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ABSTRACT
Numerous aspects of cellular signaling are regulated by the kinome—the network of
over 500 protein kinases that guides and modulates information transfer throughout
the cell. The key role played by both individual kinases and assemblies of kinases
organized into functional subnetworks leads to kinome dysregulation driving many
diseases, particularly cancer. In the case of pancreatic ductal adenocarcinoma (PDAC),
a variety of kinases and associated signaling pathways have been identified for their key
role in the establishment of disease as well as its progression.However, the identification
of additional relevant therapeutic targets has been slow and is further confounded by
interactions between the tumor and the surrounding tumor microenvironment. In this
work, we attempt to link the state of the human kinome, or kinotype, with cell viability
in treated, patient-derived PDAC tumor and cancer-associated fibroblast cell lines. We
applied classification models to independent kinome perturbation and kinase inhibitor
cell screen data, and found that the inferred kinotype of a cell has a significant and
predictive relationshipwith cell viability.We further find thatmodels are able to identify
a set of kinases whose behavior in response to perturbation drive themajority of viability
responses in these cell lines, including the understudied kinases CSNK2A1/3, CAMKK2,
and PIP4K2C. We next utilized these models to predict the response of new, clinical
kinase inhibitors that were not present in the initial dataset for model devlopment
and conducted a validation screen that confirmed the accuracy of the models. These
results suggest that characterizing the perturbed state of the human protein kinome
provides significant opportunity for better understanding of signaling behavior and
downstream cell phenotypes, as well as providing insight into the broader design of
potential therapeutic strategies for PDAC.
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INTRODUCTION
While improvements in outcome for pancreatic ductal adenocarcinoma (PDAC) have
occurred in the last decade with 5-year survival increasing from 5% to 12%, more
therapeutic options are clearly needed (American Cancer Society, 2023). Major barriers
to developing effective therapies have been the low tumor cellularity in PDAC and the
uniquely hostile, poorly vascularized and highly fibrotic tumor microenvironment. Two
tumor-intrinsic subtypes of PDAC have been identified, classical and basal-like, with the
basal-like subtype being consistently associated with poorer survival and less responsive
to first-line cytotoxic combination therapies including FOLFIRINOX or gemcitabine
plus nab-paclitaxel (Rashid et al., 2020; Aung et al., 2018; Moffitt et al., 2015; O’Kane et
al., 2020). Distinct from tumor subtypes, two molecular subtypes of PDAC stroma
have also been identified: ‘‘activated’’ which is associated with poor outcome as well
as ‘‘normal’’ stroma. We have previously shown that cancer associated fibroblasts (CAFs)
are a contributory cell type within the stroma compartment of PDAC and that CAFs
may significantly alter response to therapy by impeding drug diffusion or disrupting
microenvironment homeostasis (Moffitt et al., 2015; Provenzano et al., 2012; Olive et al.,
2009; Özdemir et al., 2014; Toste et al., 2016). These results point to the need for new
therapeutic approaches that, in addition to providing better activity against the tumor, also
provide enhanced efficacy against the appropriate tumor microenvironment.

Since the introduction of imatinib (Gleevec), kinase inhibitors have emerged as a
focus for targeted therapy development, in part due to the numerous roles played by
kinases in cellular signaling as well as the connection between their dysfunction and
disease (Druker et al., 2001). A number of kinase signaling pathways have been identified as
components of PDAC initiation and progression, including the hallmark RAS/RAF/MAPK,
AKT/PI3K, aswell as aberrant signaling fromvarious growth factor receptors (TGFβ, EGFR,
VEGFR) (Orth et al., 2019; Murthy, Attri & Singh, 2018). Linked with their role in disease,
the druggability of kinases has led to strong growth in the development of kinase inhibitors,
with over 72 achieving FDA approval (Roskosk Jr, 2023).

In parallel with inhibitor development has been the growth of assay techniques capable
of quantively assessing kinase response to these drugs. In particular, recent proteomics
techniques includingmultiplexed inhibitor beads linked withmass spectroscopy (MIB/MS)
and Kinobeads enable the ability to assess the state of the protein kinome enmasse (Duncan
et al., 2012; Collins et al., 2018; Klaeger et al., 2017). This approach utilizes broad-spectrum
type 1 kinase inhibitors covalently linked to Sepharose beads to pull down and enrich
for kinases. In a control or untreated setting, kinases present in the sample are free to
bind Kinobeads. However, in the presence of a kinase inhibitor, competitive binding
between the inhibitor and Kinobead will take place where the strongest interaction wins
and Kinobead-bound kinases are depleted. The bound kinases are then digested with
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Figure 1 Model overview and distribution of drug response data. (A) Visual abstract of the generated
predictive drug response model of PDAC. (B) Distribution of cell viability values for each of the three cell
lines included in this study. (C) Distribution of cell viability across the inhibitors overlapping between the
screening data and the Klaeger et al. (2017) compounds.

