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Abstract 

Objectives To evaluate the methodological quality and diagnostic accuracy of MRI-based radiomic studies predict-
ing O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status in gliomas.

Methods PubMed Medline, EMBASE, and Web of Science were searched to identify MRI-based radiomic studies 
on MGMT methylation in gliomas published until December 31, 2022. Three raters evaluated the study methodologi-
cal quality with Radiomics Quality Score (RQS, 16 components) and Transparent Reporting of a Multivariable Predic-
tion Model for Individual Prognosis Or Diagnosis (TRIPOD, 22 items) scales. Risk of bias and applicability concerns were 
assessed with QUADAS-2 tool. A meta-analysis was performed to estimate the pooled area under the curve (AUC) 
and to assess inter-study heterogeneity.

Results We included 26 studies, published from 2016. The median RQS total score was 8 out of 36 (22%, range 8–44%). 
Thirteen studies performed external validation. All studies reported AUC or accuracy, but only 4 (15%) performed calibra-
tion and decision curve analysis. No studies performed phantom analysis, cost-effectiveness analysis, and prospective 
validation. The overall TRIPOD adherence score was between 50% and 70% in 16 studies and below 50% in 10 studies. 
The pooled AUC was 0.78 (95% CI, 0.73–0.83, I2 = 94.1%) with a high inter-study heterogeneity. Studies with external  
validation and including only WHO-grade IV gliomas had significantly lower AUC values (0.65; 95% CI, 0.57–0.73, p < 0.01).

Conclusions Study RQS and adherence to TRIPOD guidelines was generally low. Radiomic prediction of MGMT 
methylation status showed great heterogeneity of results and lower performances in grade IV gliomas, which hinders 
its current implementation in clinical practice.

Clinical relevance statement MGMT promoter methylation status appears to be variably correlated with MRI radi-
omic features; radiomic models are not sufficiently robust to be integrated into clinical practice to accurately predict 
MGMT promoter methylation status in patients with glioma before surgery.
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Key Points 

• Adherence to the indications of TRIPOD guidelines was generally low, as was RQS total score.

• MGMT promoter methylation status prediction with MRI radiomic features provided heterogeneous diagnostic accuracy 
results across studies.

• Studies that included grade IV glioma only and performed external validation had significantly lower diagnostic accuracy 
than others.

Keywords Glioma, O(6)-Methylguanine-DNA methyltransferase, Magnetic resonance imaging, Systematic review, 
Meta-analysis

Introduction
Gliomas are the most common primary malignant 
brain tumors in adults, with a median age of onset of 
approximately 55 to 60 years [1]. In high-grade gliomas, 
the use of temozolomide after gross total resection rep-
resents first-line medical therapy associated to radia-
tion therapy [2, 3]. Among all identified glioma genetic 
alterations, O6-methylguanine-DNA methyltransferase 
(MGMT) promoter methylation is an important prog-
nostic molecular marker in clinical settings[4].

The MGMT normally protects cells against the dam-
age of alkylating agents [5] such as temozolomide, and 
therefore its inhibited expression through methylation 
is related to a better prognosis during standard-of-care 
chemotherapy for glioblastoma [2, 6, 7]. Indeed, MGMT 
methylation is associated with better survival, especially 
for patients with higher extent of MGMT methylation [8].

In a minority of patients, surgical resection is not possi-
ble (due to concomitant pathologies or old age) or tests for 
MGMT methylation are unsuccessful due to tissue insuffi-
ciency, especially for those undergoing stereotaxic biopsy. 
Therefore, the opportunity to determine MGMT methyla-
tion status through imaging without surgical intervention 
would be of great utility for patient management.

Several prior studies tried to correlate MRI data with 
MGMT methylation status, based on visual assessment 
of experienced radiologists. Results of these works 
were not always consistent, with alternate conclusions 
[9, 10]. The introduction of machine-learning methods 
based on the extraction of radiomic features has revi-
talized the debate [11, 12].

Radiomics is a research field that exploits the increased 
computing capabilities that have become available over 
the last few decades to extract and analyze thousands of 
quantitative biomarkers from radiological images [13]. 
Many research groups have been investigating the correla-
tion of radiomic features with MGMT methylation status. 
Their findings vary greatly ranging from very promising 
predictive values [14] to disappointing results [15].

