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Abstract

The sandstone uranium deposits in the Kelulun Depression are the first commercially viable

uranium deposits discovered in the Hailar Basin and the ore-bearing strata corresponding to

the Lower Cretaceous Yimin Formation. However, the source of sedimentary matter, ura-

nium source conditions, and uranium mineralization processes in the region have not been

characterized. Accordingly, we analyzed the lithology, whole-rock geochemistry, zircon U-

Pb ages, and trace elements of the Yimin Formation sandstones. The Yimin Formation

sandstones were primarily composed of detrital grains with low compositional maturity. A

geochemical analysis indicated that the parent rocks are felsic igneous rocks formed at an

active continental margin with a moderately high degree of weathering. The detrital zircon

U-Pb ages of the Yimin Formation 215–287 Ma with a peak at 230–260 Ma. Based on chro-

nological, geochemical, and lithological data, we conclude that the Yimin Formation matter

is derived from the Adunchulu Uplift on the western side of the Kelulun Depression and its

parent rocks are Triassic granites. The Adunchulu uplift since the late Early Cretaceous and

weathering and denudation of its uranium-rich granites provided ample matter and uranium.

Therefore, the Kelulun Depression is a promising area for the exploration of sandstone ura-

nium deposits.

1. Introduction

Sandstone uranium deposits are often very large, environmentally friendly to mine, and have

low burial depths and mining costs. As such, they have become the primary focus of uranium

exploration efforts across the world [1–3]. Large and ultra-large sandstone uranium deposits

have been discovered in the Yili, Junggar, Ordos, Songliao, and Erlian Basins of China [4–11].

Recently, sandstone-related uranium deposits of considerable size have also been discovered

in the Cretaceous strata of the Hailar Basin in northeastern Inner Mongolia.
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The Hailar Basin is rich in hydrocarbon resources, such as coal, petroleum, and natural gas

[12]. Based on sandbody characteristics [13,14], hydrogeological conditions [15], airborne

radiometric survey data [16], and prospecting analyses [17–19], the geological conditions of

the Hailar Basin are conducive to uranium mineralization. Many uranium points and deposits

have recently been discovered in the Lower Cretaceous Yimin Formation of the Kelulun

Depression, in the southwestern part of the Hailar Basin. Meng (2024) used electron micro-

probe to reveal the types and occurrence states of uranium minerals in the Yimin Formation,

and elemental geochemical characteristics revealed the rock types, tectonic setting, sedimen-

tary environment and paleoclimatic conditions in the source area of the Yimin Formation

[20]. However, the geochemical data can only be used to determine the parent rock type in the

source area of the Yimin Formation, but cannot accurately pinpoint the provenance. The

research level of the Yimin Formation strata in the area is still relatively low, especially the

source of the clastic material, sedimentary system, uranium source conditions, and uranium

mineralization mechanisms, limiting the exploration of sandstone-related uranium deposits in

this area. To address this problem, we analyzed the lithology, geochemistry, and zircon U-Pb

ages of samples from the Lower Cretaceous Yimin Formation in the Kelulun Depression to

reveal the sources of detrital matter, lithology of the parent rock, and tectonic setting and ura-

nium fertility of the source region. Uranium mineralization processes were then inferred from

the tectonic evolution of the source region and the aforementioned analyses. The study results

are expected to guide future explorations for sandstone uranium deposits in the Hailar Basin.

2. Geological background

The Hailar Basin, located in the eastern Central Asian Orogenic Belt (Fig 1A), is a Mesozoic-

Cenozoic continental rift basin that developed between the Siberian and North China Plates

[21–23]. The basin is controlled by the NE-striking Deerbugan and Ergun fault zones, and it

has undergone four stages of tectonic evolution, a rifting stage in the Late Jurassic, a syn-rifting

stage during the Early Cretaceous, a shrinking stage in the late Early Cretaceous, and differen-

tial uplift and denudation during the Late Cretaceous-Neogene [24–29], which formed a tec-

tonic pattern with “two uplifts and three depressions.” (Fig 1B) [30,31].

The Kelulun Depression is a long and narrow half-graben in the southwestern part of the

Hailar Basin, which trends in the NE direction and is bounded by faults on its western side

(Fig 1C). The basement of the basin is comprised of Paleozoic metamorphic rocks and Hercy-

nian granites, with many granites and intermediate-to-acidic and intermediate-to-alkaline

igneous rocks around the basin. In descending chronological order, its sedimentary strata are

the Lower Cretaceous Nantun, Tongbomiao, Damoguaihe, and Yimin Formations, the Neo-

gene Huchashan Formation, and Quaternary strata. The ore-bearing strata in the study area

are the Lower Cretaceous Yimin Formation, consisting of dark coal-bearing clastic sediments

with high reducing capacities. Uranium mineralization has been discovered in the fan deltas of

the Yimin Formation.

