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% Check for updates Quantum reservoir computing (QRC) has been proposed as a paradigm for

performing machine learning with quantum processors where the training
takes place in the classical domain, avoiding the issue of barren plateaus in
parameterized-circuit quantum neural networks. It is natural to consider using
a quantum processor based on microwave superconducting circuits to classify
microwave signals that are analog—continuous in time. However, while there
have been theoretical proposals of analog QRC, to date QRC has been imple-
mented using the circuit model—imposing a discretization of the incoming
signal in time. In this paper we show how a quantum superconducting circuit
comprising an oscillator coupled to a qubit can be used as an analog quantum
reservoir for a variety of classification tasks, achieving high accuracy on all of
them. Our work demonstrates processing of ultra-low-power microwave sig-
nals within our superconducting circuit, a step towards achieving a quantum

sensing-computational advantage on impinging microwave signals.

Over the last decade, researchers in quantum information proces-
sing have broadly divided their efforts into two distinct but com-
plementary directions. In one, the focus has been on realizing the
building blocks for large-scale, fault-tolerant quantum processors'~,
which would enable running algorithms such as Shor’s or Grover’s at
meaningful scale. In the other, there has been a push to realize
quantum systems comprising tens to hundreds of qubits or
qumodes, but without error correction, and to explore what can be
done with such noisy, pre-fault-tolerance systems—often denoted as
noisy, intermediate-scale, quantum (NISQ) devices*. Quantum
computational supremacy with such NISQ devices has been
demonstrated*®, but there has been much less progress on achieving
quantum advantage in practically relevant applications’. There have
been many NISQ studies on quantum machine learning®, and in this
area too, quantum advantage for problems of broad practical
interest has remained elusive®'°. A key challenge in quantum neural

networks realized with parameterized quantum circuits has been
training the parameters when the optimization landscape suffers
from barren plateaus” ™. A major open question is whether one can
achieve any practically relevant advantage for machine learning with
NISQ systems.

Inspired by the framework of reservoir computing™™ in classical
machine learning, quantum reservoir computing (QRC)“”?* has
emerged as an approach to quantum machine learning that entirely
avoids barren plateaus by performing all learning in a final, linear layer.
They key idea of a QRC is that a quantum system (called a quantum
reservoir) can generate nonlinear, high-dimensional features of inputs
to it, and that these features can be used to perform machine-learning
tasks purely by training a classical linear transformation. However,
experimental demonstrations to date have been performed with
digital quantum circuits® ' that have limited the complexity of tasks
that can be performed, in part due to an input bottleneck imposed by
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the use of discrete gates to input temporal data using a series of
separate, imperfect gates.

In this work, we demonstrate a proof-of-principle for a new
application of and approach to quantum machine learning with NISQ
devices that overcomes or sidesteps the challenges in training and
inputs noted above. We use the driven, continuous-time analog
quantum nonlinear dynamics of a superconducting microwave circuit
as a quantum reservoir to generate features for classifying weak, ana-
log microwave signals (Fig. 1a). We use repeated measurements of the
reservoir both to extract features that contain information about
temporal correlations in the input data, as well as to induce non-
unitary dynamics. Our use of a continuous-variable system in our
quantum reservoir grants us access to a substantially larger Hilbert
space than would be the case with a qubit-only system with equally
many hardware components. Our approach is similar to proposals for

analog NISQ processors and simulators**, which aim to avoid the
overhead caused by imposing a discrete-time abstraction. Analog
operation grants us an even more important ability however, which
fundamentally distinguishes our work from prior experimental
demonstrations of quantum machine learning on circuit-model
quantum processors: it allows our device to directly, natively receive
weak analog microwave signals, and to immediately leverage analog
quantum information processing to extract relevant features of the
signals for classification. Our experiments do not address the question
of whether a QRC can achieve a quantum computational advantage,
since our experimental device is small enough to be easily simulated
classically. However, our demonstrations suggest a route to achieving
a quantum advantage of a different kind: an advantage in the quantum
detection and processing of weak microwave signals, allowing quan-
tum hardware to extract complex information of interest from dim,

a. Analog quantum Classical °
€in(t) € C' dynamical system ~ post-processing o i
O
\N\/W""V 0/0]1 o
4| o O
Continuous Qubit e, A & ¢
input . . measurements o7 Output
Oscillator Qubit 8 Trained
linear layer
b. c om WP
g ey
HEE — s '
S -
Position x Position x Position x Position x
|0)
lg)