Radiomic studies have great variability in their meth-
odological pipelines, which can impact the reproduc-
ibility and generalizability of results. In this context, the 

Image Biomarkers Standardization Initiative (IBSI) rep-
resents an international effort to provide standardized 
procedures for image processing and radiomic features 
calculation [16]. One of the methodological studies aim-
ing to provide specific recommendations for reporting 
radiomic models is the Radiomics Quality Score (RQS) 
[17]. This tool proposes a standardized evaluation of 
the performance, reproducibility, and clinical utility of 
radiomic studies by assessing compliance not only with 
feature extraction but also with model development and 
validation. The RQS has been already applied to evaluate 
the methodological quality of radiomic studies for sev-
eral oncological diseases such as meningiomas, gliomas, 
metastases, and other neoplasms [18–21].

This review aimed to evaluate the quality of prior 
studies on predicting MGMT methylation status in gli-
omas based on MRI-radiomic features, using the RQS 
items. We also assessed the studies using the Transpar-
ent Reporting of a Multivariable Prediction Model for 
Individual Prognosis Or Diagnosis (TRIPOD) guideline 
[22], a commonly used standard for reporting studies 
that develop and/or validate prediction models. Fur-
thermore, we conducted a meta-analysis to quantita-
tively investigate the association between study quality 
and diagnostic accuracy while accounting for the het-
erogeneity of the included studies.

Materials and methods
This study presents a systematic review of the literature 
and a meta-analysis conducted in compliance with the 
Preferred Reporting Items for Systematic Reviews and 
Meta-analysis (PRISMA) statement. Ethical committee 
approval was waived due to the nature of the study.

Eligibility criteria
Studies were included if the following criteria were met: 
(1) aimed to predict MGMT methylation status using 
any MRI sequence; (2) used radiomic features as input 
for classification; (3) included patients with glioma of 
any WHO grade (I to IV, as defined according to the 
2016 edition of the WHO central nervous system tumor 
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classification [23]). Studies were excluded if (1) they were 
case reports, correlation studies, commentaries, confer-
ence abstracts, editorials, letters, and review articles, or 
(2) radiomic features did not encompass texture features 
as defined according to IBSI guidelines.

Search strategy and study selection
We performed a systematic search in PubMed Medline, 
EMBASE, and Web of Science databases to identify any 
published study until 31 December 2022, using the fol-
lowing query: (glioma OR glioblastoma) AND (MGMT 
OR ‘Methylguanine methyltransferase’) AND (radiomic 
OR radiogenomic OR texture).

First, duplicated studies were removed. Then, studies 
were independently screened by three authors (F.M.D. 
and M.M. with 7 years and R.P. with 8 years of experience 
in neuroimaging research), first reviewing the titles and 
abstracts to determine whether they met exclusion crite-
ria and should be removed. Studies found to be not eligi-
ble after title and abstract screening were excluded. Next, 
a full text review of the identified studies was performed 
to determine the final list of included studies. Disagree-
ments were resolved by consensus.

Data extraction
In a spreadsheet, we collected data on the number of 
patients included, WHO grade of tumors, additional 
molecular markers explored, number of MRI scanners, 
MRI sequences, number and type of tumor compart-
ments segmented and considered for feature extraction 
(e.g., only contrast-enhancing areas, necrotic areas, T2/
FLAIR hyperintense areas), number of extracted features, 
and methods for feature extraction and classification, as 
well as classification performances (i.e., area under the 
curve [AUC], accuracy).

Quality assessment
We evaluated the methodological quality of the included 
studies based on the RQS and TRIPOD guidelines. Our 
focus was only for the MGMT prediction task and not 
for other tasks potentially performed in the same study. 
In addition, risk of bias and applicability concerns were 
assessed using the Quality Assessment of Diagnostic 
Accuracy Studies 2 (QUADAS-2), one of the most rec-
ommended tools for evaluating such risks in systematic 
reviews on diagnostic accuracy studies [24]. Details about 
QUADAS-2 are illustrated in the Supplementary Methods.

RQS
Two reviewers (F.M.D. and R.P.) achieved consensus on 
the evaluation criteria of RQS by discussion and indepen-
dently evaluated the included studies by scoring each RQS 

item. Disagreements on the scores assigned to the stud-
ies were resolved by discussion and consensus or else by 
a third reviewer (M.M.) to avoid a potentially low inter-
rater reproducibility as highlighted by recent evidence 
[25]. Next, we classified the 16 components of RQS into 
six domains, in line with previous studies [18, 19, 26, 27], 
and calculated the cumulative score for each domain of 
the RQS and overall. Table 1 reports the RQS components 
grouped by domain, with range of attainable points.