3. Sample acquisition and analysis

Whole-rock geochemical analyses were performed on 24 sandstone samples from boreholes

ZKH5-2, ZKH12-1, ZKKL332-23, and ZKKL99-51 in the Kelulun Depression, were obtained

from gray-white sandstone in the Yimin Formation, via four boreholes. The sample locations

are shown in Fig 1C. Preparation of the thin rock sections, the selection of zircons, target prep-

aration, and cathodoluminescence (CL) microscopy were performed by the Langfang Geologi-

cal Exploration Technology Service Co., Ltd.
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3.1 Major and trace element analyses

Whole-rock geochemical analyses were performed at the Nuclear Geology and Nuclear Tech-

nology Application Center of Hunan Province. Major element analyses were performed using

a Shimadzu XRF-1800 (Japan) X-ray fluorescence fluorometer, with an analytical accuracy of

5% or better. Trace and rare earth element analyses were performed via inductively coupled

plasma mass spectrometry (ICP-MS), using a Thermo Fisher X Series II (USA) quadrupole

mass spectrometer, which has analytical accuracies of<5% and<10% for trace element con-

centrations greater and less than 10 ppm, respectively.

3.2 U-Pb dating of detrital zircons

Zircon U-Pb dating was performed at the State Key Laboratory of Continental Dynamics at

Northwest University, using a laser ablation-ICP-MS (LA-ICP-MS) system including a Micro-

Las GeoLas 200M laser ablation system and Agilent 7500a ICP-MS. A laser spot size of 35 μm

was used during this process. The zircon U-Pb ages were determined by using the 91500 zircon

standard as an external reference. The trace element compositions of the zircons were analyzed

using NIST SRM 610 synthetic silicate glass and Si as external and internal standards [32],

respectively. Data processing was performed using the ICP-MS-DataCal 9.2 software suite.

The method of Andersen (2002) [33] was used for common Pb correction. The concordia and

frequency plots of the zircon ages were created using Isoplot 4.15, the ages are used 206Pb/238U

in interpretations.

Fig 1. Geological map of the study area [20]. a. Geotectonic map of the Hailar Basin. b. Tectonic subdivisions of the Hailar Basin. c. Geological map of the

Kelulun Depression. Republished from [Meng F.M, Nie F.J, Xia F, Yan Z.B, Sun, D, Zhou W.B, et al. Sedimentary Environment, Tectonic Setting, and

Uranium Mineralization Implications of the Yimin Formation, Kelulun Depression, Hailar Basin, China. 2024; 12, 763.] under a CC BY license, with

permission from [Journal of Marine Science and Engineering], original copyright [2024].

https://doi.org/10.1371/journal.pone.0309433.g001

PLOS ONE Geochemical characteristics and detrital zircon U-Pb ages, and constraints on uranium mineralization

PLOS ONE | https://doi.org/10.1371/journal.pone.0309433 August 30, 2024 3 / 27

https://doi.org/10.1371/journal.pone.0309433.g001
https://doi.org/10.1371/journal.pone.0309433


4. Results

4.1 Lithological characteristics

The Yimin Formation sandstones are medium-to-fine grained (Fig 2A). Pore and contact

cementation are dominant, with some parts showing calcareous cementation. The detrital

grains are poorly sorted and rounded. Compositional maturity is low, indicative of short sedi-

ment transport distances from the source. Detrital grains account for 85%–90% of the whole-

rock composition, while filling materials account for the remaining 10%–15%. Quartz

accounts for 30%–40% of the detrital matter. The grains are angular-subangular and range

from 0.10 mm to 0.42 mm, a small number exhibit undulatory extinction. Feldspar (mainly

plagioclase, Fig 2B), with small amounts of microcline (Fig 2C) and striated feldspar) accounts

for 10%–25% of the detrital matter and presented as angular-subangular grains that range

from 0.13 mm to 0.48 mm. Clasts (mainly granite fragments (Fig 2D) and small amounts of

Fig 2. Photographs of thin sections under optical microscopy of the Yimin Formation sandstones. a. Medium-to-fine grained sandstones (cross-polarized).

b. Twinned plagioclase crystal (cross-polarized). c. Grid-twinned microcline (cross-polarized). d. Granite fragment (cross-polarized). e. Andesite tuff (cross-

polarized). f. Crystal tuff (plane-polarized). g. Chloritized biotite (plane-polarized). h. Pyrite vein (plane-polarized). i. Bitumen vein (plane-polarized).

https://doi.org/10.1371/journal.pone.0309433.g002

PLOS ONE Geochemical characteristics and detrital zircon U-Pb ages, and constraints on uranium mineralization

PLOS ONE | https://doi.org/10.1371/journal.pone.0309433 August 30, 2024 4 / 27

https://doi.org/10.1371/journal.pone.0309433.g002
https://doi.org/10.1371/journal.pone.0309433


andesite (Fig 2E) and crystal tuffs (Fig 2F) account for 20%–50% of the detrital matter and

present as angular-subangular grains that range from 0.18 mm to 0.16 mm. Some of these

grains had sizes exceeding 1.00 cm. The biotites present as flakes with intense chloritization

and account for 2%–4% of the detrital matter (Fig 2G). Some rocks were also interspersed with

pyrite (Fig 2H) and bitumen veins (Fig 2I).