Oscillator [3D cavity] Qubit [Transmon]

M sequential measurements before reset

00 TO1LO2 === 10 11 T12 «ux

d. Calculate correlations

Feature vector

M1 2 M3
|
— [
— M — l I l- V‘\/
P —

Fig. 1| Analog signal classification with a continuous-variable quantum
reservoir computer (QRC) using measurement trajectories. a We perform
machine learning using a quantum system consisting of an oscillator coupled to a
qubit. Analog signals are fed into our analog quantum dynamical system, con-
tinually displacing the oscillator mode while the qubit is projectively measured. The
measurement trajectories provide complex features a digital linear layer can use to
perform classification on a variety of tasks. b The signals interface directly with the
qubit-oscillator system, composed of a 3D aluminum cavity (blue) hosting a
transmon qubit (red) and a readout resonator (omitted for clarity; Supplementary
Fig. 1). ¢ Wigner tomography performed on the oscillator state through various
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stages of the reservoir dynamics. The dynamics include entanglement-generating
unitary evolution, and projective measurements of both the qubit and oscillator.
The back-action produced by the measurements add to the non-classical features
generated by the entangling unitaries. The balance of measurements and unitaries,
which do not commute with each other in our implementation, lead to complex
correlations in the measurement trajectories. d The digital linear layer performs
classification based on a feature vector, which we construct using the expectation
values of the central moments u, (p =1, 2, 3, ...), which capture the essential
correlations in the reservoir dynamics.
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analog signals in ways that would be noisier with a conventional clas-
sical approach. This type of quantum advantage, arising from a com-
bination of quantum sensing with extraction of complex features
about the sensed signal, is discussed in general terms as a route to
quantum advantage with quantum machine learning in Ref. 10. Our
work shows that when classical signals comprising just a few photons
have entered an analog quantum reservoir, they can be classified using
our QRC approach. The signals we classify are synthesized at room
temperature and pass through 60 dB of attenuation before reaching
our device. However, if instead one combines this analog quantum
processing with a sensitive quantum detector of microwave radiation,
as has already been previously demonstrated using superconducting
circuits®’, then one can construct a system that achieves a quantum
advantage in the task of combined sensing and signal processing of
ultra-low-power impinging microwave signals.

Results

Experimental setup and protocols

Our quantum reservoir, composed of a cavity resonator coupled to a
transmon (Fig. 1b), can be modeled with the following qubit-oscillator
Hamiltonian in the rotating-frame,

H/h= —xle)(ela’a+et)a’ +Q(t)le)(g| +H.c., @

where |g) and |e) define the qubit subspace of the transmon, a is the
photon annihilation operator of the oscillator mode, and  is the non-
linear interaction strength (see Supplementary Note 2 for details). The
third term of Eq. (1) describes the unitary control of the qubit with a time-
dependent drive Q(¢), and the second term describes both the encoding
of the input data €;,(¢), and unitary control of the oscillator mode, i.e.,
€(t) = €in(0) + Econtrol(t). Equation (1) describes the unitary dynamics, which
is complemented by non-unitary dynamics generated by the back-action
from qubit measurements interspersed throughout the evolution.

The oscillator and qubit control drives used in this paper realize a
reservoir that consists of a series of entangling unitaries interleaved
with qubit and oscillator measurements (Fig. 1c). The analog input is
sent resonantly to the cavity and results in a time varying conditional
displacement of the oscillator, which streams in concurrently with
control drives. The cavity resonator hosting the oscillator mode has a
resonance frequency of 6 GHz and a 2-kHz linewidth. The combination
of the input and control drives implement a unitary that encodes the
input into the state of the oscillator and generates entanglement
between the qubit and the oscillator. Following the unitary evolution,
we perform a qubit measurement, and then a parity measurement of
the oscillator state’®*' (see Supplementary Fig. 8). The parity mea-
surement projects the oscillator state into super-positions of either
even or odd Fock states, a highly non-Gaussian measurement allowing
one to sense changes in the photon-number distribution. Additionally,
the entangling dynamics between the measurements effectively
implement a sequence of non-commuting measurements (see Sup-
plementary Note 2), generating correlated measurement distributions
that can then be used as complex output features. Finally, after four
rounds of applying the unitary and the qubit-oscillator measurements,
we reset the system before repeating the scheme so that we may col-
lect many samples of the measurement trajectory. The reset, which
occurs at a rate much faster than the decoherence rate of the oscilla-
tor, additionally ensures that our system remains coherent.

