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Abstract

Objective: Real-time measurement of biological joint moment could enhance clinical 

assessments and generalize exoskeleton control. Accessing joint moments outside clinical and 

laboratory settings requires harnessing non-invasive wearable sensor data for indirect estimation. 

Previous approaches have been primarily validated during cyclic tasks, such as walking, but 

these methods are likely limited when translating to non-cyclic tasks where the mapping from 

kinematics to moments is not unique.

Methods: We trained deep learning models to estimate hip and knee joint moments from 

kinematic sensors, electromyography (EMG), and simulated pressure insoles from a dataset 

including 10 cyclic and 18 non-cyclic activities. We assessed estimation error on combinations 

of sensor modalities during both activity types.

Results: Compared to the kinematics-only baseline, adding EMG reduced RMSE by 16.9% at 

the hip and 30.4% at the knee (p<0.05) and adding insoles reduced RMSE by 21.7% at the hip 

and 33.9% at the knee (p<0.05). Adding both modalities reduced RMSE by 32.5% at the hip 

and 41.2% at the knee (p<0.05) which was significantly higher than either modality individually 
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(p<0.05). All sensor additions improved model performance on non-cyclic tasks more than cyclic 

tasks (p<0.05).

Conclusion: These results demonstrate that adding kinetic sensor information through EMG 

or insoles improves joint moment estimation both individually and jointly. These additional 

modalities are most important during non-cyclic tasks, tasks that reflect the variable and sporadic 

nature of the real-world.

Significance: Improved joint moment estimation and task generalization is pivotal to developing 

wearable robotic systems capable of enhancing mobility in everyday life.
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deep learning; electromyography (EMG); human kinetics; inertial measurement units (IMUs); 
joint moments; machine learning; pressure insoles; temporal convolutional network

I. Introduction

Accurate estimation of human joint moments using wearable sensors could provide a 

useful signal for health monitoring [1], [2] and exoskeleton control [3], [4] during real-

world activities. The gold standard approach to quantify joint moment is through inverse 

dynamics enabled by optical motion capture and in-ground force plates [5]. However, these 

systems are not accessible outside of the lab; thus, recent efforts have explored methods 

for estimating joint moments directly from wearable sensors. Three main categories of 

approaches have emerged as possible wearable alternatives: analytical models driven by 

inertial measurement units (IMUs) and instrumented insoles [6], electromyography (EMG)-

driven models [7], and machine learning data-driven models [6], [8]. Deep learning methods 

have shown great promise in accurately estimating joint moments with a limited sensor suite 

of kinematic sensors [4], [9] and do not require the same assumptions entailed by analytical 

methods [6]. However, this approach, as well as its alternatives, have mostly been tested 

during limited tasks such as walking and running or on a few individual alternate tasks [6]. 

The question remains whether these approaches will be viable on highly dynamic, constantly 

changing tasks.

The machine learning biological moment estimation approach has a potential weakness in 

these unique non-cyclic activities. Most of the current approaches use only kinematic sensor 

inputs such as joint angles and IMUs [4], [8]. However, changes in a person’s kinematics 

do not directly predict changes in their joint moment, especially in these unique activities 

because similar kinematic patterns do not necessarily result in similar kinetic patterns. 

Although studies have shown promising results in estimating ground reaction forces directly 

from kinematic sensors during standard cyclic activities [9], [10], these relationships may 

not hold in the same way during unusual cyclic and non-cyclic tasks as shown in Fig. 1 

[11]. Thus, a kinematic-based machine learning model is potentially lacking distinguishing 

information for tasks with similar kinematics but differing torques or vice versa.

To add this missing information, there are two potential avenues inspired by both the current 

musculoskeletal modeling techniques and the alternate approaches to moment estimation. 

The inverse approach uses ground reaction forces traced up the kinematic chain to the 
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joint of interest to estimate joint moments. This line of reasoning has given rise to the 

gold standard of inverse dynamics [5] and the analytical models for moment estimation. 

