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Abstract

Diffusion MRI (dMRI) streamline tractography, the gold-standard for in vivo estimation of white 

matter (WM) pathways in the brain, has long been considered as a product of WM microstructure. 

However, recent advances in tractography demonstrated that convolutional recurrent neural 

networks (CoRNN) trained with a teacher-student framework have the ability to learn to propagate 

streamlines directly from T1 and anatomical context. Training for this network has previously 

relied on high resolution dMRI. In this paper, we generalize the training mechanism to traditional 

clinical resolution data, which allows generalizability across sensitive and susceptible study 

populations. We train CoRNN on a small subset of the Baltimore Longitudinal Study of Aging 

(BLSA), which better resembles clinical scans. We define a metric, termed the epsilon ball seeding 

method, to compare T1 tractography and traditional diffusion tractography at the streamline level. 

We show that under this metric T1 tractography generated by CoRNN reproduces diffusion 

tractography with approximately three millimeters of error.

1. INTRODUCTION

Diffusion tractography is premised on identifying connections between parts of the brain 

through white matter pathways known as tracts1. These tracts are connected line segments 

that are often interpreted through multiple ways of interpolation or connectivity2. Identifying 

proper termination criteria, shape characteristics, seeding criteria, etc. are all areas of active 

research. One area of recent controversy3 and innovation is in tractography generated 

from T1 weighted MRI, a tractography approach proposed by Cai et al.4 based on 

convolutional recurrent neural networks (CoRNN) that creates streamlines without the use 

of diffusion information. Cai et al. compare bundles, or groups of streamlines sharing 

a similar trajectory or representing white matter pathways of the brain, in T1 weighted 

tractography and diffusion tractography and find that T1 tractography retains a lot of the 

same information contained in traditional diffusion tractography5. However, no streamline-

to-streamline comparison between two methods was performed.

Identifying which streamlines can be seen on T1 tractography and which cannot be 

seen is important. This allows us to measure equivalence or near equivalence between 

tractography methods. In this work, we present a method, termed epsilon ball seeding 

method, to do exactly this by comparing individual streamlines. We account for early 
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streamlines termination, unresolved directionality for streamlines, direction change at cross 

fiber junctions, and occasional long outlier path streamlines. We explore how we model and 

capture the streamlines by applying the CoRNN T1 tractography method to a clinically 

feasible imaging cohort from an existing longitudinal study and retrain an algorithm 

appropriate for clinical resolution data. We then apply this newly learned algorithm to a 

sample of 9 individuals from this cohort that were not used for training. We study both 

traditional tractography in a scan-rescan basis, as well as the T1w tractography on the same 

subjects within the same scanning session.

2. METHODS

We choose a set of 15 subjects from the Baltimore Longitudinal study of Aging (BLSA). 

These subjects were screened for artifacts and significant distortion problems, but otherwise 

are selected randomly. Each of the subjects has a pair of scan and rescan diffusion MRI as 

well as an associated T1 weighted MRI. 3T Phillips scanner were used to acquire dMRI in 

32 directions at b value of 700 s/mm2. Initial voxel dimension of 2.2 × 2.2 × 2.2 mm3 were 

resampled to 0.8125 × 0.8125 × 0.8125 mm3. T1 weighted MRI were acquired on the same 

scanner at voxel dimension of 1.2 × 1 × 1 mm3, resampled to 1.0 × 1.0 × 1.0 mm3.

We process these data according to PreQual which includes denoising, susceptibility induced 

distortion correction, eddy current induced distortion correction and quality assurance. We 

split the data into a training set of 5 subjects (8 sessions), a validation set of 1 subject (3 

sessions), and a testing set of 9 subjects (9 sessions, one each).