4.2 Geochemical characteristics

4.2.1 Major element characteristics. The major element composition of the Yimin For-

mation sandstones is shown in S1 Table. The Yimin Formation sandstones have SiO2 contents

of 65.88%–74.92%, Al2O3 contents of 11.87%–15.98%, Fe2O3
T contents of 1.45%–6.37%, CaO

contents of 0.53%–4.54%, K2O contents of 2.65%–3.97%, and Na2O contents of 1.78%–3.67%.

4.2.2 Trace and rare element characteristics. The trace and rare element compositions

of the Yimin Formation sandstones are shown in S2 Table. The samples have similar trace ele-

ment spidergram patterns, characterized by weak enrichment in V, Rb, Co, Y, Nb, and U and

weak depletion in Sc, Cr, Ni, Sr, Zr, and Hf relative to concentrations in the upper continental

crust (Fig 3).

The total rare earth element (SREE), light rare earth element (LREE), and heavy rare earth

element (HREE) contents of the samples are 93.1–226.3 ppm, 84.7–205.4 ppm, and 8.4–

20.9 ppm, respectively, and LREE/HREE ratios range from 6.4 to 11.9 (S2 Table). Therefore,

Fig 3. Upper continental crust-normalized trace element spidergram for samples from the Yimin Formation [34].

https://doi.org/10.1371/journal.pone.0309433.g003
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the samples show significant LEE/HREE fractionation, with LREE enrichment and HREE

depletion. On the chondrite-normalized REE diagram (Fig 4A), these samples have a signifi-

cant right-inclined pattern and negative Eu anomaly. On the North American shale composite

(NASC)-normalized REE diagram, the curve is nearly flat (Fig 4B), suggesting that their REE

composition resembles that of North American shales. Hence, the source rocks of the Yimin

Formation are derived from the upper continental crust [35].

4.3 U-Pb dating of zircons

Zircons from the Yimin Formation present as euhedral-subhedral grains with long-axis diam-

eters of 100–190 μm and aspect ratios of 1.1–1.8. Most of the grains are angular-subangular

(Fig 5), consistent with short transport distances. As the majority of the zircon grains show

oscillatory zoning, they are magmatic zircons. As shown in S2 Table, the Th/U ratios of the

23HL02, 23HL07, 23HL11, and 23HL24 samples are 0.4–6.3, 0.1–11.1, 0.1–7.4, and 0.1–3.4,

respectively. Since the majority of these Th/U ratios are above 0.4 (Fig 6). Weathering of the

parent rock increases Th/U, the Th/U ratios of 0.1–11.1 for detrital zircons, with most samples

having values of 0.5–4.0, are consistent with substantial weathering of rocks in the source

region [38,39].

After discarding data with concordance <90%, 383 valid age data points were retained for

geochronological analyses (S3 Table). In the age concordia diagram (Fig 7) and age spectrum

(Fig 8), all four samples plot near the U-Pb concordia line, indicating that the age distributions

are consistent with each other (concentrated in the 230–260 Ma range). In particular, the
206Pb/238U ages of zircons in the 23HL02, 23HL07, 23HL11, and 23HL24 samples are 230–270,

235–265, 230–260, and 235–260 Ma, respectively.

4.4 Trace element composition of the zircons

The trace element characteristics of detrital zircons can be used to infer the types of rocks in

the source region, the mechanism of zircon formation, and the tectonic setting of the source

region [39]. As shown in S4 Table, zircons in the 23HL02, 23HL07, 23HL11, and 23HL24 sam-

ples have REE contents of 391.6 ppm to 3998.5 ppm, 377.9 ppm to 2219.9 ppm, 367.8ppm to

Fig 4. (a) Chondrite-normalized REE diagram [36]. (b) NASC-normalized REE diagram [37].

https://doi.org/10.1371/journal.pone.0309433.g004
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3113.36 ppm, and 441.69 ppm to 3418.94 ppm and LREE/HREE ratios of 0.028–0.311, 0.023–

0.22, 0.026–0.1, and 0.028–0.302, respectively. Therefore, all four samples show LREE deple-

tion and HREE enrichment. After chondrite normalization (Fig 9), all four samples have simi-

lar left-inclined REE fractionation curves, variable negative Eu anomalies, and positive Ce

anomalies. Therefore, the detrital zircons in these samples retain the characteristics of mag-

matic zircons [40].

