 
numbers in each subgroup; respectively). The experimental 
strategy is demonstrated in Figure 3A. Aoc3–/– mice treated 
with AOM/DSS and 2% DSS started losing body weight after 
the 3rd week (Figure 3B). Only 2% DSS and AOM/DSS 
administration resulted in more colonic tumor formation in 
Aoc3–/– mice compared to wt controls (Figure 3C). Regarding 
survival, wt mice treated with AOM/DSS started to die from 
day 150, whereas Aoc3–/– mice started to die from day 75. 
Regarding DSS-treated groups (both only 2% DSS and 
AOM/DSS), all of the 14 mice in the C57BL/6 group 
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Figure 2. Acute colitis in wild-type (wt) and Aoc3–/– mice. Graph of mean body weights of mice followed for 9 days (A) and image of rectal 
bleeding on day 4 (B). Kaplan-Meier curves showing the survival of the experimental groups during the 9 days follow-up. Survival curves for wt 
(C), Aoc3–/– (D) and comparisons of wt and Aoc3–/– mice given 2.5% dextran sulfate sodium (E). *p<0.05, Kaplan-Meier analysis, log-rank test.



survived until the end of the experimental period, while 12 
mice out of 18 (67%) survived in the Aoc3–/– group. This 
showed that Aoc3–/– mice were highly affected by AOM/DSS 
administration (Figure 3D-F). Macroscopic examination 
revealed distal colonic tumors (Figure 3G). Microscopic 
histologic examination of the whole colon dissected from wt 
groups demonstrated 5 tumors of which four were adenoma 

and one was invasive adenocarcinoma (Figure 3H). Of the 
10 colonic tumors present in AOM+DSS treated Aoc3–/– 
mice groups three were adenoma and seven invasive 
adenocarcinoma (Figure 3I). 

 
Aoc3 deficient mice are more prone to colonic tumorigenesis 
in the germline Apc mutant intestinal-colonic mice tumor 
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Figure 3. Experimental protocol for colitis-induced tumor model generated by the administration of azoxymethane/dextran sodium sulfate 
(AOM/DSS) (A). Body weight follow up and column scatter plots of the experimental groups. Average body weight of female mice in the experimental 
groups (B). Comparison of colonic tumor numbers of wt and Aoc3–/– mice treated with 2% DSS or AOM/DSS (C). Kaplan-Meier curves showing 
the survival of the experimental groups during the 14-week follow-up of WT, Aoc3–/–, all groups, respectively (D-E). *p<0.05, Kaplan-Meier analysis, 
log-rank test. Macroscopic image of distal colonic tumor (G) and H&E staining image of colonic adenoma from AOM/DSS-treated wt mice (H) 
and invasive adenocarcinoma from AOM/DSS-treated Aoc3–/– mice (I). Scale bars: 100 μm.



model. In order to test the effect of Aoc3 knockout on 
intestinal and colonic tumorigenesis in the Apc mutant mice, 
we formed three groups and animals in each group were 

followed for 18 weeks. After that, all mice were sacrificed 
and the number of polyps in the intestine and colon are 
shown in Table II. Aoc3 knockout mice developed more 
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Table II. Mean number of intestinal and colonic polyps in Apc and Aoc3 mutant mice. SD: Standard deviation, SE: standard error. 
 
Sex                                        Genotype &                                             Mean number of intestinal                                      Mean number of colon  
                                               number (n)                                                        polyps (SD-SE)                                                     polyps (SD-SE) 
 
Male                                    Apc+/– Aoc3–/–                                                   56.00 (28.30-0.51)                                                  13.25 (5.32-0.40) 
                                                     n=4 
Male                                   Apc+/– Aoc3+/–                                                   24.33 (7.64-0.31)                                                    8.67 (3.21-0.37) 
                                                     n=3 
Male                                   Apc+/– Aoc3+/+                                                  31.67 (15.00-0.48)                                                   6.00 (2.64-0.44) 
                                                     n=3

Figure 4. Macroscopic images of the whole gastrointestinal tract of Apc+/– Aoc3–/– and Apc+/– Aoc3+/+ mice (A, B) and images of the distal colon 
(C, D), respectively. Average number of small intestine (E) and colon polyps (F) in Apc mutant mice with Aoc3 mutational status (homozygous 
mutation or heterozygous mutation or wild-type, respectively).



intestinal and colonic tumors (Figure 4A-F). Tumors showed 
histologically adenomatous morphology in both the intestine 
and colon (Figure 5A-D). Brdu labelling showed similar 
proliferation activity in both wt and Aoc3 knockout mice 
polyps (Figure 5E and F). 