The measurement outcomes are used to construct output feature
vectors to be fed into the linear layer, but this can be done in a few
different ways. When performing repeated measurements on our
system, we generate a sample bitstring of length M describing the
quantum trajectory over M measurements. After M measurements are
performed, we reset the system and repeat the procedure, each time
generating a bitstring X , = [X,0.Xu, - - - Xu_1], Where n refers to the
nth sample (Fig. 1c). The outcomes can be counted to directly form a

sample probability distribution p(7|em(t)) over measurement trajec-
tories, which can then be used as a high-dimensional output feature
vector after obtaining a sufficient number of samples N. While this
approach has the benefit of capturing all information in the mea-
surement distribution®, it can generally suffer from poor scaling in
sampling noise, requiring N - 2" shots in the worst case*’.

Here, we construct an output feature vector from estimates of
successive central moments piy, [, U, ... of the underlying distribution
p(7|ein(t)) (Fig. 1d). For example, the first-order central moment 1 is a
M-dimensional vector representing the average over all measured bit-
strings, i.e. t;=[ {xn0? , {Xn ,...], the second-order central moment
I is the covariance matrix with elements ()= XpiXpj) — (Xpi) (Xj),
and so on. Here, the expectation value is taken over the sample index n.
This approach, inspired by Ref. 17, has the benefit of leveraging the
hierarchy of noise in the central moments, while capturing the essential
correlations in the dynamics to achieve high accuracy even in the few-
sample regime. Furthermore, the output feature vector dimension only
scales polynomially with the number of measurements, where the
highest polynomial power is given by the order of the highest central
moment, which we restrict to 3 for all tasks in this work. Finally, given
finite memory in our reservoir, we further restrict the output vector by
choosing to only calculate correlations between measurements at most
3 measurements apart. These truncated moments are then flattened
and concatenated to construct our output feature vectors. In all, for the
M = 8 measurements we use in this work, the resultant output feature
vector size with this prescription is 94. For a detailed discussion of the
construction of our reservoir output features with comparisons of
different encodings, see Supplementary Note 4.

Classification of time-independent signals

To illustrate the scheme proposed in this work, we begin with an
example classification using our quantum reservoir by performing
binary classification task of time-independent signals. Figure 2a
describes the control drives in more detail. For time-independent
input data, the two-dimensional input data is encoded as the / and Q
quadratures of an analog signal resonant with the cavity resonance
frequency. In the rotating frame of the system (Eq. (1)), this is effec-
tively a time-independent signal, i.e. €,(f) = €, =/ + Q, which results in a
displacement of the oscillator state. For such time-independent tasks,
the signal bandwidth is set by its duration which, in general, can make
the resultant displacement conditioned on the qubit state due to the
cross-Kerr interaction (see first term of Eq. (1)).

The unitary encoding the input displacement is complimented by
control drives that entangle the qubit and oscillator via conditional
displacements*® and qubit rotations (Fig. 2a). The entangling conditional
displacements are applied before and after the unknown input is fed into
the system, and the qubit is rotated by m or m/2 pulses before, during,
and after the input. Due to the qubit-state-dependent shift of the oscil-
lator frequency by - x, these qubit rotations serve to make the oscillator
sensitive to the input signal independent of the state of the qubit at the
start of each round of input. Additionally, when combined with condi-
tional displacements on the oscillator, the control and input scheme
impart a geometric area enclosed by the oscillator trajectory onto the
qubit, such that the phase of an unknown time-independent input signal
can be extracted via a qubit measurement (see Supplementary Note 2 for
details of this unitary). In Supplementary Note 7, we show the ability of
the set of unitaries implemented here to be able to approximate any
scalar function of the input signal when the signal is time-independent.
For all results presented, we implement our reservoir unitary with these
control drives across all tasks, with 4 applications of the unitary inter-
leaved with qubit and oscillator-parity measurements.