In the Y-U (Fig 10A) and Nb-Ta (Fig 10B) diagrams, the samples plot in the field of gran-

ites. In the Y-Nb/Ta diagram (Fig 10C), the samples mostly plot in the field of overlap between

granites, syenite pegmatites, with some mafic rocks and a small number in the field of carbon-

ate rocks. In the Y-Yb/Sm diagram (Fig 10D), the samples mainly plot in the field of overlap

between granites, syenite pegmatites, and mafic rocks. Therefore, the parent rocks of the

Yimin Formation sandstones are mainly granitoids.

5. Discussion

Trace elements (including REEs) of fine-grained clastic rocks are relatively stable in the later

diagenesis and weathering processes, thus making them reliable tools for tracing the prove-

nances and depositional settings [42–45].

Fig 5. Cathodoluminescence images of detrital zircons from the Yimin Formation sandstones, with circles marking laser spot placement and number

indicating the obtained 206Pb/238U ages.

https://doi.org/10.1371/journal.pone.0309433.g005
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5.1 Type of parent rocks and tectonic setting of the source

5.1.1 Type of parent rocks. Girty (1996) showed that the Al2O3/TiO2 ratio is an effective

parameter for discriminating the provenance of sandstones [46], where sandstones derived

from mafic rocks have Al2O3/TiO2 ratios less than 8 and sandstones derived from intermediate

and felsic igneous rocks have Al2O3/TiO2 ratios of 8–21 and>21, respectively. As the Yimin

Formation sandstones have Al2O3/TiO2 ratios of 18.43–55.34, their parent rocks are felsic

igneous rocks. In the TiO2-Al2O3 diagram (Fig 11A), the samples largely plot in the field of

granites and granodiorites. In the F2-F1 diagram (Fig 11B), all of the sample plot in the field of

felsic igneous rocks. In the K2O-Rb diagram (Fig 11C), they plot in the field of intermediate-

to-acidic rocks. In the TiO2-Ni diagram (Fig 11D), they plot within and around the field of

acidic rocks.

In the Co/Th-La/Sc diagram (Fig 12A), all samples plot in the field of felsic igneous rocks

and granites. In the Th/Sc-Cr/Th (Fig 12B) and Th/Sc-Cr/Th diagrams (Fig 12C), they plot

between felsic igneous rocks and granites. In the La/Th-La/Yb diagram (Fig 12D), all samples

plot near the averages of the upper continental crust. In the La-Th-Sc (Fig 13A), Th-Hf-Co

(Fig 13B), and V-Ni-Th×10 diagrams (Fig 13C), all the Yimin Formation samples plot in the

field of granites and felsic igneous rocks. Therefore, the Yimin Formation sandstones were

derived from felsic igneous rocks in the upper crust.

Fig 6. Relationship between zircon ages and Th/U in the Yimin Formation sandstones.

https://doi.org/10.1371/journal.pone.0309433.g006
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5.1.2 Tectonic setting of the source region. Basin structures can be classified into one of

four types according to their crustal characteristics: oceanic island arcs, continental island arcs,

active continental margins (ACMs), and passive margins (PMs). The tectonic setting of a

source region can be inferred using the presence of stable oxides like Al2O3, SiO2, TiO2,

Fe2O3
T, and MgO. In the K2O/(Na2O+CaO)-SiO2/Al2O3 (Fig 14A) and K2O/Na2O-SiO2 dia-

grams (Fig 14B), the samples from the Yimin Formation mostly plot in the field of ACMs. In

the TiO2-(Fe2O3
T+MgO) (Fig 14C) and Al2O3/SiO2-(Fe2O3

T+MgO) diagrams (Fig 14D), these

samples largely plot in the field of ACMs, with a few plotting outside but near this field. In the

La-Th-Sc diagram (Fig 15A), all the Yimin Formation samples plot in the field of ACMs and

PMs. In the Th-Sc-Zr/10 (Fig 15B) and Th-Sc-Zr/10 diagrams (Fig 15C), all of the samples

plot in the field of ACMs.

