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Abstract

Mapping information from photographic images to volumetric medical imaging scans is essential 

for linking spaces with physical environments, such as in image-guided surgery. Current 

methods of accurate photographic image to computed tomography (CT) image mapping can be 

computationally intensive and/or require specialized hardware. For general purpose 3-D mapping 

of bulk specimens in histological processing, a cost-effective solution is necessary. Here, we 

compare the integration of a commercial 3-D camera and cell phone imaging with a surface 

registration pipeline. Using surgical implants and chuck-eye steak as phantom tests, we obtain 

3-D CT reconstruction and sets of photographic images from two sources: Canfield Imaging’s H1 

camera and an iPhone 14 Pro. We perform surface reconstruction from the photographic images 

using commercial tools and open-source code for Neural Radiance Fields (NeRF) respectively. We 

complete surface registration of the reconstructed surfaces with the iterative closest point (ICP) 

method. Manually placed landmarks were identified at three locations on each of the surfaces. 

Registration of the Canfield surfaces for three objects yields landmark distance errors of 1.747, 

3.932, and 1.692 mm, while registration of the respective iPhone camera surfaces yields errors of 

1.222, 2.061, and 5.155 mm. Photographic imaging of an organ sample prior to tissue sectioning 

provides a low-cost alternative to establish correspondence between histological samples and 3-D 

anatomical samples.
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1. INTRODUCTION

Integrating physical space information with volumetric information is essential for localizing 

histological data, which is acquired at the micron-scale, within the broader anatomical 

context of the human body, acquired at the millimetric-scale for organs and the centimetric-

scale for systems. The Human BioMolecular Atlas Program (HuBMAP) is working to 

map the complete human body at the cellular level in a way that is generalizable across 

populations (https://hubmapconsortium.org/)1. HuBMAP teams are generating extensive 3D 

templates of the human body along with rich molecular and cellular data, so techniques to 

localize small tissue biopsies and blocks to larger anatomical features and organ systems are 

of increasing immediate importance.

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are imaging 

modalities widely used to obtain structural information of small anatomical structures 

in vivo for diagnosis and preoperative planning due to the high-resolution volumetric 

3-D images they produce2–8. Several 3-D CT HuBMAP atlases, such as the kidney with 

substructure and eye atlases from Lee et al.9–11, the pancreas atlas from Zhou et al.12, and 

the gut cell atlas13,14 have been released in an organ specific manner. These data frames are 

being brought together within an overall systems perspective to help generalize structural, 

cellular, and molecular biomarkers across populations and different morphologies. Yet, 

routine, automated localization is not performed to identify the location of samples within 

the overall coordinate systems.

Meanwhile, 3-D computer vision techniques are widely used in the reconstruction of 

surface information from photogrammetry (e.g. stereoscopic techniques). Krishna et al. 

use stereoscopic scanning electron microscope images to construct surface topography for 

characterization of engineering surface quality15. HajiRassouliha, et al. use a four-camera 

stereoscope to measure 3-D deformations of skin16. Another common technique for 3-D 

surface construction from photogrammetry is structure from motion (SfM), in which 3-D 

structure is inferred from 2-D imaging sequences. Su et al. use digital surface models 

using photogrammetry from unmanned aerial vehicles to phenotype corn crops based 

on height17. Um et al. examine 3-D surface reconstruction using microscopic SfM18. 

Shilov et al. use SfM to construct surfaces of feet19. Zhan et al. propose a method for 

registration of pointclouds obtained from photogrammetric data and CT of a directional 

gyro20. However, methods for obtaining anatomically accurate surfaces of soft tissue with 

sub-millimetric precision require expensive or specialized hardware, such as Holocreators 

(https://holocreators.com/) and 3Dmd (https://3dmd.com/) hardware.

Despite these reported methods and the existence of these initial HuBMAP atlases, there 

needs to be a common procedure for this mapping of multimodal data into volumetric 

atlases. Given that the data acquisition sites of the HuBMAP project are diverse and 

widespread, simpler methods of multimodal data integration are more realistic options 

compared to more expensive or complex ones that require specialized expertise or 

equipment. Thus, there is a need to identify and establish both a technology and procedure 

that can fit within such a dynamic, multi-site project.
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In this paper, we characterize the registration of surfaces generated using two methods low-

cost photogrammetry to surfaces from CT scans. One method uses a commercial camera that 

creates surfaces from photogrammetry with a binocular lens, while the other uses a common 

smartphone video that is subsampled for surface reconstruction of a scene. We characterize 

the quality of these surfaces through registration of the photogrammetric surfaces to surfaces 

obtained from CT scans (Figure 1).