TRIPOD
Two reviewers (F.M. and F.P.) achieved consensus on the 
evaluation criteria of TRIPOD by discussion and inde-
pendently evaluated the included studies by scoring each 
TRIPOD item. Disagreements were resolved by discus-
sion and consensus or else by a third reviewer (M.M.). A 
total TRIPOD adherence score was calculated for each 
study by summing the adhered and applicable TRIPOD 
items. Overall adherence per TRIPOD item was calcu-
lated by dividing the number of studies that adhered to a 
specific TRIPOD item by the number of studies in which 
the specific TRIPOD item was applicable [22].

Statistical analysis
The measured endpoint was the AUC of each study 
obtained from models based only on radiomics (excluding 
clinical data). Of note, only studies that reported a meas-
ure of uncertainty of their AUC (either standard devia-
tions or 95% confidence intervals [CIs]) were included in 
the meta-analysis. Authors of studies that did not report 
such information in their publications were contacted 
via email to ask for these missing data. Pooled results 
with corresponding 95% CIs were derived using the ran-
dom effects model based on restricted maximum likeli-
hood estimator [28, 29]. The heterogeneity of individual 
studies was estimated with Cochran’s Q test and I2 value. 
Sources of heterogeneity among studies were identified 
by performing subgroup analyses and meta-regression, 
considering the combination of the following two factors: 
(1) external validation was performed; (2) patients with 
only WHO-grade IV were included. Publication bias was 
assessed by funnel plot and Egger’s test [30]. The statisti-
cal analyses were performed using R (version 4.2.1) and, 
in particular, the “metafor” R package [31].

Results
We identified 101 studies, of which 26 met the inclusion 
criteria (Fig. 1, Table 2) [11, 12, 14, 15, 32–53]. These stud-
ies included a median of 116 patients (min 34; max 418). 
The majority (15/26, 58%) focused on patients with WHO 
grade IV gliomas, and the others included patients with 
heterogeneous WHO grades gliomas (from I to IV, or only 
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Table 1 Description of RQS items divided per domain, with scoring ranges and criteria

RQS Radiomics Quality Score

Domain 1—Protocol quality and stability in image and segmentation (0–5 points)

a) Image protocol quality (item 1)

  + 1 (if protocols are well-documented)

  + 1 (if public protocol is used)

b) Imaging at multiple time points (item 4)

c) Phantom study on all scanners—detect inter-scanner differences and vendor-
dependent features (item 3)

d) Multiple segmentations (item 2)

  + 1 for each 1b, 1c, and 1d

Domain 2—Feature selection and validation (−8 to 8 points)

a) Feature reduction or adjustment for multiple testing (item 5)

  − 3 (if neither measure is implemented) + 3 (if either measure is implemented)

b) Validation (item 12)

  − 5 (if validation is missing)

  + 2 (if validation is based on a dataset from the same institute)

  + 3 (if validation is based on a dataset from another institute)

  + 4 (if validation is based on two datasets from two distinct institutes)

  + 4 (if the study validates a previously published signature)

  + 5 (if validation is based on three or more datasets from distinct institutes)

Domain 3—Biologic/clinical validation and utility (0–6 points)

a) Multivariable analysis with non-radiomics features (item 6)

b) Detect and discuss biological correlates (item 7)

  + 1 for each 3a and 3b

c) Comparison to “gold standard” (item 13)

d) Potential clinical utility (item 14)

  + 2 for each 3a and 3b

Domain 4—Model performance index (0–5 points)

a) Cut-off analyses (item 8)

  + 1 if cut-off analyses are conducted

b) Discrimination statistics (item 9)

  + 1 (if a discrimination statistic and its statistical significance are reported)

  + 1 (if a resampling method technique is also applied)

c) Calibration statistics (item 10)

  + 1 (if a calibration statistic and its statistical significance are reported)

  + 1 (if a resampling method technique is also applied)

Domain 5—High level of evidence (0–8 points)

a) Prospective study registered in a trial database (item 11)

  + 7 (for prospective validation of a radiomics signature in an appropriate trial)

b) Cost-effectiveness analysis (item 15)

  + 1 if cost-effectiveness analyses are conducted

Domain 6—Open science and data (0–4 points)

a) Open science and data (item 16)

  + 1 (if scans are open source)

  + 1 (if region of interest segmentations are open source)

  + 1 (if code is open source)

  + 1 (if radiomics features are calculated on a set of representative ROIs 
and the calculated features and representative ROIs are open source)
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II and III). Other information related to image and radi-
omic workflow is shown in Supplementary Table 1.

RQS assessment
Results of the RQS assessment for the 26 included stud-
ies are summarized in Table 3 and shown in Fig. 2. The 
median total score was 8 (22%), ranging between 3 
(8%) and 16 (44%), from the maximum RQS score of 36 
(100%).