Full-size DOI: 10.7717/peerj.17797/fig-1

trypsin, identified using liquid chromatography tandem mass spectrometry (LC-MS/MS),
and quantified using the MS intensity (Fig. 1A). Quantification of the dynamic response
of the perturbed kinome provides a novel platform to profile drug targets and design new
therapies.

As an initial attempt to assess the predictive capability of kinome behavior and potentially
expand the availability of novel therapeutic options in PDAC, here we describe a modeling
effort that links the measured state of the human kinome, or ‘‘kinotype’’, with the
downstream phenotype of cell response in treated PDAC tumor and CAF cell lines. More
specifically, we utilized our internal collection of kinase inhibitor response data measured
at six doses on three patient-derived lines, with one cell line representing a CAF and the
other two representing the primary tumor. Inhibitors from this screen that synergize with
the combination therapy, FOLFOX were published previously Lipner et al. (2020), whereas
the focus of this work is on single-agent kinase inhibitors. These PDAC-specific viability
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response data were then linked with a unique public data set that assessed the broad
proteomic response of the human kinome to kinase inhibitor treatment using Kinobeads
(Klaeger et al., 2017). As a result, we were able to link cell response in the tumor and CAF
cell lines to the inhibition levels of 332 kinases in response to 59 kinase inhibitors applied
at five different doses (Fig. 1A).

We found that prediction of the cellular response to a given inhibitor was achievable
through classification models, with receiver operating characteristic (ROC) scores of
∼0.7 for all cell lines using a random forest approach. We further used these models to
identify specific kinases whose behavior in response to perturbation drove the majority
of response outcomes in these cell lines, pointing to the possibility of identifying tumor-
and CAF-specific target candidates for further investigation. Finally, we experimentally
validated these models by treating cells with previously untested drugs and comparing
responses to model predictions. We found that linking kinome inhibition states with cell
viability provides a more precise representation of drug response since it captures kinome
perturbations versus baseline expression. Since the latter does not always indicate activity,
especially in the case of kinases, these proteomic approaches more closely represent drug
activity allowing for the discovery of better drug targets. Importantly, kinome states are
interpretable and could help determine markers of response or stratify patient cohorts by
those most likely to benefit from therapy based on associated kinome responses. Together,
this systems view of kinome behavior and its linkage with downstream phenotypes suggests
potential opportunities for the identification of novel drug targets and targeted therapy
options for PDAC.

METHODS
Portions of this text were previously published as part of a preprint (https://doi.org/10.1101/
2021.07.21.451515).

Cell lines
Pancreatic cancer cell lines were derived from patient-derived xenografts as described in
methods published previously (Moffitt et al., 2015). Briefly, pancreatic tumor samples from
deidentified patients were obtained under protocols approved by the UNC IRB. Tumors
were subcutaneously implanted into the flanks of 6-8 week old female NSG mice. Mice
were passaged according to protocols approved by the UNC Institutional Animal Care and
Use Committee. At the time of passage, a section of the tumor was cut into approximately
3-mm pieces and rinsed with PBS containing penicillin and streptomycin. The tissue was
minced with a gentleMACS Dissociator (Miltenyi Biotec) and incubated for 30 min in
Collagenase/Dispase (11097113001; Roche) solution or Human Tumor Dissociation kit
(Miltenyi Biotec) for 1 h.

CAF cell lines were derived from pancreatic tumor samples from deidentified patients
obtained under protocols approved by the UNC IRB. Tumors were dissociated using the
protocol described above. Dissociated tissue was resuspended in DMEM/F12 with 10%
FBS.
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CAFs were immortalized for continual culturing by infecting with hTERT (pBABE-
hTERT-puro) within 2-weeks of CAF line establishment. HEK293T cells were transfected
with pCL-10A1 to generate retrovirus using X-tremeGENE 9 DNA transfection reagent
(Sigma). Growth media was replenished after twenty-four hours and viral supernatants
were harvested 48 h post-transfection. In a T25 flask, CAF cells were stably transfected with
4 ml of retrovirus and 4 ug/ml Polybrene (Sigma). Immortilized CAFs were grown out and
selected for using puromycin-containing media.

All cell lines were maintained in DMEMF12 (Gibco) supplemented with 10% FBS. All
cell lines were cultured in an incubator at 37 ◦C with 5% CO2 and were regularly tested
for mycoplasma contamination and cell line identity by short-tandem repeat testing.