The binary classification task we perform here is: Two distribu-
tions of time-independent signals, completely characterized by the
signal’s in-phase (/) and quadrature (Q) components, are distributed
along two separate “arms of a spiral” in the / — Q plane (Fig. 2b). Given a
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Fig. 2 | Reservoir protocol overview with an example time-independent
classification task. a The unitary dynamics in our reservoir are generated by
control pulses that serve to entangle the qubit with the oscillator before the analog
input is received by the oscillator. For tasks where the analog data is time-inde-
pendent, the dynamics are fully gate-based, and the oscillator is dis-entangled with
the qubit before the qubit and oscillator measurements. For details of the moti-
vation behind the particular unitaries implemented for our reservoir, see Supple-
mentary Note 2. b (Inset) An illustrative machine learning example is the
classification of time-independent signals from two arms of a Spiral distribution
defined in the signal / - Q plane. For quantum machine learning, unlike classical, the
performance is unavoidably impacted by sampling noise. Here, we plot the
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classification accuracy of the spiral task against an increasing number of shots. Also
plotted is the performance of a linear layer acting directly on the two-dimensional
I, Q data, indicating that non-linearity is required to perform this task with sufficient
accuracy. ¢ Classification accuracy at 10* shots as a function of qubit coherence
time that we tune via resonator-induced dephasing during the classification (see
Supplementary Fig. 9). The errorbars indicate the error in classification accuracy
over the testing dataset. While we see a large drop in classification performance
when the qubit coherence time is heavily suppressed and the system is completely
disentangled, the performance only begins to suffer once the qubit T, approaches
the duration between measurements.

displacement described by the points / and Q sampled from either
signal distribution, one must figure out which distribution the signal
came from. The maximum amplitude of the input signal distribution
max(|€;,|) (i.e. the points in the spiral arms furthest away from the
origin in Fig. 2b) was chosen such that the amount of displacement of
the oscillator state initialized in vacuum would result in a coherent
state with n=0.3 photons per round of input ( ~ 1us). This input
amplitude was needed in order to perform the classification with suf-
ficient accuracy in a reasonable amount of shots. Our QRC solved the
spiral classification task with > 97% accuracy at 10° shots (Fig. 2b). This
simple task has the feature that, if one feeds in the inputs directly into a
linear layer, the classification accuracy would reach no more than 67%
—just above the random guessing accuracy of 50%. As a point of
comparison with non-linear digital reservoirs, we found that a 64-
dimensional, two-layer digital reservoir was needed to achieve the
same performance as our quantum reservoir for this task (see Sup-
plementary Note 8 for details of this comparison).

To probe the role of quantum coherence in our reservoir, we per-
formed the same classification task, but with reduced coherence time in
the qubit during the reservoir execution (Fig. 2c). This was achieved by
populating the lossy readout resonator with photons that send the qubit
to the center of the Bloch-sphere when the readout resonator is traced
out (see Supplementary Fig. 9). With T, > 0, we effectively removed all
entanglement with the oscillator, and observed two things: a dramatic
reduction in classification performance, and importantly, T, only began
affecting the performance once it was on the order of the reservoir
duration, after which the qubit is projected to a pure state.

Classification of radio-frequency (RF) communication modula-

tion schemes

Next, to highlight the ability to perform classification of higher
dimensional data, we classified time-dependent radio-frequency (RF)

signals. The microwave signals in this dataset encode digital informa-
tion using one of 10 different digital modulation schemes, a standard
benchmark task in RF machine learning***. Digital modulation
schemes encode binary information in discrete ‘symbols’ encoding in
sequential time-bins. For example, Binary Phase-Shift Keying (BPSK)
encodes binary data in discrete phase jumps of a signal, such that a
symbol O (1) maps to a phase flip of O (7). Other modulation schemes
can encode more bits per symbol. BPSK and other encodings can be
represented in a constellation diagram (Fig. 3a), which denotes the
potential (/, Q) values a signal can take for each symbol. A given string
of digital data can then be encoded in a time-domain signal by
sequentially choosing points in the constellation diagram with a given
symbol rate. For typical WiFi signals this is around 250 kHz per
subchannel*.