In domain 1, most studies (23/26, 88%) provided a suf-
ficiently detailed description of the image protocol, and 
only four (15%) used a public protocol. Multiple segmen-
tations by different physicians were done in twelve stud-
ies (46%). Phantom studies were never conducted.

In domain 2, all studies but two (92%) performed fea-
ture selection. Thirteen out of 26 studies (50%) per-
formed validation without retraining the proposed model 
(seven based on a dataset of the same institute, and six 

using an external dataset), and the remaining 13 (50%) 
did not validate the trained model on a separate dataset.

In domain 3, the majority of studies (15/26, 58%) per-
formed multivariable analysis with non-radiomic fea-
tures. Biological correlates were discussed in 13 out of 26 
(50%) studies. Comparison to gold standard was done in 
all included studies. Of note, we considered “gold stand-
ard” several types of MGMT methylation status analysis, 
as there is no consensus on the best assay to use [54] and 
high variability between threshold of MGMT methylation 
values [55]. Only four studies (15%) performed quantita-
tive analysis (e.g., decision curve analysis) to report on the 
potential clinical utility.

In domain 4, all studies reported discrimination sta-
tistics (AUC or accuracy) along with their statistical 
significance (p values or confidence intervals) and most 
of them (19/26, 73%) computed those statistics using 
a resampling method (e.g., bootstrapping, cross-vali-
dation); some performed also cut-off analysis (12/26, 

Fig. 1 Study selection flowchart
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46%). In contrast, only two studies (8%) reported cali-
bration statistics.

In domain 5, all studies had a retrospective design; no 
study performed a prospective validation of the radi-
omics signature in an appropriate trial, nor a cost-effec-
tiveness analysis.

In domain 6, only four studies had open-source scans 
(15%) and three of them used also open-source seg-
mentations of regions of interest [56].

We did not observe a remarkable difference in RQS 
scores when comparing more recent studies to past 
works (Supplementary Figure 1).

TRIPOD assessment
The adherence to all TRIPOD items is reported in 
Supplementary Table  2 for each study. The median 
total score was 15.5 (range 10–23). The 26 studies met 

Table 2 List of the 26 studies included in this review. All studies had retrospective design

Abbreviations: ADC apparent diffusion coefficient, ASL arterial spin labeling, DWI diffusion-weighted imaging, DSC dynamic susceptibility contrast, MRF magnetic 
resonance fingerprinting, T1-Gd T1-weighted images after gadolinium injection, TCIA The Cancer Imaging Archive, SWI susceptibility-weighted imaging

Ref First author Year Journal No. of patients No. of patients in 
separate validation 
set

No. of scanner/
magnetic fields

MRI sequences WHO 
grade 
glioma

[32] Calabrese 2022 Neurooncol Adv 381 – 1/3 T 3D T1, 3D T1-Gd, 3D 
FLAIR, 3D T2, SWI, ASL, 
DWI