PDAC kinase inhibitor screen
P0422-T1, P0411-T1, and P0119-T1 CAF cells were seeded in 384-well flat-bottom plates
(Greiner) at densities of 2000, 1800, and 450 cells/well, respectively. Twenty-four hours after
seeding, the 176 epigenetic and kinase inhibitor library (EpiKin176, published previously
Bevill et al. (2019)) was stamped across six doses: 10 µM, 3 µM, 1 µM, 300 nM, 100 nM,
10 nM using the Biomek FXP Laboratory Automation Liquid Handling Workstation
(Beckman Coulter). DMSO was used as the vehicle control at a concentration of 0.1%
on cells. Four biological replicates were conducted for each cell line. Synergistic effects
of EpiKin176 with the combination therapy FOLFOX were assessed previously Lipner
et al. (2020). Seventy-two hours post-treatment, cells were lysed with CellTiter-Glo
(Promega) per the manufacturer’s protocol. Luminescence was read using the PHERAstar
FS microplate reader (BMG Labtech). Data were normalized to the DMSO-only control to
calculate relative viability.

Validation studies of predicted Klaeger drugs
P0422-T1, P0411-T1, and P0119-T1 CAF cells were seeded at 3500 cells/well in white
flat-bottom 96-well plates (Corning). Twenty-four hours after seeding, cells were treated
with masitinib, ripasudil, AT-13148, RGB-286638, PHA-793887, lestaurtinib, AT-9283,
KW-2449, K-252a, PF-03814735, and XL-228. Each drug was dosed at the same eight
concentrations used in the Klaeger study: 30 µM, 3 µM, 1 µM, 300 nM, 100 nM, 30 nM,
10 nM and 3 nM. Seventy-two hours post-treatment, cells were lysed with CellTiter-Glo
(Promega) per the manufacturer’s protocol. Luminescence was read using the PHERAstar
FS microplate reader (BMG Labtech). Three technical replicates (triplicate wells per plate)
and 2 biological replicates were collected for each cell line and drug pair. Quality checks
were performed to look at the data distribution and the presence of spatial bias on a plate.
One of the replicate runs of PHA-793887 and AT-9283 failed to meet this criteria and were
removed from analyses. Data were normalized to the DMSO-only (0.1% on cells) control
samples on each each plate to calculate relative viability.

General modeling methods
All of the models developed in this study were produced using the R programming
language. The tidymodels modelling framework was used for both the regression and
binary classification models (Kuhn &Wickham, 2020). During model development we
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used a custom cross validation approach, which left one compound out of model training
and used the remaining data for model development. For each model type tested, we also
conducted a hyperparameter search over 100 combinations with latin hypercube sampling
(Iman, Helton & Campbell, 1981) across all the investigated hyperparameters. We used
the ROCR package to collect ROC and precision-recall curve (PRC) values and curves
(Sing et al., 2005). The functions available in the tidyverse package were extensively used
to organize the data sets (Wickham et al., 2019).

Cell viability classification modeling
We tried three types of classificationmodels: support vectormachine (SVM) (Karatzoglou et
al., 2004), random forest (Wright & Ziegler, 2017), and XGBoost (Chen & Guestrin, 2016).
We sampled over the same set of hyperparameters for the random forest and XGBoost
models as in the regression models. For the SVM model, we sampled over the following
hyperparameters and ranges:

• Cost of predicting prediction error: [−10 to 5] with log2 transformation
• Polynomial degree: [1–3]
• Kernal scaling factor: [−10 to −1] with log10 transformation

Software and data availability
We have made all scripts and processing code for this project available through github
under the BSD license: https://github.com/gomezlab/PDACperturbations and Zenodo:
https://doi.org/10.5281/zenodo.11623371. This repository also contains the experimental
data used to build our models.

RESULTS
Data organization and distribution of viability values
In order to build a collection of models tailored to predicting cell response in our PDAC
cell lines, we first needed to organize and combine the data sets. This was divided into
two arms, the first dedicated to collecting and organizing the data from our internal drug
screen and the second to organizing the kinase inhibition data provided by Klaeger et al.
(2017).