Discussion 
 
In this study, we showed that the absence of Aoc3 promotes 
tumor progression in AOM/DSS-induced colonic tumor and 
Apc mutant intestinal/colonic tumor model in mice. We also 
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Figure 5. H&E staining of small intestinal adenomas (A, B), colonic polyps (C, D) and BrdU labeling of small intestinal adenomas (E, F) from 
Apc+/– Aoc3–/– and Apc+/– Aoc3+/+ mice are presented, respectively. Scale bars: 100 μm and 50 μm.



demonstrated that Aoc3 deficient mice are more prone to 
DSS-induced colitis than wild-type C57BL/6 mice. 

In the last decades, Aoc3 has been considered a novel 
clinical biomarker and a potential therapeutic target for 
inflammatory disorders (23). Studies related with Aoc3 
mostly focused on its role in vascular inflammatory diseases 
(24), atherosclerosis (25, 26), coronary heart disease (27), 
liver fibrosis (9, 28) and metabolic disorders (29). Although 
detailed studies have been conducted on many diseases 
accompanied by inflammatory processes, there are not many 
studies on the role of Aoc3 in the development of IBDs and 
CRCs. In one of the rare articles, it was shown that the 
serum level of soluble AOC3/VAP1 in patients with colon 
cancer decreased (10). Our own observation of AOC3 down-
regulation in CRCs samples is also supported by this finding 
(unpublished data). Another study reported that AOC3 may 
be an activation marker for cancer-associated fibroblasts and 
may have a role in CRC progression (11). 

Inflammatory diseases like rheumatoid arthritis and IBDs 
were not associated with elevated sVAP-1 levels (9). Similar 
to this study, Koutroubakis et al. have found that sVAP-1 
serum concentrations were not significantly different 
between 161 IBD patients (90 ulcerative colitis, 71 Crohn’s 
disease) and 93 healthy controls (12). Although the 
pathogenesis of IBD is not fully known, the relationship of 
intestinal stromal cells with the disease has been frequently 
emphasized recently (30). Another study also showed that 
AOC3 is a marker for pericryptal myofibroblasts in the colon 
and rectum (31). Our observation also supports this finding 
(unpublished data). In this study we demonstrated that in a 
in vivo model Aoc3 deficiency is associated with colitis and 
CRCs development. However, elucidation of the mechanism 
of pathogenesis requires further studies. 

Aoc3 modulation, especially inhibition, is used as an 
treatment alternative in diseases where inflammation is 
involved in the pathogenesis (20). There are many preclinical 
and clinical studies are ongoing in this field as a target 
molecule for treatment of such diseases (7). Treatment of a 
mouse model of chronic obstructive pulmonary disease with 
the inhibitor of semicarbazide-sensitive amine oxidase PXS-
4728A improved lung function by suppressing airway 
inflammation and fibrosis (32). In a Phase II study, the 
AOC3 inhibitor BI 1467335 dose-dependently reduced 
serum ALT and CK-18 caspase in adults with non-alcoholic 
steatohepatitis (33). In our study, we showed that the 
deficiency of AOC3 promoted the progression of both colitis 
and CRC, in contrast to the inflammatory diseases in the 
literature. Because of that, restoring the function of AOC3, 
not inhibition, may be used as a treatment modality in IBDS 
and CRCs. Therefore, AOC3 activation needs to be further 
studied experimentally in in vitro and in vivo models. 

In conclusion, we demonstrated that Aoc3 deficient mice 
are more prone to both DSS-induced colitis and colonic 

tumorigenesis. Further studies are needed to elucidate the 
pathogenesis and evaluate Aoc3 activation as a treatment 
modality. 
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