IV

[33] Chen 2022 J Clin Med 111 22 1/3 T T1, T1-Gd, T2, FLAIR II–IV

[34] Crisi 2020 J Neuroimaging 59 – 1/3 T DSC IV

[35] Do 2022 Sci Rep 53 – TCIA T1, T1-Gd, T2, FLAIR IV

[36] Hajianfar 2019 World Neurosurg 82 – TCIA T1-Gd, FLAIR IV

[37] Haubold 2021 Cancers (Basel) 164 33 7/1.5 T
and 3 T

T1, T1-Gd, FLAIR II–IV

[38] Haubold 2020 Eur J Nucl Med Mol 
Imaging

34 – No mention T1; DWI-b1000; ADC; 
SWI; MRF; 3D T1-Gd; 
FLAIR

I–IV

[39] He 2022 BMC Med Imaging 81 – 2/3 T T1, T1-Gd, T2, DWI I–IV

[40] Huang 2021 J Comput Assist Tomogr 59 – 1/3 T T1, T1-Gd, T2, FLAIR II–IV

[41] Huang 2021 Cancer Sci 53 – 1/3 T T1, T1-Gd, T2, FLAIR I–IV

[42] Jiang 2019 Eur J Radiol 122 35 1/3 T 3D T1-Gd, T2 II–III

[43] Kihira 2021 Neurooncol Adv 111 20 7/1.5 T
and 3 T

3D T1-Gd, 3D FLAIR, DWI II–IV

[44] Kihira 2022 Cancers (Basel) 208 31 No mention FLAIR II–IV

[11] Korfiatis 2016 Med Phys 155 – 4/1.5 T
and 3 T

T1, T1-Gd, T2 IV

[14] Le 2020 J Pers Med 53 – TCIA T1, T1-Gd, T2, FLAIR IV

[12] Li 2018 Eur Radiol 193 60 1/3 T T1, T1-Gd, T2, FLAIR IV

[45] Lu 2020 Magn Reson Imaging 181 54 3/1.5 T
and 3 T

T1-Gd IV

[46] Pasquini 2021 Front Oncol 156 – 2/1.5 T
and 3 T

3D T1-Gd, T2, FLAIR, DWI, 
DSC

IV

[53] Pease 2022 J Neurooncol 114 28 TCIA T1-Gd, FLAIR IV

[47] Sasaki 2019 Sci Rep 162 – 10/1.5 T
and 3 T

T1, T2, T1-Gd IV

[48] Shboul 2020 Sci Rep 108 27 TCIA T1, T1-Gd, T2, FLAIR II–III

[15] Sohn 2021 J Neurooncol 418 126 1/3 T 3D T2, 3D FLAIR, 3D 
T1-Gd

IV

[49] Verduin 2021 Cancers (Basel) 147 43 Several/1 T–3 T T1-Gd, T2 IV

[50] Vils 2021 Front Oncol 118 49 17/1 T–3 T T1-Gd IV

[51] Wei 2019 Eur Radiol 105 31 1/3 T T1-Gd, FLAIR, ADC II–IV

[52] Xi 2018 J Magn Reson Imaging 118 20 2/3 T T1, T1-Gd, T2 IV

5807



Doniselli et al. European Radiology (2024) 34:5802-5815

between 31% and 68% of the TRIPOD items, consider-
ing only the applicable items. TRIPOD items from the 
background, study design, eligibility criteria, outcome 
assessment blinding, definition and handling of the pre-
dictors, model development, limitations, and interpre-
tation were reported in more than 80% of the studies 
(Table 4). Lower percentages (between 60% and 80%) of 
adherence to items related to key study dates and set-
ting, times and methods of outcome definition, blind-
ing of the predictors’ assessment, and implications were 
obtained. Instead, other TRIPOD items from title and 
abstract, sample size, statistical analysis methods, par-
ticipants, model specification and performance, and 
supplementary information were reported in less than 
30% of the studies. No study performed model updating.

We did not observe a remarkable difference in TRI-
POD scores when comparing more recent studies to 
past works (Supplementary Figure 1).

QUADAS‑2 assessment
Results of the QUADAS-2 assessment are illustrated in 
Supplementary Figure  2 and reported in detail in the 
Supplementary Results. Briefly, overall risk of bias was 
low in 10 studies, unclear in one, and high in 15; as for 
the applicability concern related to the present review 
question, it was low in all but one of the studies.

Classification accuracy and methodology quality
In total, 13 studies provided sufficient information in 
the text to compute the pooled AUC. As for the other 

Table 3 RQS results according to the six domains and overall, along with the classification accuracy achieved for the MGMT 
methylation status prediction with models based only on radiomic features

Domain 1: protocol quality and stability in image and segmentation (0–5 points); domain 2: feature selection and validation (−8 to 8 points); domain 3: biologic/
clinical validation and utility (0–6 points); domain 4: model performance index (0–5 points); domain 5: High level of evidence (0–8 points); domain 6: open science and 
data (0–4 points)

cv cross-validation, AUC  area under the curve, RQS Radiomics Quality Score, MGMT O6-methylguanine-DNA methyltransferase
a AUC was not available for this study and accuracy is reported instead

Ref First author RQS AUC 

Domain Total score (%)