The Hailar Basin was affected by the southward subduction of the Mongolia-Okhotsk Plate,

resulting in extensive volcanic activity and the formation of a large number of Late Paleozoic

granites in Manzhouli, southern Hailar Basin. The Late Paleozoic granites in the western part

Fig 7. Concordia diagram of detrital zircon LA-ICP-MS U-Pb ages.

https://doi.org/10.1371/journal.pone.0309433.g007
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of the Kelulun Depression have undergone weathering, erosion, and transportation into the

basin [60]. Because the composition and geochemical characteristics of clastic rocks are influ-

enced mainly by the tectonic background of the source area, the complex tectonic background

identified by the geochemical feature analysis does not represent the tectonic environment

during the formation of detrital rocks but rather reveals the tectonic environment during the

formation of the corresponding detrital source rocks. These findings suggest that the tectonic

setting of the source region of the Yimin Formation sandstones was an ACM.

5.2 Paleoweathering characteristics of the source region

The chemical composition of a sandstone is influenced by weathering, transport, and sedimen-

tation, as well as post-diagenetic processes. As weathering increases, sandstone shows the loss

of mobile oxides, increase in stable oxides, and total element loss [61,62]. Therefore, the oxide

content is an indicator of the degree of weathering of parent rocks in the source region [63,64].

Intense weathering of the parent rocks is supported by analyses of the Chemical Index of

We-athering (CIW = 100Al2O3/(CaO*+Na2O+Al2O3), Chemical Index of Alteration

(CIA = 100Al2O3/(Al2O3+CaO*+Na2O+K2O), and Index of Chemical Variability (ICV =

Fig 8. Age spectrum of detrital zircons from the Yimin Formation sandstones.

https://doi.org/10.1371/journal.pone.0309433.g008
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(Fe2O3
T+Na2O+K2O+CaO+MgO+TiO2)/Al2O3). Briefly, CIA values of 50–60, 60–80, and 80–

100 are indicative of low, moderate, and intense chemical weathering [65], respectively.

ICV< 1 and ICV> 1 indicate intense and relatively low weathering [66–68], respectively.

CIW values of 50–60 indicate fresh rocks, and CIW > 70 indicates intense weathering [69].

The Yimin Formation sandstones have CIA values of 42.18–65.39 and CIW values of 48.50–

76.26, indicating that their parent rocks were moderately to st-rongly weathered. Observed

ICV values of 0.84–1.66 (mostly 0.85–1.0) indicate that the rocks in

the source region have been strongly weathered. In the A-CN-K diagram (Fig 16A), the

CIA valu-es of the Yimin Formation sandstones are largely 55–70, indicating that the felsic

rocks in their so-urce region have undergone moderate-to-strong weathering. The CIA-ICV

diagram (Fig 16B) ind-icate that the Yimin Formation sandstones are compositionally imma-

ture, which is indicative of a moderately high degree of weathering in the parent rocks. In sum-

mary, the source region of the Yi-min Formation sandstones has undergone moderately

strong weathering, promoting erosion of the parent rock and thus providing an ample supply

of detrital matter for the study area.

Fig 9. Chondrite-normalized REE fractionation curves of detrital zircons from the Yimin Formation sandstones [36].

https://doi.org/10.1371/journal.pone.0309433.g009
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5.3 Provenance analysis

5.3.1 Constraints on provenance from regional sedimentology. The deposition of the

Yimin Formation occurred in the tectonic transition between rifting and subsidence, which

shrank lake basins and formed a sedimentary system consisting of fan-delta plains, fan-delta

fronts, and pre-fan deltas (Fig 17) [71,72]. The Adunchulu Uplift provided abundant matter to

this steep monocline, promoting the formation of fan deltas inside the depression. Further-

more, due to the steep terrain, weathering and erosion on the western side of the source region

created vast quantities of detrital matter, which were washed by floods into the basin and

deposited in saddle landforms. Large near-source fan deltas filled with coarse clastic and sandy

conglomerates were thus formed.

After the Yimin Formation was deposited, the terrain gradually became flattened, which

decreased the difference in height between the depression and its surrounding uplifts. Conse-

quently, the base of the alluvial fans and middle-fan subfacies on the western side were

denuded, and the landscape inside the depression became dominated by fan-delta plains and

Fig 10. Zircon trace element discrimination diagrams for the Yimin Formation sandstones [41]. a. Y-U diagram. b. Nb-Ta diagram. c. Y-Nb/Ta diagram. d.

Y-Yb/Sm diagram.

https://doi.org/10.1371/journal.pone.0309433.g010
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fronts. The fan-delta plains spread along the depression in the NE direction. Their sediments

are coarse and compositionally immature clastic and sandy conglomerates dominated by gran-

ite and brown-yellow or brick-red colors. Fan-delta fronts developed in the central and west-

ern parts of the depression, and their sediments are grey-colored medium- and fine-grained

sandstones, with predominantly quartz and feldspar clasts. Organic clasts like detrital coal are

also common. The most common facies here are underwater distributary channel, interdistri-

butary bay, and estuary bar microfacies. Pre-fan deltas developed on the southern and north-

ern ends of the depression, and their sediments are grey and dark-grey mudstones and

siltstones intercalated with large quantities of detrital coal [73]. In summary, the sedimentary

facies and sandbody distribution indicate that the materials of the Yimin Formation were

derived from the Adunchulu Uplift at the western side of the Kelulun Depression.