2. METHODS

CT images of a hydroxyapatite stem of a CORAIL hip implant from DePuy Synthes with 

black non-reflective tape covering the metal head, a tibial tray of a P.C.F. SIGMA RP 

knee replacement from DePuy Synthes, and a chuck-eye steak from Bare Bones Butcher in 

Nashville, TN were acquired with a 2017 Philips Vereos PET/CT system with integrated 

64-slice CT scanner. Scanning of the hip implant was at a resolution of 0.325521 × 0.325521 

× 0.669983 mm3, the steak at 0.626953 × 0.626953 ×1 mm3, and the knee implant at 

0.325521 × 0.325521 × 0.670013 mm3. 1.5mm Beekley Medical X-SPOT mammography 

skin markers were placed on the steak to identify landmarks for registration accuracy. 

Knee and hip implant landmarks were selected based on structural points of interest. 

Triangulated meshes were generated from segmentations of the CT images using nii2mesh 

(https://github.com/neurolabusc/nii2mesh.git). Surfaces for the steak were obtained with and 

without CT markers. The steak surface with CT markers was only used to identify fiducial 

location on the surface.

Triangulated meshes of the three objects were obtained from photogrammetry 

using two different methods. One method is via the general capture feature of 

the VECTRA® H1 handheld imaging system developed by Canfield Technologies 

(https://www.canfieldsci.com/imaging-systems/vectra-h1-3d-imaging-system/), which uses a 

specialized mirror lens to take a single binocular picture of an object to create a mesh 

with millimetric calibration of object dimensions. De Stefani et al. examine the validation 

of VECTRA systems for 3-D facial reconstruction in a review paper but did not examine 

accuracy of the general capture feature21. Another method involves the synthesis of a scene 

from photogrammetry using Neural Radiance Fields (NeRF)22. 1080p resolution videos of 

varying length (Table 1) were taken on an iPhone 14 Pro and subsampled at four frames 

per second to create a sequential batch of images. Position from motion of the pictures 

was calculated using COLMAP23,24 with sequential image matching, meaning that images 

were paired based on sequential proximity to each other. Positional information was input 

along with the images into instant-npg software to generate the scene25 using an axis-aligned 

bounding box (aabb) scale of 4.

Photogrammetry was obtained in a roughly 15 × 28 ft room with ambient and fluorescent 

lighting present in an area that was roughly 12 × 8 ft and free of objects. Photogrammetry 

for the H1 camera was obtained using sky blue Yizhily seamless photography photo 

backdrop paper as a background. Objects were photographed on the floor of the room on top 

of the backdrop paper (Figure 2). Hip and knee implants were placed on a metal rod 19.5 

in tall to introduce parallax between the object and the background. Steak was placed on the 

background paper with a layer of plastic wrap underneath the steak. Surfaces were output 
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in OBJ format with a texture file that referenced a PNG file for color information. Python 

(v3.10.11) code was implemented to convert the OBJ and PNG files to a visualization toolkit 

(VTK) surface file.

Photogrammetry for NeRF surfaces was taken with objects placed directly on a 10 × 17.5 in 

piece of cardboard that was covered with the stinger (green) Yizhily seamless photography 

photo backdrop paper. The cardboard surface was placed on top of a 43 in cardboard tube 

and a 14 in bucket to place the object at roughly eye level for easier acquisition (Figure 2). 

Surfaces were generated using the instant-npg interactive GUI to crop out as much of the 

scene as possible while keeping the entirety of the object in the scene and were exported in 

PLY format that was converted to VTK format.

Both batches of surfaces were preprocessed using the VTK26 and trimesh (v3.22.0) (https://

github.com/mikedh/trimesh) libraries to remove points on the output meshes that were not 

part of the object surface. H1 surfaces were thresholded to remove points that were blue in 

color and retained the connected component that contained the object. NeRF surfaces were 

thresholded to remove points that were green in color and keep the connected component 

containing the object.

2.1 Surface Registration

Prior to registration, both the static and moving surfaces were first centroid centered 

using python code. Initial alignment of centroid-centered surfaces was performed via rigid 

registration of the principal component axes of the surfaces with python. These alignments 

were visually inspected for quality of alignment. If the orientation was not proper, manual 

rigid rotation along the axes with python was applied to achieve a better alignment. 

NeRF surfaces required an additional degree of freedom for volumetric scaling as the 

surface dimensions are not calibrated to match the object that was scanned. H1 surfaces 

were calibrated millimetric surfaces and thus did not require an additional scaling. After 

preliminary alignment and scaling, the iterative closest point (ICP) algorithm27 was used to 

rigidly register the surfaces using the torch3D library (https://github.com/facebookresearch/

pytorch3d.git). NeRF surface registration using the torch3D ICP also used the scaling option 

to perform a second scaling of the mesh. To mitigate the effect that noise points from NeRF 

surfaces have on the registration process, the ICP algorithm was computed for registering 

the CT surface to the NeRF surface, and the inverse transformations were applied to the 

NeRF surfaces to move them into the same space as the CT surfaces. Figure 3 illustrates this 

process for both batches of surfaces.

