
Single-cell genomics and regulatory networks for 388 human 
brains

A full list of authors and affiliations appears at the end of the article.

Abstract

Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet, 

little is understood about how genetic variants influence cell-level gene expression. Addressing 

this, we uniformly processed single-nuclei, multi-omics datasets into a resource comprising 

>2.8M nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed 

population-level variation in expression and chromatin across gene families and drug targets. 

We identified >550K cell-type-specific regulatory elements and >1.4M single-cell expression-

quantitative-trait loci, which we used to build cell-type regulatory and cell-to-cell communication 

networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We 

further constructed an integrative model accurately imputing single-cell expression and simulating 

perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell 

types.

Introduction

Genetic variants linked to neuropsychiatric disorders affect brain functions on multiple 

levels, from gene expression in individual cells to complex brain circuits between cells 

(1–3). At every level, they manifest themselves differently depending on the cell type in 

question. Previously, groups such as GTEx (Genotype-Tissue Expression), PsychENCODE, 

and ROSMAP (Religious Orders Study/Memory and Aging Project) assembled cohorts 

large enough to link variants to their effects on gene expression in bulk tissue, generating 

comprehensive eQTL (expression quantitative trait locus) catalogs for the brain (4–6). While 
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useful, these tissue-level results do not reflect the specific cell types involved; moreover, 

they do not provide strong evidence that eQTLs act in cell-type-specific fashion (7–10).

Recently, dramatic technological advances have allowed the measurement of gene 

expression and chromatin accessibility at the single-cell level (11–13). The resulting datasets 

have shown that the brain has a particularly large number of distinct cell types; cell-type 

complexity, in fact, is one of the brain’s distinguishing features (12). Many brain cell types 

have been rigorously defined, particularly by the Brain Initiative Cell Census Network 

(BICCN) (12, 14, 15). Using these, we can potentially refine our understanding of how 

variants and gene regulation affect brain phenotypes, including neuropsychiatric disorders 

(16). However, up to now we have not had sufficiently large cohorts, with a wide enough 

range of brain phenotypes, to make statistically meaningful associations between variants, 

regulatory elements, and expression and to develop comprehensive models of brain gene 

regulation at the single-cell level.

To address this gap, the PsychENCODE consortium generated single-cell sequencing 

data from adult brains with multiple neuropsychiatric disorders in the human prefrontal 

cortex, using single-nucleus (sn) assays such as snRNA-seq, snATAC-seq, and snMultiome. 

Leveraging these data and integrating them with other published studies (12, 17–19), we 

created a uniformly processed single-cell resource at the population level. This resource, 

which we call brainSCOPE (brain Single-Cell Omics for PsychENCODE), comprises >2.8 

M nuclei from 388 individual brains, including 333 newly generated samples and 55 from 

external sources (figs. S1–S2). It enables us to assess 28 distinct brain cell types that can 

be registered against previously identified canonical cell types (12, 19). Using the resource, 

we identified an average of ~85K cis-eQTLs per cell type and ~550K cell-type-specific 

cis-regulatory elements, which were enriched for variants associated with brain-related 

disorders. Using our regulatory elements and eQTLs, we inferred cell-type-specific gene 

regulatory networks (which show great changes across cell types) as well as cell-to-cell 

communication networks. Moreover, we precisely quantified expression variation in the 

population, finding, for instance, that common neuro-related drug targets like CNR1 
demonstrate a high degree of cell-type variability and low inter-individual variability and 

that the transcriptomes of specific neurons are highly predictive of an individual’s age. 

Finally, we developed an integrative model to impute cell-type-specific functional genomic 

information for individuals from genotype data alone. Using this model, we prioritized 

many known and some additional disease genes, now with information about their specific 

cell type of action. We further associated this prioritization with potential drug targets and 

simulated the effects of perturbing the expression of particular genes.

All sequencing data, derived analysis files, and computer codes are available from the 

brainSCOPE resource portal (brainscope.psychencode.org, figs. S3–S5; (20)); these include 

gene expression matrices from snRNA-seq data, regulatory regions from snATAC-seq 

data, variability metrics for all genes, single-cell QTL callsets, regulatory and cell-to-cell 

communication networks, and the integrative model and its prioritization outputs.
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Constructing a single-cell genomic resource for 388 individuals

We compiled and analyzed population-scale single-cell multiomics data from the human 

prefrontal cortex (PFC) for a cohort consisting of 388 adults. The individuals in our cohort 

are diverse in terms of biological sex, ancestry, and age, and include 182 healthy controls 

as well as individuals with schizophrenia, bipolar disorder, autism spectrum disorder (ASD), 

and Alzheimer’s disease (AD) (Fig. 1A; fig. S1; data S1–S2; table S1; (20)). We used 

various filters on the total cohort of 388 for different downstream analyses (fig. S2; data 

S3). In total, to build the resource, we uniformly processed 447 snRNA-seq, snATAC-seq, 

and snMultiome datasets from within PsychENCODE and external studies with >2.8M total 

nuclei (after QC and filtering from a raw number of nearly 4M; figs. S6, S7; table S2; 

(20)). Our processing required harmonizing datasets derived from different technologies and 

modalities; for instance, we generated uniform genotypes, including SVs, from combining 

whole-genome sequencing (WGS), SNP array, and snRNA-seq data (figs. S1, S8; (20)). We 

also generated custom datasets to bridge studies, in particular, snMultiome sequencing of 

controls (20).