The forward approach notes that fundamentally muscle activations lead to muscle forces 

which are ultimately responsible for the resulting torque exerted on the joint. This line 

of thinking has inspired EMG-driven modeling techniques [12], [13]. Although current real-

time wearable systems cannot directly measure 3D ground reaction forces [14] or muscle 

forces and activation [15], the substitute wearable sensors, pressure insoles and EMG, have 

the potential to provide insight into kinetic changes in human movement.

Pressure insoles estimate the vertical ground reaction force (vGRF) and center of pressure 

(COP) within the reference frame of the foot [16]. Pressure insoles have recently grown 

in popularity for wearable robotic technologies [17], specifically for discrete gait event 

detection and even locomotion mode recognition [18]. More recently, analytical methods 

for moment estimation have used continuous signals from insoles as a surrogate for force 

plates, but their success is varied [19]. Only a few studies have examined insoles in machine 

learning approaches, two for estimating internal loading [20], [21] and a single study using 

vGRF as an input in hip moment estimation for a single treadmill walking speed [22]. 

An analysis of the benefits of insoles on deep learning moment estimation has yet to be 

explored.

Electromyography (EMG) has the capacity to encode information about muscle activation, 

which relates to muscle forces and thereby joint moments. Thus, information from surface 

EMG signals could provide a machine learning model with the ability to distinguish 

between situations where the mapping between kinematics and kinetics may be highly 

nondeterministic. EMG inputs in deep learning models have conventionally been used for 

gesture recognition on upper limbs, but have also been beneficial for angle and force/torque 

estimation [23]. On upper limbs, various types of neural networks have been used to 

estimate forces at the wrist [24] as well as multi-degree-of-freedom torques at the wrist 

[25]. Work on lower limbs has included using deep learning for estimation of gait events 

with EMG [26] as well as several attempts to estimate biological moments with EMG and 

neural networks [27]–[29]. In 2008, Hahn and O’Keefe used a neural network with EMG, 

kinematics, and other subject information as inputs to estimate lower-limb joint moments 

[27]. More recent studies have used EMG as well as kinematics to estimate ankle moments 

[28] and all three lower-limb joints [29] using deep learning models. The benefits and 

feasibility of estimating biological moment during unique non-cyclic tasks has yet to be 

examined and a direct comparison of the benefits of EMG over kinematic sensors alone has 

yet to be performed.

In this study, a deep learning joint moment estimation approach was used to estimate 

joint moments in both common, time-repeatable cyclic activities as well as unique non-

cyclic activities. Using subject dependent models, we analyzed the benefits of adding 

EMG, simulated instrumented insoles, and both as compared to a purely kinematic sensor 

baseline. Sensors were chosen to replicate those most accessible to two devices: a hip 

exoskeleton and a knee exoskeleton, and the associated joint moment was selected as the 

appropriate estimation label. Our main hypothesis was that EMG and simulated insoles, 

both individually and together, would improve joint moment estimation on left-out-tasks as 
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compared to the kinematic-only baseline. This is due to the additional information that these 

sensors provide to distinguish between tasks with similar kinematics but different torques. 

Our secondary hypothesis was that the benefit of adding these sensors would be higher for 

the unique non-cyclic activities over the cyclic activities. Because the model architecture 

received time history information, we expect that the cyclic tasks will be easier to model 

without additional information from EMG or simulated insoles than the non-cyclic activities.

II. Methods

This study utilized a temporal convolutional network (TCN) [4] in concert with different 

sensor inputs (EMG, virtual insoles) to create models that estimate joint moments based 

on wearable sensor data. This allowed a rigorous examination of the benefits of including 

EMG, instrumented insoles, or both in estimating joint moments for unique tasks. Due to the 

left-out-task training approach, our results represent the expected benefit during truly novel 

tasks. Our experimental approach is outlined in Fig. 2.