2.1 Data Preprocessing

Following previous work on T1 tractography4, we perform the same preprocessing steps 

to prepare data for the CoRNN network. For T1 weighted MRI, we first compute brain 

mask and perform N4 bias correction6,7. To prepare anatomical context, we segment grey 

matter, subcortical grey matter, white matter, cerebrospinal fluid, and pathological tissue 

from T1 using MRtrix3’s 5ttgen8. In addition, SLANT deep learning framework was used 

to segment 132 brain regions, and then merged into 46 larger regions defined by the 

BrainColor protocol9. Finally, we use WM learning (WML) framework to compute 72 WM 

bundle regions defined by the TractSeg algorithm10,11. All anatomical information is one-hot 

encoded for a total of 123 input channels. We first align the bias-corrected T1 images to 

the Montreal Neurological Institute (MNI) atlas space with 1 mm isotropic voxel resolution. 

Subsequently, the T1 images, brain mask, and associated anatomical context are transformed 

to the MNI common space with a 2mm isotropic resolution, leveraging the transformation 

matrix from the previous registration.

To prepare the dMRI, we first compute average b0 and rigidly register the result to T1w 

MRI space. Subsequently, we estimate fiber orientation distribution function (FODs) using 

constrained spherical deconvolution (CSD)12. We then generate 1 million streamlines using 

MRTrix3 SDStream’s anatomically constrained deterministic tractography with seeds set 

at the GM/WM boundary. We use a 1mm step size. The minimum/maximum length 

of streamline is 50/250mm. Due to GPU memory constraints, we shuffle the 1 million 

streamline and split into batches of 1000 streamlines. Since we convert each step between 
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adjacent point on a streamline in to unit vectors in spherical coordinates, the resulting labels 

are one point shorter than the length of streamlines. To match them, we drop the last point of 

all streamlines. Tractography, originally in b0 space, is rigidly transformed to T1 space and, 

then, to 2mm MNI space.

2.2 Network architecture and training paradigm

Following our previous work in T1 tractography on Human Connectome Project4, we train 

a CoRNN model to produce streamlines. The teacher-student framework was implemented, 

wherein the teacher model utilized FODs as inputs, and the student model incorporated T1 

and anatomical context as inputs. For the teacher model, we perform trilinear interpolation 

at streamline point locations and use four layers of MLP blocks to create an embedding of 

FOD information. This operation provides the network spatial information for performing 

streamline propagation. Each MLP block consists of a linear layer of size 512, a batch 

normalization layer with no running estimate of mean and variance during evaluation and 

leaky ReLU activation function with a negative slope of 0.1. The embedding is then passed 

to two stacked gated-recurrent-unit (GRU) with hidden size of 512 to encode streamline 

memory. The output of MLP and GRU are concatenated together, yielding an intermediate 

vector of size 1024, which is then decoded with a linear layer to the output vector of 

size 2. The output vector represents azimuth and zenith in spherical coordinates. Due to 

GPU memory constraints, we use batch size of 1 on the image level. For each subject, 

randomly selected batch of 1000 streamlines are passed for the trilinear interpolation. The 

loss function is cosine similarity loss to enforce the output of the network to be close to the 

labels.

For the student model, we used frozen weights from the best epoch of the teacher model for 

the GRU layer and decoding linear layer. The main task here is to learn similar embedding 

of FOD information from T1 and anatomical context. We use a single 7 × 7 × 7 3D 

convolutional project layer to extract useful information from T1 and anatomical context. 

This provides 1.4 × 1.4 × 1.4 cm receptive field in 2mm space, which is enough for 

identification of grey matter and white matter boundary according to Cai et al4. Besides 

this change, the student model has the same architecture as the teacher model: trilinear 

interpolation at streamline points, four block MLP layers, GRU layers and one decoding 

linear layer. In additional to cosine similarity loss against the label, we also add a contrastive 

loss between the output of MLP of the teacher model and the output of MLPs of the student 

model.

We use an Adam optimizer with initial learning rate of 0.001. We stop training when there 

is no improvement in validation loss after 200 epochs. The model weights with lowest 

validation loss are used for inference and evaluation.