As the cell viability screen used a larger set of compounds than the Klaeger et al.
(2017) collection for testing, the screening data was filtered to only include overlapping
compounds. The Klaeger et al. (2017) collection was processed in turn, starting with the
kinase inhibition table available in the Supplemental Materials (Table S1, Kinobeads
subsheet). This spreadsheet is organized to show the kinases and a few non-kinase genes
whose inhibition states are affected by each of the kinase inhibitors tested by Klaeger et al.
(2017). As such, a wide range of kinase targets are included across the range of compounds
tested. For the purposes of organizing the data to enable downstream machine learning
applications, we assumed that all kinases not listed with a given compound were unaffected
by this compound. The baseline value for an unaffected kinase is a ratio of one, so all missing
compound/kinase combinations (95% of combinations) were filled in with one. We also
found a small set of compound/kinase combinations where a single concentration was
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missing, so we filled these values in with the average value of the two closest concentrations
included in the assay. Finally, we also found a few values with unexpectedly high ratio values
(up to around 25), so we truncated all values in the collection to the 99.99% percentile
(ratio value of 3.43).

With our two critical data sets collected and organized, we combined these data sets
by matching the inhibitors and the corresponding concentrations. The screening data was
collected at six inhibitor concentrations (1e−8, 1e−7, 3e−7, 1e−6, 3e−6 and 3e−5 all
in M) and all of these concentrations were matched in the Klaeger data except for 1e−5
M, which we removed from the combined data. After this filtering and matching process,
we had data matches across 59 compounds. Since the full Klaeger compound set consists
of 229 compounds having effects on 520 kinases, we also determined how many of these
kinases were affected by our screening compound matches. This step indicated that 188
of the kinases showed zero variance in our screening compound set, so we removed these
kinases from our modeling efforts. This left 332 kinases with some amount of variance in
the screening compound matched data set.

The overall distribution of cell viabilities across each cell line was similar, with the
majority of the compounds having little effect on cell viability (Fig. 1B). This was mirrored
in the distribution of cell viabilities across the compounds, with most of the compounds
having a mean viability of above 90% (Fig. 1C). However, several of the compounds
do demonstrate greater variation in the viability affects, with alvocidib, CUDC-101, and
AT-7519 showing the greatest variability in viability across all concentrations. The drug
screen data, now matched with corresponding kinase inhibition states as measured in the
Klaeger data, allowed us to build a set of models to predict the cell viability using the kinase
inhibition state results. We next explored using classification models to link changes in the
human kinome state, as induced through kinase inhibitor treatment, with downstream cell
viability as described below.

Cell viability binary classification
We built a set of classification models centered around predicting cell viability from
the kinase inhibition values. To convert the cell viability prediction problem into a
binary prediction problem, we thresholded the viability values at 90% cell viability. This
thresholding divided the cell the viability values into two classes with 45.5% of the CAF
line data below 90% viability, 35.7% under the cutoff in the P0422-T1 line and 40.2%
under the cutoff in the P0411-T1 line. We selected three model types, random forests,
SVM, and XGBoost for testing. To find the optimal model for each cell line and model
type, we used a cross validation approach combined with hyperparameter scanning. The
cross validation approach we used was based around leaving the data pertaining to a single
compound out of the training data and then building a model with the data from the
remaining compounds. The primary reason we used this cross validation approach was to
support our goal of building a model capable of predicting the cell viability for compounds
which were not included in the model’s training data.

Given that each of these models have a set of hyperparameters that could effect the
results of the cross validation testing, we also conducted a hyperparameter search over 100
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Figure 2 Classification models show promise in predicting drug response in PDAC tumor and CAF
cell lines. (A) ROC curves for each of the best performing hyperparameter sets for each model type with
the inset text indicating the area under the curve for each model type. (B) Precision–recall curves for
each model type with the inset text indicating the area under the curve. The cell line used to develop each
model set is indicated by the gray titles above each plot. Dashed lines represent performance for random
guessing.

Full-size DOI: 10.7717/peerj.17797/fig-2

different hyperparameter combinations for each of the three model types tested. From this
collection of cross-validation predictions covering a range of possible hyperparameter sets
and model types, we selected the best model, hyperparameter set and cell line on the basis
of the ROC score (Fig. 2A). Of note, we also developed regression models using generalized
linear model (GLMnet), random forest, and XGBoost to predict cell viability of the treated
cell lines, however, none of the regression model types were able to accurately predict the
cell viability of a left out compound (RMSE ranged from 13.9 to 19.1) (Fig. S1).