A. Network Architecture

The network was designed based on the TCN introduced by Bai et. al. [30]. This 

model architecture was chosen based on its ability to incorporate significant time history 

information without excessive model complexity, as well as previous data demonstrating its 

ability to accurately predict biological moments [4]. Inputs to the model are sequences of 

time-history data where the length of time history is determined by the kernel size for the 

convolutional layers as well as the depth of the network. Dilated causal convolution is used 

to increase the size of the input time series. The kernel size for the convolutional layers 

was set to four, and we chose a depth of five layers. Each layer consisted of a set of two 

convolutions with weight normalization and rectified linear unit (ReLU) activation functions 

with a dropout term to avoid overfitting. Each hidden layer consisted of fifty nodes. This 

particular architecture represents an effective time history of 0.93s given a 200Hz sampling 

rate. The details of the generic TCN architecture are included in Bai et. al. [30]. The depth, 

kernel size, learning rate, and dropout are parameters that were set based on previous testing 

with this network for estimating hip moments from purely mechanical sensors [4]. This 

network architecture employed input-level sensor fusion where information from the various 

sensor modalities (EMGs, joint angles, IMUs, and virtual insoles) were allowed to influence 

each other from the beginning of the network.

Inputs consisted of only the sensors relevant to the specific exoskeleton (hip or knee). For 

a sensor suite simulating a knee exoskeleton, the baseline kinematic sensors included knee 

angle, knee velocity, a shank IMU, and a thigh IMU similar to Lee et al. [31]. EMG inputs 

consisted of four channels of EMG from knee spanning muscles: vastus lateralis (VL), 

rectus femoris (RF), biceps femoris (BF), and medial gastrocnemius (MG). For a system 

simulating a hip exoskeleton, the baseline kinematic sensors included hip angle, hip velocity, 

a thigh IMU and a pelvis IMU inspired by a combination of research devices [32], [33]. 

EMG inputs consisted of four channels of EMG from hip spanning muscles: rectus femoris 

(RF), gluteus medius (GMed), gluteus maximus (GMax), and biceps femoris (BF). For both 
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analyses, virtual insoles consisted of vGRF in the frame of the foot as well as COP for both 

the anteroposterior and mediolateral directions. This is summarized in Fig. 3.

Training was performed in mini-batches for 15 epochs. To choose this number, we trained 

models similar to those presented here (subject-dependent models with kinematic sensors 

to estimate knee joint moment) with a completely separate dataset [34]–[37] to determine 

the average point at which the models stopped improving. Model weights were initialized to 

random values. Mean squared error was used for the loss function.

B. Data Overview

The data used in this experiment consist of bilateral data for 12 subjects performing various 

unique tasks. These tasks included conventional biomechanics tasks (e.g., walking, running, 

ramps and stairs), athletic maneuvers (e.g., lunges), tasks of daily living (e.g., sit-to-stand, 

turns, and lifting), and responses to external perturbations (e.g., tug of war and walking 

over obstacles). The dataset was divided into 10 cyclic and 18 non-cyclic task groups. This 

study was approved under Georgia Tech Institutional Review Board H17240 (07/12/2017). 

We have open-sourced these data and further details on the groupings and data collection 

methods can be found in that publication [11].

The mocap joint angles (VICON, UK), IMUs (Avanti Wireless EMG, Delsys, Natick, MA), 

and virtual insole data (Bertec Corporation, Columbus, Ohio) from the dataset at 200Hz 

were fed directly into the model (Angles: rad, velocity: rad/s, IMU data: Accel Gs Gyro 

rad/s, Insoles: Force N/kg COP m). For EMG processing, the raw EMG signal was centered 

by subtracting the mean, then bandpass filtered between 30 and 300 Hz using a 4th order 

forward-reverse Butterworth filter. Then the signal was rectified and lowpass filtered at 