2.3 Inference and stopping criterion

The student network is used during inference. Propagation of streamlines begin with trilinear 

interpolation to probe the image grid at the seed location. We randomly seed the starting 

point in at points in WM, where 5ttgen tissue type mask is non-zero based on previous 

work4. The hidden state of GRU is initialized to zero. From there, the model predicts the 
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next point of the streamlines. The tracking continues until stopping criteria are met. The 

stopping criteria is defined in previous work4. Unlike GM/WM interface seeding, seeds 

might appear in the middle of the brain. Thus, we flip the streamlines and perform tracking 

in the reverse direction. One caveat is that since we initialize the hidden state of GRU to 

zero, the hidden state is not useful at first. Thus, we discard the first five predicted points 

when streamlines are terminated in one direction.

Unlike traditional tractography, the tracking process occurs on the step level. To accelerate 

the tracking process, we implement tracking in a batch. For each batch, every streamline 

either steps to the next point, terminates, or is rejected. Once bi-directional tracking 

completes, a new batch of streamlines is seeded. The tracking ends when there are more 

than or equal to 1 million streamlines generated.

2.4 Epsilon Ball seeding method

In prior work, a symmetric distance function named minimum average direct flip (MDF) 

distance was introduced as a means to gauge the similarity between two streamlines13. This 

method is applicable only when the streamlines have an equivalent number of points. In 

our study, we operated under the premise that each streamline being evaluated would be 

resampled to have the same number of points. Accordingly, we resampled every streamline 

to consist of 100 points using linear interpolation. Expanding on the concept of MDF 

distance, we introduce a method for contrasting and comparing individual streamlines from 

two registered tractograms, which we denote tractogram A and tractogram B. For each 

streamline in tractogram A, we establish an epsilon ball, centered at its seed point, with a 

0.5 voxel radius. Streamlines in tractogram B that intersect this epsilon ball are marked as 

matching the streamline from tractogram A. We then compute the MDF distance for the 

selected streamlines in tractogram A against all matched streamlines from tractogram B. The 

streamlines in tractogram B with the smallest MDF distance is designated as the optimal 

match. Using this method, we allocate a distance value to each streamline in A. This informs 

us about the proximity of a streamline in A to its most compatible match in tractogram B. 

Note that there is possibility that no streamline in tractogram B intersects the defined epsilon 

ball, and we assign a value of infinity to the such streamlines in A.

3. RESULTS

For each subject in the testing set, three tractograms were derived from a pair of dMRI scans 

and a T1w MRI scan: (1) A tractogram produced using MRtrix3 SDStream tractography 

algorithm applied to the first dMRI scan (dMRI 1), (2) A tractography generated using the 

same SDStream tractography algorithm but applied to the second dMRI scan (dMRI 2), (3) 

A tractogram based on our method applied to the T1w MRI scan.

To evaluate the tractogram generated by our method, the epsilon seeding metric was 

employed on three distinct pairs: (a) A comparison between the tractogram generated by 

SDStream algorithm from dMRI 1 (tractogram A) and dMRI 2 (tractogram B), (b) A 

comparison between our T1 tractography method (tractogram A) and SDStream algorithm 

generated tractogram from dMRI 1 (tractogram B), (c) A comparison between tractogram 

generated by SDStream algorithm on dMRI 1 (tractogram A) and tractogram produced 
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using our method on T1w MRI (tractogram B). We include comparison of scan-rescan 

variability because it offers a reference for the inherent variability of tractography, which 

helps contextualizing the precision of our results. Of note, this comparison is not intended to 

equate the sources of variance in scan-rescan and the source of variance in our method.