As seen in Fig. 2, each modeling method performed similarly in terms of ROC and
precision–recall with the random forest model performing the best across all models.
The best single model was the P0119-T1 CAF random forest achieving an ROC score of
0.711 compared to ∼0.71 and ∼0.67 for P0411-T1 and P0422-T1, respectively. A similar
pattern in performance was also observed in the precision–recall curves. This consistency
of performance gave us confidence that the random forest method was most likely to
yield accurate predictions when used to make predictions on compounds where we had
no corresponding cell viability results. Thus, we opted to use random forest and the
corresponding sets of optimal hyperparameters for each cell line to predict binarized cell
viability probabilities for the inhibitors examined in the Klaeger set, but which had not yet
been tested in our cell lines.
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Known kinase targets of PDAC are recapitulated
With the random forest method and associated hyperparameters selected, we next built
models for each of the cell lines using the full set of compound and concentration matched
data. To examine kinases within these models whose behavior were considered the most
important for the resulting random forest models, we gathered variable importance data
(Greenwell & Boehmke, 2020) for each cell line (Figs. 3A–3C). Note that as referenced
earlier, non-kinases can be captured via Kinobeads and therefore, may also be identified
as important in the models; e.g., EPHB6 (EPH receptor B6), EIF3J (eukaroytic translation
initiation factor 3 subnunit J), and AZI2(NF- κB activating kinase-associated protein 1).
These plots revealed that the top 30 proteins considered important for eachmodel was not a
constant list, with only nine kinases in common across all feature lists (Fig. 3D), suggesting
there are different kinase vulnerabilities for each of the cell models. Among the shared
kinase features of all three cell lines are known PDAC targets including MAPK(MAP2K1/2,
MAP4K5) and AURKB (Figs. 3A, 3B and 3C). Interestingly, EGFR, also a well studied
target in PDAC, is a top feature for both the tumor lines but not the CAF line (Figs. 3A
and 3B).

MAPK
The MAPK pathway regulates proliferation, differentiation, and gene expression. MAPK
is downstream of KRAS- a constitutively activated protein mutated in over 90% of
PDAC cases (Waters & Der, 2018). When MAPK signaling is deregulated or overactive,
the tumor continues growing without restraint. For these reasons, MAPK is a well-
known target in PDAC and other cancers. Several kinase inhibitors have been tested
in clinical trials for PDAC that directly target MAPK (NCT04892017, NCT05907304,
NCT05585320, NCT05630989, NCT04005690, NCT01155453), upstream regulators
of MAPK (NCT01077986, NCT04985604) or downstream effectors (NCT04566393,
NCT02608229, NCT04386057, NCT05039177). These trials do not include pan-RAS or
RAS mutant inhibitors such as the KRAS G12C inhibitors sotorasib or adagrasib which
recently achieved FDA approval for non-small cell lung cancer. Taken together, these data
provide support in the validity of the model by identifying kinase features that are specific
to PDAC.

AURK
Aurora kinase (AURK) A/B are serine-threonine kinases involved in angiogenesis,
epithelial-mesenchymal transition, metastasis, and cell cycle progression by regulating
mitotic entry (Wan et al., 2008; Hong et al., 2022; Liu et al., 2016; Nigg, 2001). Overexpres-
sion and deregulation of AURKA/B is prevalent in many cancers and in some cases is
associated with disease outcome. In PDAC, high AURKA expression (greater than median
AURKA expression), is predictive of significantly lower survival in The Cancer Genome
Atlas (TCGA) Research Network: https://www.cancer.gov/tcga. Due to its involvement in
uncontrolled proliferation and negative correlation with survival, AURKA has emerged as
a promising target with inhibitors advancing through clinical trials. Combining alisertib
(AURKA inhibitor) with chemotherapy is rationalized to have increased efficacy due
to more specific inhibition of mitosis which could decrease off-target toxicities seen in
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Figure 3 Variable importance results for optimal random forest models. A set of barplots showing the
30 protein targets with the highest ranked importance for each optimized random forest model and asso-
ciated importance measure in the P0411-T1 (A), P0422-T1 (B) and P0119-T1 CAF (C) models. (D) Upset
plot indicating the overlaps in the top 30 proteins in the three models.

Full-size DOI: 10.7717/peerj.17797/fig-3

chemotherapies. In clinical trials for PDAC and other solid malignancies, alisertib has been
tested with first-line therapies, gemcitabine or nab-paclitaxel in which several patients
achieved stable disease status by RECIST criteria including one PDAC patient having a
partial response (NCT01924260, NCT01677559). Alisertib is expected to be investigated
further in future clinical phase studies.

EGFR
Epidermal growth factor receptor (EGFR) is a transmembrane growth factor receptor in
the tyrosine kinase family. External ligand binding activates EGFR which leads to receptor
dimerization and initiation of several signaling cascades including as RAS/RAF/MAPK and
AKT/PI3K that ultimately stimulate growth. EGFR ranked in the top five kinases for the
PDAC lines but was absent in the CAF model, making it a potential tumor-specific target.
Overexpression of EGFR is found in upwards of 90% of PDAC tumors and is associated
with more advanced disease (Ueda et al., 2004; Tobita et al., 2003). The EGFR inhibitor,
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erlotinib, remains the only approved targeted therapy for PDAC. Together, these results
suggest that the models are identifying known, clinically-relevant kinases in PDAC that
warrant further exploration as drug targets.