Fig 11. Major element discrimination diagrams for the parent rocks of the Yimin Formation sandstones. a. TiO2-Al2O3 diagram [47]. b. F2-F1 diagram

[48]. c. K2O-Rb diagram [49]. d. TiO2-Ni diagram [50].

https://doi.org/10.1371/journal.pone.0309433.g011
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5.3.2 Constraints on provenance from zircon U-Pb ages. Age dating of geological bodies

around the Kelulun Depression, i.e., the Adunchulu Uplift, Bayang Shan, and Erentaoleigai,

revealed the spatiotemporal distribution of material sources around the Kelulun Depression

(Fig 1c). The Hailar Basin has undergone many periods of granitic magmatism throughout its

geological evolution, which formed acidic igneous rocks of varying ages in the southern part of

Manzhouli [74,75]. Permian granites (280–335 Ma) mainly outcrop in the eastern part of the

depression, around Erentaoleigai [76]. Most of the Middle-Late Triassic alkali feldspar granites

(205–260 Ma) outcrop at the western part of the depression [77,78], at the Adunchulu Uplift.

A few outcrops have also been observed at Chagantaoleigai, Bayan Shan, Jiawula-Chaganbula-

gen, and Erentaoleigai. Early Jurassic monzogranites and granite porphyries (175–185 Ma)

mainly outcrop in the northern part of the depression [78,79], at Wunugetushan and Dashimo,

whereas Late Jurassic–Early Cretaceous biotite granites and granite porphyries (125–160 Ma)

are mainly located at the Adunchulu Uplift [80,81]. Mesozoic volcanism in southern

Fig 12. Trace element discrimination diagrams for the parent rocks of the Yimin Formation sandstones. a. Co/Th-La/Sc diagram [51]. b. Th/Sc- Cr/Th

diagram [52]. c. Th/Sc-Zr/Sc diagram [53]. d. La/Th-La/Yb diagram [54]. UCC: Upper continental crust. PAAS: Post-archean Australian shale. TTG:

Trondhjemite-tonalite-granodiorite.

https://doi.org/10.1371/journal.pone.0309433.g012
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Manzhouli started in the Middle-Late Jurassic and persisted until the Early Cretaceous, and its

effects are most pronounced on the two sides of the Mongol-Okhotsk suture. Rhyolites, andes-

ites, and olivine basalts with ages of 120–165 Ma were formed by this volcanism [82], and they

mainly outcrop in the southern and northern parts of the depression (the Hanwula Uplift and

Bayang Shan, respectively).

The ages of the detrital zircons found in Yimin Formation sandstones range from 215 Ma

to 287 Ma and are most commonly distributed in the range of 230–260 Ma. Therefore, the geo-

logical ages of the sources of these sandstones correspond to the Early-Middle Triassic and are

consistent with the age peak of Triassic granites in the Adunchulu Uplift (western part of the

depression) (Fig 18). In view of the lithologic, geochemical, and chronological evidence, we

conclude that the detrital matter in the Yimin Formation was largely derived from Triassic

granites in the Adunchulu Uplift. During the Triassic, large quantities of granite formed in

southern Manzhouli due to the southward subduction of the Mongol-Okhotsk oceanic plate

[83–85]. These granites subsequently underwent uplifting and denudation since the Late Cre-

taceous, which supplied ample quantities of detrital matter to the Kelulun Depression. Sourc-

ing of Triassic granites related to an old subduction zone explains the ACM geochemical

characteristics of the studied sandstones.

5.4 Source of uranium

Sandstone uranium deposits are derived from uranium-rich rocks and sedimentary layers in

the erosion source-area as well as the ore-bearing stratum itself [86]. The scale of uranium

mineralization is in part determined by the uranium content and outcropping area of the par-

ent rock. If the ore-bearing strata receive large quantities of detrital uranium during sedimen-

tation and diagenesis, their capacity to act as a source of uranium will be greatly enhanced.

This also establishes a foundation for large-scale uranium mineralization [87].