1 2 3 4 5 6

[32] Calabrese E 2 −2 2 2 0 0 4 (11) 0.70

[33] Chen S 2 −1 2 1 0 0 4 (11) 0.90

[34] Crisi G 1 −2 3 2 0 0 4 (11) 0.84

[35] Do DT 3 −2 2 2 0 2 7 (19) 0.87

[36] Hajianfar G 2 −2 2 2 0 1 5 (14) 0.78

[37] Haubold J 1 5 3 1 0 0 10 (28) 0.74

[38] Haubold J 1 −2 2 2 0 0 3 (8) 0.76

[39] He J 1 −2 4 3 0 0 6 (17) 0.83

[40] Huang WY 2 −2 6 4 0 0 10 (28) 0.86

[41] Huang WY 1 −2 5 5 0 0 9 (25) 0.83

[42] Jiang C 2 6 4 2 0 0 14 (39) 0.90

[43] Kihira S 1 6 3 3 0 0 13 (36) 0.70a

[44] Kihira S 1 −1 5 2 0 0 7 (19) 0.62a

[11] Korfiatis P 2 −2 4 3 0 0 7 (19) 0.85

[14] Le NQK 3 −2 2 2 0 2 7 (19) 0.90

[12] Li ZC 1 6 4 1 0 0 12 (33) 0.88

[45] Lu Y 1 5 4 2 0 0 12 (33) 0.62a

[46] Pasquini L 1 −2 4 3 0 0 6 (17) 0.69

[53] Pease M 2 −2 2 3 0 0 5 (14) 0.92

[47] Sasaki T 2 −2 3 2 0 0 5 (14) 0.71

[48] Shboul ZA 2 5 3 2 0 2 14 (39) 0.70

[15] Sohn B 1 5 3 3 0 0 12 (33) 0.65

[49] Verduin M 0 6 4 3 0 0 13 (36) 0.63

[50] Vils A 1 6 3 2 0 0 12 (33) 0.67

[51] Wei J 3 5 6 2 0 0 16 (44) 0.90

[52] Xi YB 1 6 3 2 0 0 12 (33) 0.80a
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13, only three provided such missing data following our 
email request [32, 35, 42]. Therefore, 16 studies were 
considered for meta-analysis. However, we found that 
two studies [40, 41] included the same cohort of patients 
recruited in the same center during the same period, and 
therefore only one of these two studies (the one with the 
highest number of patients) was finally incorporated in 
the meta-analysis [40] . The pooled AUC of the 15 studies 
was estimated to be equal to 0.778 (95% CI 0.728–0.830, 

I2 = 94.08%) (Fig.  3). Subgroup analysis indicated that 
studies with external validation and including only 
patients with WHO-grade IV tumors had AUC values 
significantly lower (0.647, 95% CI 0.569–0.726, I2 = 0%) 
than others (test for subgroup differences: χ2 = 14.04, df 
= 3, p = 0.0029) (Fig. 4). A meta-regression model of the 
AUCs based on predictors such as RQS and TRIPOD 
total scores was not globally significant (χ2 = 0.8506, df 
= 2, p = 0.6536). After excluding each study one at the 

Fig. 2 Summary of radiomics quality scores (RQS) assessment results of the 26 included studies per domain. Each row of the plot shows 
the distribution of the scores achieved by the studies for a domain. Colors from red to green denote progressive increase from minimum 
to maximum score obtainable for each item. Abbreviations: RQS, Radiomics Quality Score
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time and recomputing the pooled AUC, there was no 
study that contributed significantly to the heterogeneity 
observed in this sample (Supplementary Figure 3). Pub-
lication bias was absent according to visual inspection of 
the funnel plot which did not suggest substantial asym-
metry (Supplementary Figure  4), as confirmed also by 
Egger’s test (t = −0.15, df = 13, p = 0.8823).

Of note, the above results were obtained with models 
based on radiomic features only. There were 13 out of 26 
studies investigating multivariable models integrating radi-
omic with non-radiomic features and comparing AUCs 
with models based only on radiomics: in seven of them 
[11, 12, 37, 40, 46, 47, 50], non-radiomic features were 
not selected by the algorithm and therefore they did not 

Table 4 Summary of TRIPOD adherence of the 26 included studies

TRIPOD Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis
a Calculated over the applicable items only