Novel, understudied targets of PDAC are identified
Besides finding well-known PDAC targets, several poorly understood kinases were
identified and highly ranked in the feature selection process. Such understudied kinases
have been identified by the US National Institutes of Health as high-potential therapeutic
targets as part of their Illuminating the Druggable Genome Project (IDG) (Oprea et al.,
2018; Gomez et al., 2024). Specifically, CSNK2A1/3 was identified as highly ranking in the
P0422-T1 tumor line (Fig. 3B) and the kinases CAMKK2 and PIP4K2C were identified in
the P0119-T1 CAF line (Fig. 3C).

CSNK2A1/3
CSNK2A1/3 (Casein Kinase 2 Alpha 1/3) are involved in WNT, Hedgehog (Jiang, 2017;
Purzner et al., 2018), and NFKB signaling as well as cell cycle progression and apoptosis
(Trembley et al., 2009). Multiple studies in pancreatic cancer cells have shown that targeting
CSNK2, either by pharmacological inhibition or gene silencing, leads to increased apoptosis
and decreasedNFKB transcription activity (Kreutzer, Ruzzene & Guerra, 2010;Giroux et al.,
2009). Furthermore, silencing either CSNK2A1 or CSNK2A2 in PDAC cells sensitized cells
to gemcitabine, one of the first line therapies for PDAC (Kreutzer, Ruzzene & Guerra, 2010).
This growth inhibitory phenotype translated to the in vivo setting where PDAC xenograft
models with CSNK2A1 silenced by siRNA had decreased tumor volume compared to
siRN control mice. The tumor volume was further decreased when co-silenced with the
WNT activator, PAK7, or MAP3K7. Of note, silencing CSNK2A1 significantly increased
apoptosis in MiaPaCa2 cells but not in the other 11 non-pancreatic human tumor cell
lines (Giroux et al., 2009). This shows a potential tumor selective vulnerability that can be
exploited in PDAC or a subset of PDAC patients since CSNK2A1/3 and CSNK2B were
top features in only one of the tumor cell models, P0422-T1 (Fig. 3B). Furthermore, the
diversity of kinases identified as important within the models shows that the relationship
of a given kinase with cell viability varies even in closely related cell lines.

CAMKK2
Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine
intracellular receptor kinase. CAMKK2 activity is stimulated by Ca2+ which leads to
phosphorylation of CAMKeffectors (CAMK1/2) aswell as AMPK (AMP-activated protein).
Together with its effectors, CAMKK2 regulates processes related to the cytoskeleton,
inflammation, and glucose homeostasis (Mukherjee et al., 2023). Interestingly, CAMKK2
is a top feature found only in the P0119-T1 CAF and not the tumor models (Fig. 3C).
Recently, CAMKK2 signalingwas identified as a driver of CAFmacropinocytosis in response
to depleted glutamine and cytosolic Ca2+ in PDAC. Proteins macropinocytosed by CAFs
were not only preserved intracellularly to sustain CAF growth but were extracellularly
secreted which directly promoted tumor cell proliferation (Zhang et al., 2021). Therefore,
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CAMKK2 represents a CAF-specific kinase vulnerability which may have therapeutic
relevance in inhibiting tumor-CAF crosstalk.

PIP4K2C
Phosphatidylinositol-5-phosphate 4-kinase type 2 gamma (PIP4K2C) is an understudied,
lipid kinase with its function remaining relatively unknown compared to the PIP4K2A
and PIP4K2B isoforms. PIP4K2A and PIP4K2B serve as second messengers to signaling
pathways and are typically found in the cytosol and nucleus, respectively (Clarke, Wang
& Irvine, 2010; Ciruela et al., 2000). While PIP4K2C localization is still unclear, there has
been a report of PIP4K2C being in the cis-Golgi, suggesting PIP4K2C may be involved
in cellular trafficking (Clarke, Emson & Irvine, 2008). Since the PIP4K2 isoforms have
different cellular localizations, it is likely they regulate distinct cellular processes.

Other reports suggest PIP4K2C may play a role in immune function as it is a substrate
of mTOR1 (Mackey et al., 2014). Knocking out PIP4K2C (Pip4k2c−/−) in mice elicited a
reactive immune environment with higher proportions of helper T cells and less regulatory
T cells (Shim et al., 2016). Thus, inhibiting PIP4K2C may be a strategy to mount an
immune response. As a top feature specific to the P0119-T1 CAF model (Fig. 3C), perhaps
PIP4K2C is a regulator of the tumor microenvironment due to its involvement with the
immune system and cellular trafficking. However, more research is needed to characterize
the function and regulation of PIP4K2C before it is deemed a putative target.