In the Kelulun Depression, Late Paleozoic granites have uranium contents of 2.7 ppm to

22.3 ppm, while Mesozoic granites have uranium contents of 2.8 ppm to 5.4 ppm [88]. These

uranium levels far exceed the average of the upper continental crust (2.80 ppm), indicating

that the area is a good source [34]. Late Paleozoic granites in this area have Th/U ratios of

3.79–9.29 (6.33 on average) and uranium mobilization rates of 65%–75%, whereas Mesozoic

granites have Th/U ratios of 4.23–8.16 (5.24 on average) and uranium mobilization rates of

55%–90%. These (high) Th/U ratios and uranium mobilization rates indicate that vast

amounts of uranium may have migrated out of these rocks [89,90]. The uranium contents of

the Yimin Formation strata range from 1.48 ppm to 5.50 ppm [71], and these estimates are

Fig 13. Triangular trace-element discrimination diagrams for the parent rocks of the Yimin Formation sandstones. a. La-Th-Sc diagram [55], b. Th-Hf-

Co diagram [34], c. V-Ni-Th×10 diagram [52]. UCC: Upper continental crust. TTG: Trondhjemite-tonalite-granodiorite. PAAS: Post-archean Australian shale.

https://doi.org/10.1371/journal.pone.0309433.g013
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higher than the global average for sandstones (0.45 ppm). Therefore, uranium-containing

clasts may have migrated with subsurface waters into the depression during the weathering of

uranium-rich granites in the erosion source area, which resulted in high uranium concentra-

tions within the sandbody of the Yimin Formation. In addition, multiple rounds of fluid-

induce dissolution during the diagenetic processes of the Yimin Formation created substantial

secondary porosity. This increased the porosity of the sandbody and the interconnectivity of

its pores, thus creating channels that facilitated the migration of uranium-containing oxygen-

ated water. The dissolving fluids in the study area consist mainly of atmospheric precipitation

and infiltrating waters, in the erosion source area, the bedrock fissure waters, porewaters, and

groundwater have uranium concentrations of 14.4 ppm to 225 ppm, 130 ppm to 204 ppm, and

0.78 ppm to 243 ppm [13,15], respectively. Therefore, the atmospheric precipitation and infil-

trating waters leached uranium from the parent rocks to create uranium- and oxygen-rich

Fig 14. Major element discrimination diagrams for the tectonic setting of the Yimin Formation sandstones. a. K2O/(Na2O+CaO)-SiO2/Al2O3 diagram

[56]. b. K2O/Na2O-SiO2 diagram [57]. c. TiO2-(Fe2O3
T+MgO) diagram [58]. d. Al2O3/SiO2-(Fe2O3

T+MgO) diagram [59]. PM: Passive continental margin.

ACM: Active continental margin. ARC: Oceanic island arc margin. OIA: Oceanic island arc. CIA: Continental island arc.

https://doi.org/10.1371/journal.pone.0309433.g014

PLOS ONE Geochemical characteristics and detrital zircon U-Pb ages, and constraints on uranium mineralization

PLOS ONE | https://doi.org/10.1371/journal.pone.0309433 August 30, 2024 16 / 27

https://doi.org/10.1371/journal.pone.0309433.g014
https://doi.org/10.1371/journal.pone.0309433


fluids, which migrated along the margins of the erosion source area into the Kelulun Depres-

sion. This created a stable and abundant source of uranium for the formation of sandstone

uranium deposits in the Yimin Formation.

5.5 Constraints on uranium mineralization by the tectonic evolution of the

source region

Beginning of rifting in the Late Jurassic: The Hailar Basin as a whole is a continental rift basin

that has undergone multi-stage tectonic activities [60,91]. Before the Late Jurassic, the Hailar

Basin was affected by the southward subduction of the Mongolia-Okhotsk Plate, resulting in

extensive volcanic activity and the formation of a large number of Late Paleozoic granites in

Manzhouli, southern Hailar Basin [92], which provided a rich material basis for the formation

Fig 15. Trace element discrimination diagrams for the tectonic setting of the Yimin Formation sandstones. a. La-Th-Sc diagram, b. Th-Sc-Zr/10 diagram,

c. Th-Co-Zr/10 diagram [58]. PM: Passive continental margin. ACM: Active continental margin. OIA: Oceanic island arc. CIA: Continental island arc.

https://doi.org/10.1371/journal.pone.0309433.g015

Fig 16. Discrimination diagrams for the paleoweathering characteristics of the source region of the Yimin Formation sandstones. a. A-CN-K diagram

[70]. b. ICV-CIA diagram [63]. UCC: Upper continental crust.

https://doi.org/10.1371/journal.pone.0309433.g016
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of mineralized strata and uranium source supply. Since the Late Jurassic, the upper crust was

transformed from a compressional system to a tensional background due to the hot rise of the

deep mantle, and the Hailar Basin was formed under the extensional background.