6Hz with another 4th order forward-reverse Butterworth filter. This envelope was then 

downsampled to match the frequency of the rest of the mechanical sensors (200 Hz). We 

scaled the magnitude of the EMG envelope to be similar to the magnitudes of the other 

input signals by changing the units (constant scaling factor of 10,000) because we chose 

not to use feature normalization in keeping with Molinaro et al. [4]. This was performed 

for each channel of EMG. Other additional EMG features such as EMG frequency features 

(short time Fourier transform analysis and wavelet analysis) were tested, but no substantial 

improvement in estimation error was obtained so these were not included in the final 

analyses. Labels for the model were joint moments calculated with inverse dynamics based 

on kinematics from motion capture, ground reaction forces from in-ground and treadmill 

force plates, and a subject specific model created in OpenSim [11]. The joint moments were 

scaled by subject mass (Nm/kg) to allow easier comparison across participants.

To increase the data available for training the model, the left leg data were mirrored to match 

the coordinate system of the right leg allowing a single leg model that can be trained and 

tested on both legs. This strategy has been used for kinematic sensors [38]. To verify that we 

could use a similar strategy for EMG, we ran a direct comparison between models trained 

separately for the left and right leg and models trained with both right and left leg data. We 

found that training with combined right and left leg EMG did not decrease performance of 

the estimator.
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C. Model Training/Testing and Evaluation

To train and test these models, a leave-one-group-out cross-fold validation was performed. 

Groups of trials were left out such as walking (at three speeds), running (for two speeds), 

sitting (two chair heights), declined walking (two inclination angles), etc. Training was then 

performed on all of the held-in tasks for the given subject, and the model was used to 

predict the torques of the left-out group of tasks. This was then folded across all of the task 

groups and performed individually for each subject to yield the final results. To evaluate the 

model’s performance and compare different approaches, root mean squared error (RMSE) 

was calculated between the ground-truth joint moment labels and the estimated labels to 

demonstrate the overall performance of the model. To further evaluate how well the shape 

of the estimate matched the ground truth moment, R2 was calculated based on a best fit line 

between the ground truth joint moment and the estimate for each participant and task group 

(e.g. walk) as a whole (subtasks within each task such as walking speeds are combined 

before computing a single best fit line). Mean absolute error (MAE) at peak joint moments 

was also examined. These were then compared between models and across subjects to 

establish the benefits of the different approaches.

While this examination of left-out-task performance provides a rigorous comparison of the 

impact of sensor additions, the question remains whether all of these tasks are necessary 

to achieve the observed accuracy and if not, which tasks are the most important to include 

when generalizing to left out tasks. To answer these questions, a forward task selection 

algorithm was used to sequentially select the most important task for improving the model’s 

ability to generalize to the rest of the tasks. To select the initial task, a model was trained 

using each individual task from each participant as the training set and then testing on the 

rest of the tasks for that participant. The task that produced the lowest moment estimation 

RMSE on the rest of the tasks across participants was selected. After this initial iteration, 

the following tasks were selected by sequentially testing each of the remaining tasks (those 

not chosen yet) and choosing the specific task that, when added to the training set, resulted 

in the greatest reduction in RMSE for the rest of the remaining tasks as compared to not 

including that specific task. This was performed for the sensor case that included all sensor 

types (kinematics, EMG, and insoles).

Statistics across different sensor input types and task types (cyclic and noncyclic) were 

computed using a two-way repeated measures analysis of variance (ANOVA) test with 

a significance level of α = 0.05. Participants were the random factor while sensor 

combinations and task types were the independent variables. Moment estimation RMSE 

was the dependent variable and was first averaged across trials within the same task group 

and same participant and then averaged across task groups within the same participant. 

This means that we compare a single value per participant per sensor set. To further 

explore these effects, we ran separate simple main effect one-way ANOVAs for each task 

delineation (all, cyclic, and non-cyclic) at each joint (hip and knee) to compare the four 

sensors combinations (kinematics, kinematics + EMG, kinematics + insoles, kinematics + 

EMG + insoles). To parse out pairwise differences between different sensor additions, we 

applied paired t-tests with Bonferroni correction for the six possible comparisons. On each 

individual task, we ran comparisons between sensor combinations. Due to the number of 
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comparisons, we controlled the false discovery rate (q < 0.05) using the method proposed 

by Benjamini & Hochberg [39]. This test controls for both the comparison of sensors within 

task and its use across tasks. To test the second hypothesis, the difference in RMSE with 

respect to the kinematic baseline was computed for each task and sensor addition within 

each subject (1).