TRIPOD section TRIPOD item Reported Not reported Not applicable

n %a n %a n %

Title and abstract 1 0 0% 26 100% 0 0

2 0 0% 26 100% 0 0

Background and objectives 3a 24 92% 2 8% 0 0

3b 13 50% 13 50% 0 0

Source of data 4a 25 96% 1 4% 0 0

4b 19 73% 7 27% 0 0

Participants 5a 18 69% 8 31% 0 0

5b 24 92% 2 8% 0 0

5c 0 - 0 - 26 100%

Outcome 6a 20 77% 6 23% 0 0

6b 25 96% 1 4% 0 0

Predictors 7a 22 85% 4 15% 0 0

7b 17 65% 9 35% 0 0

Sample size 8 7 27% 19 73% 0 0

Missing data 9 14 54% 12 46% 0 0

Statistical analysis methods 10a 26 100% 0 0% 0 0

10b 2 8% 24 92% 0 0

10c 1 8% 12 92% 13 50%

10d 1 4% 25 96% 0 0

10e 0 - 0 - 26 100%

Risk groups 11 3 60% 2 40% 21 81%

Development vs validation 12 7 54% 6 46% 13 50%

Participants 13a 7 27% 19 73% 0 0

13b 6 23% 20 77% 0 0

13c 2 15% 11 85% 13 50%

Model development 14a 22 85% 4 15% 0 0

14b 0 0% 1 100% 25 96%

Model specification 15a 2 8% 24 92% 0 0

15b 1 4% 25 96% 0 0

Model performance 16 2 8% 24 92% 0 0

Model updating 17 0 - 0 - 26 100%

Limitations 18 23 88% 3 12% 0 0

Interpretation 19a 12 92% 1 8% 13 50%

19b 26 100% 0 0% 0 0

Implications 20 19 73% 7 27% 0 0

Supplementary information 21 3 12% 23 88% 0 0

Funding 22 10 38% 16 62% 0 0
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improve model accuracy; in other four studies, AUC val-
ues increased when the model included non-radiomic fea-
tures, such as other radiological features of the images [39], 
Visually AcceSAble Rembrandt Images (VASARI) features 
[45, 49], fractal features [48], or prediction results obtained 
by a multi-label classification model [15]; in the remain-
ing two studies, AUC values were lower when age [42] or 
apparent diffusion coefficient values of tumor/edema areas 
[51] were included in a multivariate model.

Discussion
We reviewed 26 studies aiming to predict MGMT pro-
moter methylation in patients with glioma based on MRI-
radiomic features. We analyzed the adherence of these 
studies to the RQS and TRIPOD guidelines, finding gen-
erally unsatisfactory results for the two scales and het-
erogeneous classification performances. We performed a 
meta-analysis on the classification performances obtain-
ing a pooled AUC of 0.78 and finding significantly lower 
AUC value (0.65) for studies performing external valida-
tion only on grade IV gliomas.

RQS assessment
In our review, the median total RQS score of the analyzed 
studies was globally low (8/36 points, 22%), in agreement 
with other methodological reviews of radiomic studies 
[18–20, 26, 27, 57].

Regarding the specific RQS domains, most studies 
complied with domain 3 (biologic/clinical validation and 

utility), where 19 out of 26 studies obtained at least a score 
of 3 out of 6. However, a perfect score in this domain was 
rarely achieved due to the lack of a decision curve analysis. 
Such analysis enables estimation of the clinical net benefit 
achievable by the prediction/diagnostic model, although it 
is rarely performed in medical literature [58]. It should also 
be noted that this tool is often misused in literature, even 
though it can still provide useful insights [59].

Referring to domain 1 (protocol quality and stability in 
image and segmentation), less than half of the analyzed 
studies (12/26) did multiple segmentations: this item is 
very time-consuming, but it increases the reproducibility 
of the results [17, 60].

In domain 4 (model performance index), all studies 
performed discrimination analysis reporting an appro-
priate accuracy metric and most of them also used res-
ampling techniques (bootstrap or cross-validation) to 
reduce the overfitting issue. However, calibration (which 
measures the agreement between the probability of being 
classified as positive and the true underlying risk of being 
positive) was rarely conducted, probably because this 
analysis is not commonly performed outside the machine 
learning community. Future radiomic studies should also 
consider this analysis when individual predictions are 
made and used to support clinical decision-making.

As reported by previous works [18, 26], the RQS is 
inherently inferior in retrospective and radio-genomic 
correlation studies, such as those included in this review. 
They inevitably performed poorly in domain 5 (high level 
of evidence), in which 7 out of 36 total points are attrib-
uted if the study is prospective. Moreover, apart from 
studies that used large public databases [12, 14, 48], no 
work shared their images, obtaining low scores in domain 
6 (open science and data). Therefore, 11 RQS points out 
of 36 coming from domains 5 and 6 were difficult to 
attribute, suggesting that some RQS items may be too 
strict for most studies as recently highlighted [61].

In domain 2 (feature selection and validation), almost 
all studies performed a feature reduction step. How-
ever, half of them did not perform the validation step 
(−5 points), because they did not test the final model on 
a separate dataset. This has serious implications on the 
classification performance of the models.

Classification performance
Unsurprisingly, studies without external validation 
performed better than those with a separate test set, 
according to our meta-analysis. Indeed, machine learn-
ing methods are prone to overfitting to the trained 
dataset, especially when a feature selection step is 
performed before training the model [62]. This is the 
reason why most recommended guidelines such as 

Fig. 3 Forest plot of radiomic studies with available data on the AUC 
and its uncertainty. The estimate of the pooled AUC based 
on the random effect model is reported on the last line of the plot. 
Abbreviations: RE, Random Effect; AUC, area under the curve
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TRIPOD [22] and RQS require a step of external valida-
tion after developing the prediction model [60]. With-
out this step, it is impossible to reach generalizable 
results. Therefore, results of studies suffering from this 
issue should be interpreted carefully.