For this task, we generated RF signals by encoding random digital
strings into the 10 different modulation schemes with a fixed symbol
rate of around 2 symbols per us, or with a sampling rate of 2 MSps. The
duration of these signals typically lasts much longer than the reset
period of our system. Importantly, we did not repeat the same signal to
artificially reduce the sampling noise associated with each input data,
as this would not typically be applicable in a real-world setting. Instead,
the measurement statistics were generated by sampling the signal in
real time. Consequently, what we refer to as ‘shots’ in a real-time task
does not correspond to identical repetitions of the experiment, but
instead, is the number of resets we performed while acquiring the
signal, which changed from shot to shot. In effect, each different
encoding scheme produces a unique “fingerprint” distribution over
measurement outcomes, and the goal of the linear layer is to separate
these distributions with as high accuracy as possible.

Figure 3c shows the accuracy in classifying digitally modulated RF
signals with increasing number of shots, compared with the perfor-
mance of a linear classifier. We note that in less than a millisecond, or
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contains the corresponding duration of the radio frequency signal required. As the
number of shots increases, the fluctuations in the measurement distribution
reduces, resulting in a higher classification accuracy. For context, a classical linear
classifier applied directly on the input data achieves only 20% accuracy, indepen-
dent of the duration of the signal. The error bars of the accuracy curve have been
omitted here due to the fact they are too small. d Confusion matrix for the QRC at
32, 512, and 10* shots, showing that the reservoir confuses only a few classes at the
highest shots.

with less than 2000 symbols, the reservoir was able to classify which of
the 10 classes a given signal belongs to with > 90% accuracy when using
8 qubit-oscillator measurements. A linear classifier can only achieve
20% classification accuracy for this task, even with infinite symbols.
The confusion matrix between the different classes at 32, 512, and 10*
shots is displayed in Fig. 3d, the latter two of which are nearly diagonal.

Classification of filtered noise

Finally, to demonstrate the performance of our QRC on continuous-
time data, and with a task that requires both long-term and short-term
memory in the quantum reservoir, we performed the following clas-
sification task: input data assumed to have come from a source of
white noise is filtered using a moving-average filter having one of three
filter shapes (Gaussian, Lorentzian and inverse-power-law), and one of
two window widths (50 ns and 600 ns), and the task is to identify both
the filter shape and window width (Fig. 4a). The resultant dataset
consisting of six classes of noisy signals was designed to probe the
ability of our QRC to process high dimensional data with bandwidths
larger than the cavity linewidth. Additionally, this task allowed us to
probe the memory of our QRC and its ability to be sensitive to fluc-
tuations in time, a key feature that enable temporal signal processing
in QRCs*"*8, The filter functions were normalized so that the photon-
number distributions generated by the time-dependent displacements
are identical up to the filter width. This normalization was applied to
ensure that the task is not trivially solvable by just measuring the mean
photon number (see Supplementary Fig. 14).

Because all the signals used in this dataset are noise with zero
mean, a linear classifier would do no better than random guessing. By
contrast, Fig. 4b visually shows (using Singular Value Decomposition
(SVD) on the output feature space) that the quantum reservoir was able
to peel apart the different noise distributions. On the task of classifying
over six different sources of noise, we achieved 93% accuracy (Fig. 4c)
in only 2000 shots. As seen in the confusion matrix in Fig. 4d, the
primary confusion at 2000 shots was distinguishing between the 50-ns
inverse-power-law noise class and the 600-ns Gaussian noise class, as
expected from the overlap in the SVD of the feature space.

Finally, we compared the ability of our reservoir to understand
long vs short correlations in input signals. For this, we deconstructed