Registrations of both batches of surfaces are evaluated for goodness of fit with two metrics. 

First, by average fiducial distance error of each of the three fiducials on each object. 

Fiducials on the surfaces of the steak were identified by the CT markers, whereas fiducials 

on the hip and knee implants were selected based on landmark position. Second, by the 

minimum root mean squared error (RMSE) surface distance, calculated by squaring the 

distances from each vertex on the moving surface to the closest point on the target surface. 

Code for the preprocessing and registration can be found here: https://github.com/MASILab/

SurfaceRegistration.git.
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3. RESULTS

We characterize the registration error as the distance (mm) between respective fiducials after 

registration of the photogrammetry surfaces to the CT surface (Figure 4). We report the error 

of successful surface reconstructions and registrations. For each of the five videos we took of 

each object for NeRF surfaces, four successfully produced surfaces that could be registered 

to the respective CT surface. Videos that failed produced surfaces with too much noise to 

accurately capture the surface information of the object. One surface of the hip implant 

from the H1 camera did not fully capture the entire visible surface, and thus was not used 

in the analysis. We observe H1 camera surfaces for the steak yielded a better on average 

registration accuracy for fiducial distance than the NeRF surfaces with a two to three times 

larger error for fiducial registration for the NeRF surface (Table 2). Conversely, we observe 

the NeRF surfaces of the hip and knee implants yielded a closer registration than the H1 

surface with a two to three times larger error for the knee implant.

We observe that, for all 3 objects, the average surface distance for the NERF surfaces 

is greater than that of the H1 camera surfaces. We attribute a large amount of this error 

to artifactual points on the interior of the surface synthesized by the NeRF, as surface 

information should not contain any information about the interior of the object. Thus, 

average MSE surface distance may not be representative of the registration accuracy.

4. DISCUSSION

Results from Table 2 suggest that the optimal method for obtaining low-cost 

photogrammetry surfaces is context dependent: objects that have sharp changes in depth 

or non-smooth surfaces may yield NeRF meshes that are more morphologically accurate 

than H1 camera meshes. However, for objects that are smoother and more uniform, results 

suggest the H1 camera yields more accurate surfaces. Additional error in fiducial distance 

for registration of NeRF surfaces may be attributable to the CT markers used to mark 

fiducial location. The markers were not included in the registration process for the CT 

surface; however, their structure was visible on the NeRF surfaces as opposed to the H1 

surfaces on which their structure was not visible (Figure 4). This additional distance likely 

resulted in the fiducial distances for the NeRF surfaces to be ~1mm off the true fiducial 

distance. Surface meshes obtained from NeRF appear to be more prone to have artifactual 

information from light reflections, which is evidenced by the non-uniform color of the 

surfaces as compared to the objects themselves as well as noise points that can be found 

coming off of the surfaces (Figure 4). Such errors could have attributed to the increased 

fiducial error in NeRF surfaces as opposed to the knee and hip implants (Table 2).

H1 Camera surfaces have relatively high accuracy, making them a candidate method for 

the HuBMAP processing protocol. Fiducial error on the NeRF surfaces suggest that the 

methodology employed in this work is not yet suitable for mapping histological information 

to CT data. However, further refinement of the surfaces could yield more promising 

results. Nonetheless, acquisitions for both NeRF and H1 surfaces are simple, low-cost, 

and can be easily integrated into the data acquisition pipeline for HuBMAP. System 

design requirements include an iPhone 14 Pro (currently the latest model) for NeRF or 
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the VECTRA H1 camera for the other, both of which are handheld. We note that at the 

time this work was completed, Canfield has come out with a newer model, the H2 camera, 

for the VECTRA handheld 3-D imaging line. Setup for acquisition would only require 

low-cost, non-reflective, colored background paper without any specialized lighting, as well 

as sufficient distance to image the object from or enough space to move around the object 

for a video. Acquisition of the videos and images themselves takes only a few minutes at 

most. Thus, we believe a methodology similar to ours would be easy to integrate into data 

acquisition for projects such as HuBMAP, following a characterization of these techniques 

with biological specimens.

While we only examined the NeRF surfaces generated from a fixed frame rate and aabb 

value, these parameters could be optimized to generate more accurate scenes and thus more 

morphologically accurate meshes. Videos captured of objects were acquired at 29.99 frames 

per second but were only sampled at four frames per second to create sets of sequential 

images. Future work could examine whether an increased sampling rate would increase or 

decrease the amount of noise and accuracy in the surface of objects. We also did not apply 

any smoothing filters to NeRF meshes. Applying smoothing algorithms similar to the one 

described in Shilov et al. for smoothing 3-D surfaces of feet could increase the quality of 

registration19.