Taken together, these results suggest that the developed models can identify cell-specific
and potentially novel, understudied drug targets to investigate in the context of PDAC.
Furthermore, the diversity of highly-ranked kinases identified in feature selection within
the models suggests that the relationship of a given kinase with cell viability varies greatly
even in closely related cell lines.

Using random forest models to predict drug effects on cell viability
With the models built for predicting the cell viability with each of our cell lines, we then
used these models to predict cell viability for the clinical kinase inhibitors in the Klaeger
et al. (2017) collection which were were previously unseen and therefore not used to build
the original models. There were 165 inhibitors at eight concentrations in this set (1320
total combinations). Each cell-line specific model was used to predict the likelihood that
a given compound and concentration combination would cause cell viability to go below
90% (Fig. 4A). Overall, the P0119-T1 CAF probability predictions of decreasing viability
below 90% for the untested inhibitors were the highest with an average value of 0.448,
followed by the P0411-T1 line at 0.409, and the P0422-T1 line at 0.371.

From this collection of predictions, we extracted four categories thatwe thoughtwould be
especially relevant for future validation and testing efforts (Figs. 4B–4E). These categories of
compound predictions are: no predicted drug effect (lowest average probability of viability
being below 90%, Fig. 4B), drug effect (high probability of viability being below 90%,
Fig. 4C), differential drug response (highest range of probabilities across concentrations,
Fig. 4D), and differential cell line response (largest probability differences across cell lines,
Fig. 4E). The predictions across cell lines were similar within the predicted (no drug effect
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Figure 4 Random forest model predictions for clinical kinase inhibitors. (A) Histograms showing the
distributions of the probability of each compound and concentration combination having a below 90%
cell viability effect. The distributions are split by cell line with the cell line name above each plot. (B–E)
Plots showing the top three compound probabilities of a below 90% cell viability effect optimized for (B)
predicted no drug effect (lowest average probabilities), (C) predicted drug effect (highest average proba-
bilities), (D) differential drug response across concentrations(highest range of probabilities) and (E) dif-
ferential cell line response (largest probability differences between cell lines). In parts B–E, plots are la-
beled by each predicted compound and colored by cell line shown in the legend below this collection of
plots.

Full-size DOI: 10.7717/peerj.17797/fig-4

Fig. 4B) and predicted drug effect groups (Fig. 4C), whereas there was a larger range of
cell line probabilities in the differential drug response across concentrations (Fig. 4D) and
cell lines (Fig. 4E), indicating that there are differences in both drug activity and cell line
response. These categories of compounds show that the remainder of the Klaeger et al.
(2017) compound set is predicted to have varying cell viability effects.

Most notably, several of the compounds identified as having differences across
concentrations (Fig. 4D) show large differences in the predicted effects at the mid-
dose range with increasing likelihood of viability effects as the compound concentration
increases. This predicted effect, that mirrors a standard dose response curve, is due entirely
to modifications in the kinase inhibition states as none of the models use compound
concentration as an input value. These predictions highlight how modeling methods can

Berginski et al. (2024), PeerJ, DOI 10.7717/peerj.17797 13/22

https://peerj.com
https://doi.org/10.7717/peerj.17797/fig-4
http://dx.doi.org/10.7717/peerj.17797


be utilized in drug development to filter out negative inhibitors or identify inhibitors with
preferential activity against tumor versus CAFs, for example, depending on the project
aims. With the model predictions collected, we selected the top two to three inhibitors
within each of the predicted groups in Figs. 4B–4E for follow up drug response studies to
test our predictions.

Validating a subset of model predictions
To validate the prediction models, we selected 11 previously untested compounds within
our prediction groups Figs. 4B–4E and performed a small scale cell viability screen with the
tumor and CAF cell lines. We conducted the validation screen at all eight of the Klaeger
compound concentrations (n = 3 technical replicates, n = 2 biological replicates) yielding
264 cell line, compound, and concentration combinations (Fig. 5).We assessed these results
using several different methods. First, we compared the cell viability values collected in
the validation assay to the probabilities produced by each of the models and found a clear
trend, with the viability values decreasing as the model probabilities increased (Fig. 5A).
Since the models are all predicting the probability that a given experiment will produce
cell viabilities below 90%, the curve trend was in the expected downward-right direction.
We also thresholded the cell viability values at 90% cell viability (as done with the training
data) and produced ROC and PRC curves for the validation results (Fig. 5B). The ROC and
PRC curves each demonstrate that the overall predictions for the validation compounds
are performing as expected compared to the the cross validation results (Fig. 5B). These
global methods for quantifying model performance confirmed that the majority of the
predictions made by the models were accurately observed in the followup validation screen.