Pull-apart stage in the Early Cretaceous: Due to deep mantle upwelling, a change in the

stress state of the upper crust from a compressional to extensional regime marked the begin-

ning of an extensional pull-apart stage [91–93]. During this period, tectonic activity was

extremely intense in the study area, resulting in vast differences in altitude between the basin

and its surrounding uplifts. Many alluvial fans and fan-deltas formed as well as semi-deep and

deep lake sediments, with only a few small sandbodies. These sandbodies did not undergo

large-scale uplifting and denudation, preventing post-diagenetic oxidation from occurring on

a large scale. These conditions are generally not conducive to the development of uranium

deposits.

Basin shrinkage in the middle-to-late Early Cretaceous: As the study area transitioned from

rifting to subsidence, the rift basin also shrank, and the tectonic activity in the area started to

Fig 17. Sedimentary facies map of the Yimin Formation in the Kelulun Depression [19]. Republished from [Zhou W.B, Zhang R, Liu T, Mu H.Q, Zhao Z.

W, Huang X. Metallogenic Geological Features and Prospective Study for Sandstone-type Uranium Deposit in Bel-Ulson Depression 2020; 53(03), 201–209.]

under a CC BY license, with permission from [Northwestern Geology], original copyright [2020].

https://doi.org/10.1371/journal.pone.0309433.g017
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subside [94–96]. The altitude disparity between the basin and its surrounding mountains

started to decrease. In this stage, the Yimin Formation was largely comprised of grey-colored

coal-bearing detrital matter. As such, its sandbody was loosely packed and large, with excellent

lateral connectivity. Furthermore, it had a stable roof and floor made of impermeable shale.

These conditions were conducive for the migration of oxygenated uranium-containing waters

and the formation of uranium deposits. In addition, the prevailing paleoclimate during the

deposition of the Yimin Formation was wet and warm, resulting in large quantities of plant

detritus, detrital coal, and pyrite to mix with the grey sandbody [19,31]. Consequently, this

sandbody has a high native reducing capacity and is also the main ore-bearing stratum in the

study area. As the parent rocks had high uranium contents, the weathering of these rocks

Fig 18. U-Pb age spectra of detrital zircons from the Yimin Formation sandstones and geological bodies around the Kelulun Depression [76–85]. (n

represents the number of zircons).

https://doi.org/10.1371/journal.pone.0309433.g018
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Fig 19. Stages of uranium mineralization in the sandstone uranium deposits of the Kelulun Depression [20].

https://doi.org/10.1371/journal.pone.0309433.g019
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created large quantities of uranium-containing clasts, which then migrated into and deposited

inside the depression. This effectively “pre-enriched” the strata of the Yimin Formation with

relatively high levels of uranium (Fig 19A).

Tectonic inversion at the end of the Early Cretaceous–Late Cretaceous: At the beginning of

this period, the extensional setting transformed into a compressional setting, and the sand-

stone uranium deposits began to form [97]. However, uplifting was less pronounced during

this period, which limited the scale of uranium mineralization in the Yimin Formation. At the

end of the Late Cretaceous, the Lower Cretaceous strata in the study area underwent compres-

sional deformation, which caused large-scale uplifting and denudation in the Yimin Forma-

tion. This increased its hydraulic gradient and thus increased the recharge, runoff, and

discharge of supergene fluids [98], which facilitated the infiltration of oxygenated uranium-

containing waters into the Yimin Formation. As the Yimin Formation was also rich in reduc-

ing matter, such as detrital coal and pyrite, the U(VI) ions in the aforementioned fluid were

reduced to U(IV) in its strata, which led to the formation of uranium orebodies in its redox

transition zones (Fig 19B).

Basin shrinkage in the Paleogene–Neogene: The tectonic setting in the study area became

stable, as the compressional stress became very weak [95,98]. The study area showed a tertiary

planation surface, and the Yimin Formation was gradually modified by oxygenated uranium-

containing waters, which increased uranium mineralization in its sandstone uranium deposits.

6. Conclusion

1. The Yimin Formation in the Kelulun Depression is mainly comprised of detrital sandstones

with low compositional maturity. Based on the geochemical characteristics of these sand-

stones, the parent rocks are ACM felsic igneous rocks. The parent rocks have undergone a

moderately high degree of weathering. The consequent denudation of these rocks provided

an ample source of detrital matter in the study area.

2. The detrital zircon U-Pb ages of Yimin Formation sandstones range from 215 Ma to 287

Ma, with a peak at 230–260 Ma. Based on the zircon U-Pb ages, lithology, and geochemical

characteristics of these sandstones, it was determined that the Yimin Formation matter was

derived from Triassic granites in the Adunchulu Uplift, on the western side of the Kelulun

Depression.

3. The Adunchulu Uplift is an outstanding source of uranium. Its uplift since the late Early

Cretaceous and subsequent weathering and denudation of its uranium-rich granites played

a crucial role in the formation of sandstone uranium deposits. The Kelulun Depression is a

promising area for the exploration of sandstone uranium deposits.
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