Another potential future direction for this work includes exploring deformable registration 

of photogrammetric surface information from human organ tissue to CT surface information. 

Organ tissue is much more deformable than static objects or muscle tissue that was 

explored in this paper, and such advancements could lay the groundwork for mapping 

photogrammetry to organs in vivo.
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Figure 1. 
We map surfaces of phantom objects obtained from low-cost photogrammetry to surfaces 

obtained from volumetric CT scans of the phantoms in order to examine if similar 

techniques could be applied to mapping of histology data to volumetric CT data. Knee 

(left) and hip (right) implants are static objects with reflective and non-reflective surfaces 

respectively whose surfaces should be easily mappable. Chuck-eye steak (center) is a 

moderately deformable phantom that also provides a slightly reflective surface, which 

should be more similar to biological tissue.
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Figure 2. 
Setup to obtain the photogrammetry from the H1 camera (left) requires only a flat surface 

with light blue background paper and enough space to take a photo with the camera. Setup 

for the iPhone videos (right) uses a green background platform underneath the object with 

enough space to circle around the object completely, although any color background paper 

can be used as long as it is easily differentiable from the surface of interest and not very 

reflective. The platform was raised to allow for easier movement around the setup while 

holding the iPhone. Both setups use only ambient and fluorescent lighting, were free of 

nearby clutter and objects, and are low-cost with minimal preparation.
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Figure 3. 
CT scans of objects were segmented and processed to obtain a 3-D surface. Photogrammetry 

surfaces of the same objects were obtained through subsampled 1080p video input from an 

iPhone 14 Pro and binocular images from a VECTRA H1 camera. After an initial centroid 

alignment and PCA alignment with manual inspection, the photogrammetry surfaces were 

registered via the ICP algorithm. Alignment of the surfaces was assessed from fiducial 

registration error and surface distances.
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Figure 4. 
NeRF surfaces capture much finer detail and sharper edges than surfaces from the VECTRA 

H1 camera but are much noisier and more susceptible to artifacts from light reflections. 

(Top) From left to right, a surface obtained from a CT of a hip implant with fiducials from 

the CT surface and both H1 and NeRF surface fiducials overlaid, an H1 surface of a hip 

implant registered to the CT surface, and a NeRF surface registered to the CT surface. 

Red markers indicate CT fiducials, green indicate H1 surface fiducials, and yellow indicate 

NeRF surface fiducials. Similar results are shown for the knee implant (center) and the 

chuck-eye steak (bottom). Surface colors indicate the surface distance of each point on the 

photogrammetry surface to the CT surface.
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Table 1.

Lengths of videos for NeRF surfaces.

Object Video 1 (s) Video 2 (s) Video 3 (s) Video 4 (s) Video 5 (s)

Hip Implant 45 37* 35 35 40

Knee Implant 45 42 44 36 32*

Chuck-eye Steak 36* 78 60 47 49

An asterisk (*) indicates videos that produced surfaces not used in the analysis.
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Table 2.

Average fiducial registration error and RMSE surface distance for photogrammetry surfaces and CT surface 

registration with one standard deviation of error.

Surface (n=26) Mean Fiducial 1 
Error (mm)

Mean Fiducial 2 
Error (mm)

Mean Fiducial 3 
error (mm)

Average Fiducial 
Error (mm)

Average RMSE 
Surface Distance 

(mm)

Hip Implant (H1) 
(n=4) 2.063+/− 0.309 1.691+/− 0.419 1.486 +/− 0.389 1.747 +/− 0.445 0.616 +/− 0.113

Knee Implant (H1) 
(n=5) 3.077 +/− 1.673 4.211 +/− 1.588 4.507 +/− 2.667 3.932 +/− 2.127 1.370 +/− 0.433

Chuck-eye Steak 
(H1) (n=5) 1.102 +/− 0.242 1.629 +/− 0.426 2.346 +/− 0.453 1.692 +/− 0.639 0.671 +/− 0.038

Hip Implant 
(NeRF) (n=4) 1.619 +/− 0.497 1.138 +/− 0.776 0.909 +/− 0.316 1.222 +/− 0.635 2.067 +/− 0.711

Knee Implant 
(NeRF) (n=4) 2.313 +/− 0.681 2.420 +/− 1.174 1.449 +/− 0.337 2.061 +/− 0.917 3.073 +/− 0.693

Chuck-eye Steak 
(NeRF) (n=4) 5.919 +/− 2.124 4.063 +/− 1.665 5.483 +/− 1.961 5.155 +/− 2.083 6.151 +/− 0.501
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