RMSE Difference sensor
= RMSEkinematics + sensor

− RMSEkinematics

(1)

The difference was then averaged separately across cyclic and non-cyclic tasks within each 

subject. The reduction in RMSE for cyclic and non-cyclic activities was compared with 

a paired t-test for each sensor combination. This tested whether adding additional sensors 

showed more benefit during noncyclic tasks than cyclic tasks. All statistical analyses were 

performed in Matlab (MathWorks, Natick, MA).

III. Results

Our two-way ANOVA across sensor additions and task types (with subjects as a fixed 

effect) revealed statistically significant decreases in RMSE from adding different sensor 

inputs in the deep learning model for both the hip (F=91.70, dfM=3, dfE=33, p < 0.01) 

and knee (F=204.64, dfM=3, dfE=33, p < 0.01). It also revealed a statistically significant 

difference between cyclic and non-cyclic tasks at both the hip (F=32.49, dfM=1, dfE=11, 

p < 0.01) and knee (F=34.51, dfM=1, dfE=11, p < 0.01) and a significant interaction 

effect between sensors and task type at both the hip (F=45.43, dfM=3, dfE=33, p < 0.01) 

and knee (F=16.49, dfM=3, dfE=33, p < 0.01). Because of these significant effects, we 

further explored these differences with simple main effects ANOVAs across sensor additions 

for different task types (all, cyclic, and non-cyclic) each of which showed statistical 

significance at both the hip and knee (p < 0.01). These were followed up by pairwise 

multiple comparisons tests as shown in Fig. 4a&b. When comparing results across all tasks, 

the models with EMG (Hip RMSE: 0.233 Nm/kg, Knee RMSE: 0.154 Nm/kg), simulated 

insoles (Hip RMSE: 0.219 Nm/kg, Knee RMSE: 0.146 Nm/kg), and EMG + insoles 

(Hip RMSE: 0.189 Nm/kg, Knee RMSE: 0.130 Nm/kg) all showed statistically significant 

reductions in joint moment estimation error as compared to the kinematic baseline (Hip 

RMSE: 0.280 Nm/kg, Knee RMSE: 0.221 Nm/kg). This was also the case when broken 

down between cyclic and non-cyclic tasks. Similar results can be seen for R2 in Fig. 4c&d 

where an increase in R2 indicates a better match between the shape of the estimate and 

the shape of the ground truth moment. Again, a two-way ANOVA revealed statistically 

significant effects for sensors (hip: F=99.26, dfM=3, dfE=33, p < 0.01; knee: F=215.27, 

dfM=3, dfE=33, p < 0.01), tasks (hip: F=9.04, dfM=1, dfE=11, p = 0.012; knee: F=15.84, 

dfM=1, dfE=11, p < 0.01), and the interaction effect (hip: F=35.60, dfM=3, dfE=33, p 

< 0.01; knee: F=21.79, dfM=3, dfE=33, p < 0.01) with significant simple main effects 

ANOVAs (p < 0.01). Across all tasks, R2 significantly increased when adding EMG (Hip 

R2: 0.68, Knee R2: 0.81), insoles (Hip R2: 0.69, Knee R2: 0.83), and both EMG and insoles 
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(Hip R2: 0.76, Knee R2: 0.86) as compared to the kinematic only baseline (Hip R2: 0.56, 

Knee R2: 0.62). This also held when separated into cyclic and non-cyclic tasks. Across task 

groups, models with EMG + insoles had lower estimation error and a higher R2 value than 

models with either EMG or insoles individually (p < 0.01). When broken down into cyclic 

and non-cyclic tasks, this held for the non-cyclic tasks (p < 0.01), but not in cyclic task 