Our meta-analysis proved that MGMT promoter 
methylation prediction was less accurate when con-
sidering a homogeneous cohort of patients with grade 
IV gliomas only, whose radiological characteristics 
are similar. In other words, radiomic models consid-
ering heterogeneous glioma grades perform better 
because they may be influenced by the different levels 
of MGMT promoter methylation between lower- and 
higher-grade gliomas [63].

Other sources of variability may be found in the dif-
ferent choices of tumor segmentation. Although spe-
cific tumor compartments were identified in 19 studies 
(as shown in Supplementary Table  1), they were not 
standardized across studies and therefore subgroup 
analysis was not possible. Moreover, the indication 
of contouring the “whole tumor” made by some stud-
ies was not always sufficiently specific to understand 
the precise extension of the tumor considered (i.e., 
if edema or necrosis was included). Future studies 
should provide more details of the tumor compart-
ments considered (possibly illustrating representative 
examples) and are encouraged to develop separate 
radiomic models on each compartment as well as on 

Fig. 4 Forest plots with the results of the subgroup analysis. Studies were grouped based on the combination of two factors: (1) 
whether an external validation was performed; (2) whether WHO-grade IV glioma were only included in their analysis. Abbreviations: AUC, area 
under the curve; SE, standard error; CI, confidence interval
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their union to increase comparability and reproduc-
ibility across studies.

Further sources of variability were identified in the 
sequences used to extract radiomic features. Only a 
small number (5 out of 26) of studies used public data-
bases, while the majority relied on retrospective data 
collected in single centers, which demonstrated a sub-
stantial heterogeneity. For instance, only 6 studies 
employed 3D-T1-weighted imaging sequences post-
contrast, while 13 and 18 studies made use of 2D-T1-
weighted imaging sequences without and with contrast, 
respectively; there were 14 studies considering 2D-T2-
weighted imaging sequences and only 2 employing 
3D-T2-weighted imaging sequences. This substantial 
heterogeneity of the conventional sequences markedly 
diminishes the generalizability of the findings. Stand-
ardizing the sequences across various centers (including 
prospective studies) and enlarging the number of cases 
in public databases can alleviate this variability.

Our review relied on conventional radiomic stud-
ies involving hand-crafted features, which offer a 
potentially high level of interpretability and may be 
appropriate for relatively small datasets, such as those 
commonly gathered in neuro-oncological research. On 
the other hand, deep-learning techniques are increas-
ingly being employed to automatically extract radiomic 
features that have the potential to capture complex, 
high-dimensional patterns within the data. However, 
more recent studies using deep-learning radiomics to 
predict MGMT promoter methylation status reported 
heterogeneous results, obtaining high [33, 64] and low 
[65] classification performances. Thus, it appears that 
deep-learning studies may also be affected by compa-
rable concerns as those identified in this review. How-
ever, further evidence is required to conduct a more 
thorough investigation of this matter.

Risk of bias
Most of the included studies had high or unclear risk of 
bias (16/26), as estimated through QUADAS-2 tool: this 
was partially in agreement with the results of the RQS 
and TRIPOD, which indicated even lower methodo-
logical quality overall. This is because RQS and TRIPOD 
examine the issues related to several methodological 
choices in greater depth and specificity than QUADAS-2 
for studies that develop radiomic and prediction models.

Limitations
One limitation of this study was that only papers written 
in English were included. Moreover, gray literature was 
not incorporated; nevertheless, we believe the included 
studies provided a comprehensive representation of the 
literature, as we found no evidence of publication bias 

(Supplementary Figure  4). Another limitation was that 
certain studies included in the systematic review did not 
report AUC values with uncertainty measures, and con-
sequently could not be included in the meta-analysis.

Conclusions
Adherence of the published articles to RQS items or 
the indications of TRIPOD was generally low. Radi-
omic models do not provide accurate predictions of the 
MGMT promoter methylation status in grade IV glio-
mas. Therefore, to date, they are not ready to be inte-
grated into clinical practice. Future studies aiming to 
predict MGMT promoter methylation status with radi-
omics should include homogeneous cohorts of glioblas-
toma patients and have a sufficiently large number of 
cases to permit a proper external validation; adherence to 
current reporting guidelines and radiomic pipelines (such 
as RQS, TRIPOD, and CLEAR [17, 22, 61]) should also 
be increased to improve quality, reliability, and, therefore, 
inter-study comparability.
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