the 6-class classification task into two classification subtasks, where in
each subtask, the QRC learned to distinguish noisy signals generated
from among three different filter window types, but with fixed window
widths. The two subtasks differ by the filter window width (see Fig. 4d,
e). The class of signals with coherence length of 50 ns highlights the
convenience of our input encoding scheme, i.e. feeding signals directly
into the oscillator mode without the need to sample the signal dis-
cretely in time. Additionally, the ability for our quantum reservoir to
distinguish between signals with correlation times on the order of 50 ns
demonstrates the sensitivity to signals which vary on time-scales much
faster than the measurement rate. In contrast, classification of the class
of signals with coherence lengths of 600 ns requires correlations of the
reservoir dynamics beyond that of the measurement rate. To highlight
the advantage of our scheme, we simulated the performance of a
reservoir with that of a recent gate-based protocol where the input was
sampled discretely in time®. Our simulation results, in Supplementary
Note 6, highlight the advantage of our protocol when the sampling rate
of the input is slow, which can arise in experiment such as finite pulse
durations and latency introduced by the FPGA classical comparison.
Figure 4e looks at the participation of the different moments 1 of
the measurements in the classification accuracy of the 50-ns subtask
(top), and the 600-ns subtask (bottom). Here, the output features were
constructed by the mean y;, or the off-diagonal elements of the
moments p, and p; as a function of the distance between measure-
ments dy, allowing us to probe the contribution of the moments as a
function of the locality of the correlations. For the 50-ns subtask, we
see that the most important contribution is the mean, with the second-
order moment being the next-most important contribution, and the
third-order moment being relatively unimportant. In stark contrast,
the third-order moment is most important for the 600-ns subtask,
surprisingly yielding nearly 90% classification accuracy using non-local
third-order correlations alone. The ability to distinguish stochastic
signals among the combined six classes demonstrates the ability of our
reservoir to capture both slow and fast features of microwave signals.

Discussion
In summary, we have experimentally realized an analog quantum
reservoir computer (QRC) and demonstrated its ability to directly
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Fig. 4 | Classification of filtered noise. a We classify various fast and slow noisy
signals by applying a moving average on stochastic white-noise signals. Three dif-
ferent filters are used for the moving averages: a Gaussian filter, a Lorentzian, and
aninverse power law. For each filter, we generate stochastic analog signals based on
both a 50 ns filter width, and a 600 ns filter width, with the latter being on the order
of the measurement rate. Example time traces are given for the real part of an
example stochastic white noise signal passed through each of the filters. We divide
up these stochastic signals and send to the QRC to then distinguish the noise
source. b Visualization of the high-dimensional output feature space using Singular
Value Decomposition (SVD). Each point corresponds to a different signal over

50 ns 600 ns

2000 shots taken in real time (see text). ¢ Classification accuracy as a function of
the number of shots using third-order moments as the output feature. Our reser-
voir reaches 93% accuracy in about 2000 shots, corresponding to about 10 ms of
the signal received. The errorbars here indicate the variation in the classification
accuracy over the testing dataset. d Confusion matrix of the task taken at

2000 shots. e Participation of the mean and the off-diagonal elements of the sec-
ond- and third-order moments in the classification accuracy within the subtasks of
classifying different noise sources with fixed filter width. We see that for signals
with long coherence times, higher-order measurement correlations are important,
while for fast signals, the mean dominates in the performance contribution.

process microwave analog input signals without discretization,
achieving high classification accuracy on three different tasks. Pre-
vious demonstrations of quantum reservoir computing have used
multi-qubit, gate-based quantum reservoirs® . In contrast, we per-
form machine learning directly on analog signals fed into a single
oscillator coupled to a transmon qubit. The superconducting-circuits
platform not only allows us to leverage projective non-demolition
(QND) non-Gaussian measurements to generate correlated output
features, but is also well-matched to process microwave signals that
can generally be continuous in time. In addition to demonstrating
accurate classification of microwave signals in our experiments, we
also performed a direct comparison with a state-of-the-art discrete-
time, gate-based QRC approach in simulation, and found that a
continuous-time reservoir outperforms a discrete-time reservoir when
the input signals contain temporal variations fast relative to the dis-
cretization time (see Supplementary Fig. 16).

For any quantum neural network, including QRC approaches, a
central concern is to what extent one can achieve high accuracy on a
particular task without needing an impractical number of shots*.
Ref. 31 recently reported that certain functions—termed eigentasks—
can be constructed with low error from quantum reservoirs even when
the number of shots is modest, giving evidence that for some tasks,
sampling noise need not be overwhelming. In our experiments, we
found that it was possible to achieve high accuracy for all the tasks we
attempted while needing only 10°-10* shots (depending on the task).

There is important future work to be done in exploring the trade-offs
between reservoir size (e.g., number of oscillators or qubits), number
of measurements M between reservoir resets, feature-vector dimen-
sion (dependent both on M and the choice of order of correlators to
include), and number of shots required for both training and inference.