RMSE at the knee or R2 at either joint. No statistically significant difference was detected 

between adding EMG versus adding insoles across all tasks. However, when broken down 

by cyclic and non-cyclic, there was a detectable difference in RMSE between adding EMG 

and insoles at the hip during non-cyclic tasks and in R2 at the knee for cyclic activities (p 

< 0.05), both favoring insoles over EMG. However, the opposite can be seen favoring EMG 

over insoles for R2 at the hip. Similar results are shown in the online supplement for mean 

absolute error at the peak joint moments.

The results for specific task groups for both the hip and knee are shown in Fig. 5 broken into 

cyclic and non-cyclic tasks to show the performance differences on each specific task group. 

Performance on different task groups varies significantly based on the complexity of the 

task, but more of the non-cyclic tasks demonstrate statistically significant differences based 

on sensor additions than the cyclic tasks. Changes relative to kinematics for each individual 

task are provided in the online supplement.

The results from the reduction in RMSE of noncyclic versus cyclic tasks are shown in Fig. 

6. All three additional sensor combinations showed a statistically significant improvement in 

the noncyclic activities as compared to the cyclic activities for both hip and knee (p < 0.01).

Task selection optimization results are presented in Fig. 7a&b for the hip and knee. The 

performance of kinematic +EMG + insole models trained with the tasks up to that iteration 

are subtracted from the corresponding participant and task results presented in Fig. 5. Thus, 

zero represents performance equivalent to the performance from Fig. 4–5 with many fewer 

tasks in the training set. At the hip, RMSE drops to within 5% of the RMSE of the average 

left-out-task accuracy for this sensor set in the first 9 tasks and for the knee this occurs 

within the first 11 tasks. A similar result can be seen for R2 in Fig. 7c&d.

IV. Discussion

As hypothesized, adding kinetic sensor information in the form of EMG or insoles 

significantly aided in estimating joint moments using a deep learning model. This 

contributes a formal comparison of these unique sensor modalities that has not yet been 

explored, and it expands joint moment estimation to unique non-cyclic activities where we 

show that these additional sensor inputs are more essential.

In general, EMG or insoles added additional information that improved model performance. 

For RMSE during non-cyclic tasks at the hip and R2 during cyclic tasks at the knee 

there are statistical difference between adding only EMG versus adding only insoles. This 

indicates that either the EMG added less relevant information for these tasks at that joint 

compared to the insoles or that the EMG information could not be utilized as well without 

the added information from the insoles. The opposite can be seen for the hip R2 during 
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cyclic tasks. This contrasts with our assumption that proximal joints would benefit less from 

insoles given that ground reaction forces must be traced farther up the kinematic chain, and 

unmeasured shear forces have a larger effective moment arm. The counterintuitive result for 

RMSE at the hip may be due to the fact that fewer EMGs were available for direct sagittal 

plane actuation at the hip and the only accessible hip flexor muscle (rectus femoris) is a 

biarticular muscle where placement may play a role in which action (hip flexion or knee 

extension) is captured more clearly in the signal [40].

Including both EMG and insoles compared to either on their own showed significant 

benefits overall, but this difference was more substantial in the non-cyclic activities than 

the cyclic activities. This demonstrates that the information provided by these modalities is 

unique, though they may contain some overlapping information. The lack of significance for 

some comparisons during cyclic activities may reflect that the model cannot benefit from 

this additional information due to the repeatable nature of the activity. Thus, the time history 

embedded in the model architecture may provide enough information to accurately predict 

moments without the need for as much additional information.

The task-by-task breakdown demonstrates that more statistically significant differences are 

detectible in the non-cyclic tasks than in the cyclic tasks. This may be due to the fact that 

these activities lie more often on the extremes of the sensor input ranges. Thus, when left 

out of training, these tasks require the model to extrapolate to new unique conditions which 

may be easier with more information. Particularly at the hip, the most commonly heretofore 

tested tasks like walking, running, stairs, and ramps do not show significant improvements 

with additional sensing while the less commonly tested cyclic and non-cyclic activities do. 