We find that T1 tractography reproduces the SDStream tractography on diffusion data with 

two to three millimeters of additional error on average. For each streamline in diffusion 

tractography, we can find a streamline with 1.4 millimeters additional error based on the 

median, indicating high sensitivity in T1 tractography to diffusion tractography. However, 

the specificity of the tracts identified with T1 tractography is slightly worse. For each 

streamline in T1 tractogram, there exists a streamline with 2.16 millimeter of additional 

error based on median compared to scan rescan variability.

Scan to rescan outliers (Fig. 4) appear to be cross hemisphere or longitudinal but do not 

visually aggregate across any one tract. The additional tracts in T1 over to diffusion appear 

to have more branching at potential choke points or cross fiber regions and go into many 

gyral regions without specific a tract structure. Finally, the additional tracts that are captured 

by diffusion tractography but not in T1 tractography appear to be associated with anterior 

and posterior commissure tracts as indicated by the U fibers. These tracts are known to be 

difficult to associate in noisy data or in low quality data14. Further investigation into tracts 

that are found in diffusion tractography but not in T1 tractography is likely needed.

From Fig. 5, we can see that diffusion scan to rescan error under our epsilon ball metrics 

is largely spatially consistent. We do not see much anatomical variation. Comparing the 

extra streamlines in T1 relative to diffusion tractography, we see a larger error (table 1). The 

difference is largely correlated in streamlines that are cortically adjacent. This is consistent 

with Fig. 4, which shows the T1 to diffusion streamline outliers are largely observed in 

cortical association areas. When we look at the differences in diffusion relative to T1, we see 

the systematic differences in anterior and posterior cross fiber regions.

4. DISCUSSION

In this work, we demonstrate that convolution recurrent network can converge on not only 

high angular diffusion MRI but also clinical quality diffusion MRI. To address the need 

to better understand the difference between diffusion tractography and T1 tractography, 

we propose the epsilon ball seeding metric. Prior work proposed other streamline level 

comparisons15–18. We demonstrate that a model trained on only 6 subjects is able to 

reproduce diffusion tractography with approximately 3 mm of additional error compared 

with scan-rescan. These results are very surprising because T1w MRI is believed to lack 

microstructural information on which tractography algorithms depend. While demonstrating 

great promise, the preliminary results show that T1 tractography has less optimal 

performance on anterior posterior commissure tracts and tracts that are cortically adjacent. 

Further research is needed to determine if these tracts are learnable, and to characterize the 

generalizability of the emerging T1 tractography findings.
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Figure 1. 
Tractography is the process of mapping out extended connections in the brain. Historically, 

tractography has been only done with dMRI data. Recent work has shown that similar 

structures can be learned from only T1 images and the anatomical context they provide. 

Visually the connections are incredibly similar. No prior work has explored the difference on 

a streamline-by-streamline basis.
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Figure 2. 
Illustration of epsilon seeding method. On the left, tractogram A displays 1000 random 

streamlines with one highlighted streamline indicating its selection. On the right, tractogram 

B showcases streamlines intersecting with the epsilon ball of the selected streamlines from 

tractogram A. The best-matched streamline is distinctly emphasized. For direct reference, 

the selected streamline from tractogram A is also superimposed on tractogram B
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Figure 3. 
Epsilon seeding metrics on three pairs of tractograms. The mean and standard deviation of 

epsilon seeding metric across 9 subjects are plotted. The dash vertical lines are the median.
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Figure 4. 
Erroneous streamlines of random subject from the testing set are presented. These 

streamlines are outliers because they cannot capture any streamlines in the epsilon ball.

Yu et al. Page 11

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2024 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Visualization of 1000 random streamlines colored by their best MDF of a random subject 

from the testing. (Not the same subject as figure 4)
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Table 1.

Key statistics on three comparing pairs using epsilon seeding metrics.

Comparison pairs Mean (mm) Median (mm) Average outlier streamlines (%)

Scan to Rescan 5.4899 3.8923 0.676

T1 to diffusion 8.0396 6.058 0.846

Diffusion to T1 6.8815 5.296 0.318
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