We also subdivided the validation results by the tested compounds and produced
individual compound ROC and PRC curve results (Fig. 5C). Again, models were quite
accurate for eight out of 11 inhibitors tested. The models performing the worst were those
predicted to have little effect on cell growth (masitinib, ripasudil and AT-13148). In the
case of the compounds predicted to have a small effect, the largest effect on cell growth was
observed at the highest tested compound concentration (30 µM), which may be causing off
target effects. Because off target effects may not be fully captured in the mass spectroscopy
based assay technique used by Klaeger et al. (2017) the models would be expected to be
unable to correctly predict the decrease in cell viability in these cases. With this caveat
concerning interpreting the predictions at the highest concentrations in mind, we conclude
that the models were largely successful at predicting the cell viability effects of a novel
collection of kinase inhibitors.

DISCUSSION
In this study, we developed a collection of models that predict cell viability from kinase
inhibition states and used them to predict the effect of inhibitor treatment on PDAC
tumor and CAF cell line models. The kinase inhibition data was collected through a
mass spectroscopy-based method which provided an unprecedented view of how kinase
inhibitors effect the entire human kinome (Klaeger et al., 2017). This data has a wide range
of potential uses and through this study we have connected this data to the results of a drug

Berginski et al. (2024), PeerJ, DOI 10.7717/peerj.17797 14/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.17797


Figure 5 Validation results for previously untested kinase inhibitors. (A) Comparison between the
measured cell viability values and the predicted probability of that experiment yielding a cell viability value
below 90%. The blue line shows a loess fit through the data. (B) ROC and PRC curves for the validation
data set thresholded at 90% viability. (C) ROC and PRC curves for each of the validation compounds
tested (n= 3 technical replicates, n= 2 biological replicates). Dashed lines represent performance for ran-
dom guessing.

Full-size DOI: 10.7717/peerj.17797/fig-5

screening assay in PDAC cell lines. This drug screening effort overlapped with only a subset
of the compounds and concentrations in the Klaeger et al. (2017) data set, but this amount
of overlap was sufficient to build a collection of models which were capable of predicting
the cell viability effects of kinase inhibitors. By examining the importance of each of the
kinase inhibition states as determined by the models, we also found that a diverse set of
well-studied and understudied kinase inhibition states were important for the modeling
predictions. Of note, the dose of any compound is not used directly in the model. Rather,
the generated models only use the kinase inhibition state data to perform inferences,
with dose being indirectly encoded through the drug’s effect on kinase inhibition states
at the specified dose. Using these predictions, we selected 11 additional compounds for
validation screening and found that the model predictions were confirmed, with only a few
exceptions. Overall, the linkage of kinome states and cell response enables the discovery
of new kinase targets and provides broader insight into the cellular differences in kinase
features or vulnerabilities which have applications in precision medicine. We have made
all of the source code and data associated with this work publicly available through GitHub
(https://github.com/gomezlab/PDACperturbations).
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While this work focuses on a small number of cell lines, the methods developed here are
independent of the cell lines studied. Further work could expand the cancer types covered
by gathering preliminary data using a small set of kinase inhibitors to bootstrap a set of
models corresponding to any cancer type of interest. Expansion to different types of cancer
would also help to clarify the role of specific kinases or collections of kinases in cell viability.

This study was also limited to assessing the role of kinase inhibitors in cell viability, but
cell viability is only one of a number of possible outcome measures that could be analyzed.
Any high throughput assay that can be conducted in the presence of kinase inhibitors, such
as measurement of metabolite concentrations or cellular imaging assays, could be adapted
to use the framework described here to attempt to generate predictive models.

Finally, since the only input to the models developed in this study is kinase inhibition
state, it should be possible to computationally combine the inhibition state vectors and
then make inferences about the likely cell viability results of these novel compound
combinations. This would in effect be a virtual synergy screen, which could cover a much
broader range of compound combinations than would be experimentally feasible. In
addition, such an approach could enable the prediction of drug combinations that would
preferentially effect the tumor and tumor-promoting microenvironment.

These results suggest that there is significant information encoded in the protein kinome
and point to the potential to further improve predictive capabilities through the inclusion
of gene expression and related data. Furthermore, this systems view of the kinome and
its integration into predictive models presents opportunities for the identification of new
drug targets and the design of therapies in PDAC as well as other cancers.
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