This may explain the lack of apparent benefit to including EMG at the hip and knee in 

Camargo et al. [29].

Differences between cyclic and non-cyclic activities are hinted at in the previous analyses 

but to further elucidate this effect, we compared the relative improvement of these sensor 

additions from non-cyclic to cyclic tasks. In all cases, adding additional sensors had a 

statistically larger reduction in moment estimation error during the non-cyclic activities than 

during cyclic activities. This is most likely due to the inherently more challenging nature of 

non-cyclic tasks as highlighted by the similar kinematics but different kinetics shown in Fig. 

1.

The task optimization results demonstrate that while the above analyses used 27 tasks as 

the training set and then evaluated performance on the left-out task, similar performance 

can be achieved with only ~10 tasks in the training set. Also, although the ordering differs, 

seven out of the first ten tasks are shared between the hip and the knee optimizations. 

These results indicate that this moment estimation approach could be feasible for real-time 

implementation while promising a small subset of tasks necessary for task generalization. 

Again, non-cyclic tasks are more highly represented in the most important tasks than are the 

cyclic tasks.

A direct comparison to current joint estimation models is difficult because this study 

explores subject dependent models trained on many unique tasks in a left-out-task group 
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manner whereas other studies examine small subsets of tasks with subject independent 

models and without full task withholding. However, it is useful to note that even with tasks 

completely withheld and the requirement that the model generalize to a wide range of tasks, 

the accuracy of the models presented here is in line with other studies examining joint 

moment estimation. Molinaro et al. reported hip moment estimation errors of 0.13 Nm/kg 

for walking, ramps and stairs with slight increases due to left out slopes and speeds [4]. 

This is slightly better than the kinematic baseline presented here perhaps due to our training 

paradigm leaving out the entire walking group at once and using a subject dependent model 

with much less training data. Our results for walking (0.070 range normalized RMSE for the 

hip and 0.063 for the knee) are also slightly above Hossain et al. who included more sensors 

[9] but lower than Mundt et. al. [41]. Thus, our performance on cyclic tasks has similar 

error magnitudes to previous studies that do this without generalizing to new tasks. For 

the non-cyclic tasks, only a few papers have examined tasks that could be similar, but the 

ranges are again comparable. Chaaban et al. presented knee extension moment estimation 

during jumping of 0.028 (normalized to BW*HT) for an independent model with only thigh 

IMUs [42] whereas our results for a similar activity are lower at 0.0143 but with both thigh 

and shank IMUs. Thus, while our model can estimate many more tasks than previous deep 

learning approaches, it still maintains comparable accuracy for similar activities, showing 

the great extensibility of deep learning. Beyond comparisons to deep learning approaches, 

our results can be compared to both analytical and EMG-driven approaches with similar 

restrictions as above prohibiting a direct comparison. To compare to analytical models, 

Wang et al. present results using IMUs and instrumented insoles for several cyclic and 

non-cyclic activities. Across subjects their error was 0.37 Nm/kg at the knee and 0.85 Nm/kg 

at the hip which are much higher than those presented here even with only kinematic sensors 

[19]. To compare to EMG-driven models, Sartori et al. reported their lowest errors of 23.75 

Nm at the knee and 26.06 Nm at the hip for the stance phase of walking, side-stepping, 

cross-stepping, and running combined. Although there is no direct comparison, our results 

averaged across running and walking for the entire gait cycle are 17.9 Nm for the hip and 

12.0 Nm for the knee with kinematics and EMG. These results demonstrate that the key 

contributions from our analyses rest upon baseline results that fit well within the current 

literature.