With improved quantum hardware, we anticipate that it will be
possible to carry out even more sophisticated tasks than what we have
already demonstrated. Increasing the coherence time of the oscillator
would enable us to perform many more measurements (the qubit’s
coherence time is, favorably, less important in our scheme because our
protocol involves repeatedly projectively measuring the qubit). While
we analytically showed in Supplementary Note 7 the ability of our QRC
to be able to approximate any scalar function of the input signal when
the signal is time-independent, provided the number of measurements
M performed is large enough, there remains the open theoretical
question of the expressiveness of the QRC when the input signal is
time-dependent. Generalizing our approach to spatial in addition to
temporal inputs, as was explored in Ref. 24, would likely support more
sophisticated computations. In Supplementary Note 6, we explore
such extensions in simulations and find a marked improvement in
classification accuracy.

It is an open question if QRC—using the type of reservoir we
considered in this paper, or any other—can, when implemented with
NISQ hardware, achieve a quantum computational advantage over the
best classical machine learning approaches, just as it is unclear if any
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quantum-machine-learning method can™. We did not investigate the
potential for purely computational quantum advantage: our quantum
reservoir is small enough to be easily classically simulable. However,
our work opens up the possibility to experimentally achieve a different
type of quantum advantage than a purely computational one. If one
performs quantum processing on data obtained by a quantum sensor,
there is the potential for an advantage that is a hybrid of being due to
the advantage of quantum sensing and of quantum computing'®. Our
work suggests the feasibility of concretely realizing this kind of hybrid
quantum sensing-computational advantage, where the quantum sen-
sor is a superconducting circuit that can detect classical microwave
radiation with high quantum efficiency and low noise® %, While the
signals classified in this work originate at room temperature and are
highly attenuated before reaching the device, our experiments have
shown that it is possible to accurately classify signals using a super-
conducting circuit even when there are only a few photons of signal in
the superconducting circuit within any single run. Combining this with
a sensitive quantum detector could lead to quantum smart sensors—
quantum versions of classical in-sensor processors*’—that can reliably
extract information from weak microwave signals in a way that
exceeds the accuracy of any equivalent classical system.

Methods
Reservoir unitary
To design a good reservoir computer capable of performing machine
learning on a variety of tasks, one needs to implement control drives
that can efficiently capture important information of the input and
perform a non-trivial and non-linear map to output features. Here, our
reservoir is composed of alternating unitaries and measurements. The
design of the former is motivated to harness the quantum properties of
the dynamical system to generate entanglement and the design of the
latter to generate non-linear operations on the state of our reservoir via
measurement back-action. Here we summarize the control drives and
measurements we use and their effect on the reservoir dynamics, both
in the context of time-dependent and time-independent signals.

For time-independent signals, the unitary implemented in our
reservoir (see Fig. 2b) can be approximated by the following set of
unitaries (see Supplementary Note 2)

Ui=Xup2 )

U,=D(a)lg) (el +D(-a)le)(g] CNOD 3)
Us;=D(P)lg)(g| +le){e| Input (4)
Usp=Xy Q)
Us=U;=D(B)g)(g| +le)(e| Input (6)
Us=D(-a)lg) (el +D(a)le)(g] CNOD 7)
Ur=Yup. ®)

This combination of unitaries encloses a loop in the oscillator’s phase
space. The area of this closed loop, which depends on the phase of the
unknown displacement f3, imparts a geometric phase onto the qubit. In
this work, we perform this unitary directly after a qubit measurement
without reset. The action of the combined unitary on the qubit prepared
in the ground or excited state, and for an arbitrary oscillator state, is

Ulg)=U;UsUsU U3 U, U, g) 9

= %D(ﬁ)[i sin(A — /4)|g) + cos(A — m/4)|e)] ® |cavity) (10)

Ule) = %D([D[icos(A —m/4)|g) + sin(A — m/4)le)] ® |cavity) (11)

where A=2|a||B| sin(d) = i(aﬁ* — ') is the geometric phase enclosed
by the oscillator trajectory, and dependent on the phase difference §
between a known displacement a, and the unknown displacement S.
The probability of measuring the qubit in the excited state given
it started out in the ground state, P, and the probability of mea-
suring excited given the qubit start in the excited state, P, are given
by
P,g = cOS(A— /4 Poe=sin(A —m/4) 12)

The equation relates the qubit probability to the phase of the input
displacement, which is otherwise challenging to extract in a setup with
only qubit measurements.