There are several limitations of this work. First, these models are subject dependent due 

to the nature of EMG as a very subject specific signal. Future work could explore the 

usefulness of EMG in independent systems but this was beyond the scope of this work 

and likely would still necessitate some subject specific data incorporated through adaptive 

or transfer learning approaches [43], [44]. Second, although the IMUs and EMGs were 

real sensors, the insole portion of this analysis was run with simulated insoles. This means 

that these results represent the best possible case for the benefit of instrumented insoles. 

Real-time studies with physical insoles may reveal that the current state-of-the-art sensors 

may not provide as much benefit as shown here. To maintain as fair a comparison as 

possible, we also present the best-case EMG results by using non-causal filtering techniques. 

Real-time estimation would require causal filtering techniques which may result in a slight 

decrease in performance, but that decrease can be mitigated by optimizing the filtering 
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strategy. Third, if this strategy were applied to exoskeleton control, changes in kinematics 

and possible interaction noise in sensor signals could have an impact on model performance.

V. Conclusion

This study demonstrates that EMG and insoles can provide highly useful information in 

estimating joint moments for wearable systems. While they show some benefit in normal 

cyclic activities like walking and running, the situations where these additional sensors 

become highly important is during unique non-cyclic activities where the relationship 

between kinematics and kinetics may be highly nondeterministic. This study provides 

pivotal information for device designers choosing sensor inputs for both wearable robotic 

devices and health monitoring devices. This study also provides another step to encourage 

scientists in these fields to begin testing on more activities than just the conventional gait lab 

activities in order to advance technologies that can be deployed in real-world scenarios.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Several non-cyclic tasks that demonstrate similar kinematic profiles but different kinetic 

profiles at the hip and knee. The curves are subject average profiles drawn from Scherpereel 

et. al.
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Fig. 2. 
Overview of our approach for estimating biological joint moments on a task independent 

basis. Wearable signals were collected over many different tasks of daily living and then 

used as inputs to a temporal convolutional network (TCN) to estimate biological moment.
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Fig. 3. 
Detailed view of sensors and locations used as inputs to the model. Angles were computed 

using motion capture trajectories and wearable sensors were placed for the surface 

electromyography (EMGs) and the inertial measurement units (IMUs). Dotted sensor 

symbols indicate the posterior side. Insoles were simulated based on vertical ground reaction 

force (vGRF) and center of pressure (mediolateral: COPML and anterior-posterior: COPAP) 

transformed from the force plate to the reference frame of the foot. EMG sensors for the 

hip included: rectus femoris (RF), gluteus medius (GMed), biceps femoris (BF), and gluteus 

maximus (GMax). For the knee, BF and RF were again used as well as the vastus lateralis 

(VL), and medial gastrocnemius (MG).
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Fig. 4. 
Summary of results from comparing different sensor inputs in a deep learning model for 

joint moment estimation. Hip (a) and knee (b) moment estimation errors (RMSE) across 

sensor additions are presented for all of the tasks and then broken down into cyclic and 

non-cyclic tasks. The corresponding R2 value for the hip (c) and knee (d) are also shown. 

Error bars represent the standard deviation across the 12 subjects.
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Fig. 5. 
Results broken down by task groups for the hip (a) and the knee (b). This is shown based 

on the performance for each left out task from a model trained on the other tasks. Lines 

above the bars show the standard deviation across the 12 subjects. Statistically significant 

comparisons as determined by controlling the false rate of discovery are indicated with 

colored bars above each task.
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Fig. 6. 
RMSE difference relative to the kinematic baseline for each sensor addition during non-

cyclic tasks and cyclic tasks for the hip (a) and the knee (b). Error bars represent standard 

deviation across the 12 subjects. Asterisks indicate statistical significance.

Scherpereel et al. Page 20

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Task optimization performance compared to the corresponding leave one task out 

performance are shown in terms of moment estimation error (RMSE) for the hip (a) and 

the knee (b) and also in terms of R2 for the hip (c) and knee (d). Each datapoint represents 

the average performance on a given task group across all 12 participants when including 

kinematics, EMG, and insoles. Error bars were omitted for visual clarity.
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