For general time-dependent signals, the closed loop formed by
Egs. (2)-(8) is broken, and the system is entangled before the mea-
surement. While this can be hard to study analytically in the general
case, we take a look at a special case of time-dependent signals,
namely those of Fig. 3. Here, the signal is time-dependent up to
half the duration, so that the signal is effectively two time-
independent signals combined. As a result, Egs. (4) and (6) are no
longer equal, but each still a time-independent displacement, and
thus, the effects of the cross-Kerr, as discussed in Supplementary
Note 2 do not hinder the interpretation of the effective gate-based
model. For such input signals, the state of the system just before
measurement is

1, ; . 1, ; .
1) = 51e"D(B) + e “DB)lig cavity) + 5[ D(B) — e Y D(B)le,cavity),
13)

where f; is the displacement just before the qubit flip (corresponding
to Eq. (4) for this time-dependent set of tasks), and f; is the
displacement after (Eq. (6)). A; = af; is the phase acquired after two
non-orthogonal displacements. When f; = B; we recover the dynamics
for time-independent signals.

Repeated measurements
The unitaries described above are followed by a qubit measure-
ment, then a parity measurement. For time-independent signals, the
qubit and oscillator are disentangled at the end of the unitary,
and the effect of the unitary on the oscillator is just a displacement.
Thus we can ignore any affects of the qubit measurement on the
oscillator. The state of the oscillator after M repeated measure-
ments and M time-independent displacements can be effectively
described as

|cavity) = ... P, D(BP,, D(B)P,,D(B)P, D(B)|0), (14)
where P, is the projector of the nth parity measurement I1 with
measurement outcomes x,, = { +, — }. In Supplementary Note 7, we show
that by sampling the parity measurements alone combined with the
linear layer, we can realize (but not limited to) the following vector
space of funtions:

2 2\ 2 2\ k
Hparity = {("Oi'cleiz‘m +C (eiz‘m ) +.. Gy (elem ) 1 CosCpre s e R,

as)
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Output feature encoding & the linear layer

In reservoir computing, the outputs of a reservoir, called feature vec-
tors, are sent to a trained linear layer. Here, we briefly outline the
motivation and construction of the feature vectors and the training
algorithms used in this manuscript.

In general, sampling over all possible measurement trajectory
outcomes and generating a probability distribution contains all the
information one can extract from a quantum system. However, not all
the information plays an equal role for finite samples. Thus, for our
work here, we use a physically motivated output feature vector that
efficiently captures the relevant information for a linear layer. The
output feature vectors for our reservoir are generated from computed
correlations of measurement outcomes. The p-th order correlations
are characterized by the p-th central moment p, of the underlying
distribution of measurement trajectories. The elements of u, are

1 Nshots
M) = mzn O — XDy — OGN X — XX — (X)) -
(16)

where x;, is the nth repeated measurement outcome of observable x;
for a total of Ngnos repetitions, and ¢...) is the expectation value
taken over repetitions. For the results presented in the main text, we
use only up to third-order correlations. Additionally, due to the finite
memory present in our reservoir, we only keep correlations between
nearest, next-nearest, and next-next-nearest measurements. See
Supplementary Note 4 for details and motivation behind this choice.
For machine learning with reservoir computing, the only com-
ponent of the reservoir that is trained is a linear layer applied to the
above feature vectors. The linear layer is an R x C matrix Wi, and
applied to the R-dimensional feature vector x, and biased with a C-
dimensional vector vy,in:
y= Wtrainx * Utrain- (17)
Here C is equal to the number of classes in the data set. The largest
elements of y corresponds to the class that the reservoir predicts the
given input data point x belongs to. To train the weight matrix Wiain,
we either use a pseudo-inverse method to minimize the mean squared
error (MSE) between W;..inx and y, or backpropagation to minimize the
MSE after a softmax function. Both methods are described in more
detail in Supplementary Note 4. In the main manuscript, we present
results for whichever performed the best.

Data availability
All data generated used in this work is available at: https://doi.org/10.
5281/zenodo.10432778.

Code availability
All code used in this work is available at: https://doi.org/10.5281/
zenodo.10432778.
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