We developed a cell-type annotation scheme that harmonizes the BICCN reference atlas 

(12) and published analyses specifically focusing on the PFC (labeled “Ma-Sestan” here 

(19); Fig. 1B; figs. S9–S11; (20)). In particular, we leveraged the deep sampling of neurons 

from BICCN and of non-neuronal cells from Ma-Sestan. This resulted in a set of 28 cell 

subclasses, which we will hereafter refer to as “cell types,” most of which are robustly 

represented across all cohorts (tables S3–S4). For select downstream analyses that require 

increased power, we grouped excitatory and inhibitory neuron types into larger “excitatory” 

and “inhibitory” classes to yield seven major cell groupings. Overall, we assessed a total of 

2,557,291 high-quality annotated nuclei from the snRNA-seq data (table S2). We validated 

our annotation scheme by assessing the expression of key marker genes (Fig. 1C).

Using these datasets, we first calculated cell-type fractions in each sample (figs. S12–S14; 

data S4; (20)). Fractions based on raw cell counts in snRNA-seq show great consistency 

with those inferred from bulk RNA-seq using deconvolution (fig. S12; data S5–S6). We 

further found that some cell types demonstrate cell-fraction differences in neuropsychiatric 

traits (fig. S13). For example, as previously suggested, the Sst cell fraction is different 

in individuals with bipolar compared to controls (21, 22) (FDR<0.05, two-sided Welch’s 

t-test). To more broadly quantify differences relevant to population-wide traits, we computed 

lists of cell-type-specific differentially expressed (DE) genes for each disorder based on 

established approaches (23) (figs. S15–S18; data S7; (20)). Fig. 1D shows a representative 

plot for DE genes in schizophrenia, highlighting many previously known risk genes in 

a cell-type-specific context (24, 25). We also found that individuals with schizophrenia 

differ from controls with respect to the number of aging DE genes, which may reflect the 

increased expression variability in schizophrenia patients (Fig. 1E; fig. S19).

Our snRNA-seq data also recapitulates the spatial relationships among cell types in the 

PFC. Fig. 1F shows a cell-trajectory analysis (26, 27) across four subclasses of excitatory 

neurons in controls. We found smoothed patterns of gene-expression variation along the 

cortical-depth axis (specifically for L2/3, L4, L5, and L6 IT; figs. S20–S22; (20)). These 

findings expand on previous MERFISH-based results for 258 genes in the mouse motor 
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cortex, now showing that cortical depth is related to gene expression variation for thousands 

of genes (28, 29). Overall, we found 76 genes with significant variation (FDR<0.05, Wald 

test) across cortical layers, including several genes involved in neural development such as 

SEMA6A, RUNX2, SOX6, and PROX1 (figs. S20–S22; list in table S5; data S8).

Determining regulatory elements for cell types from snATAC-seq

In addition to snRNA-seq data, our resource contains 59 samples with snATAC-seq data, 

including 40 snMultiome datasets. After strict quality control, we extracted 273,502 deeply 

sequenced nuclei, allowing us to learn cell embeddings simultaneously from transcriptomic 

and epigenetic information (table S1; (20)). As a result, we recovered 28 distinct PFC cell 

types consistent with the snRNA-seq annotation and validated these with the chromatin 

accessibility of marker genes (Figs. 2A–2B; figs. S23–S24). Further, uniform snATAC-

seq processing identifies a total of 562,098 open-chromatin regions across all datasets, 

representing a much larger number of regions than those identified in previous brain 

studies (Fig. 2C; (20)) (2, 30). Following the ENCODE (Encyclopedia of DNA Elements) 

convention (31), we call these scCREs (single-cell candidate cis-Regulatory Elements). 

About half of these are cell-type-specific and located distal to genes (fig. S25). We validated 

the functionality of select scCREs using targeted STARR-seq (Fig. 2D; (20, 32)).

Using bulk data, we also developed a reference set of >400K open-chromatin regions, 

representing brain-tissue candidate cis-Regulatory Elements (b-cCREs; (20)). The b-cCREs 

were generated in a comparable fashion to ENCODE cCREs, which are not tissue-specific 

(31). As expected, they show strong overlap with scCREs (Fig. 2C).

To identify how our cell-type-specific regulatory elements relate to genetic associations, we 

performed a LDSC (linkage-disequilibrium score regression) analysis (20, 33). In general, 

we found stronger LDSC enrichment for brain phenotypes in b-cCREs compared to cCREs 

(Fig. 2E; fig. S26; data S9–S10; table S6). Furthermore, we found additional enrichment 

when comparing cell-type-specific scCREs in excitatory neurons to b-cCREs, highlighting 

how snATAC-seq allows for better linkage between regulatory regions and brain phenotypes 

(Fig. 2E) (34–37).

Next, we explored transcription factor (TF) usage across major brain cell types (fig. S27; 

(20)). Fig. 2F shows that major brain cell types clearly use distinct TFs. For instance, 

CUX1, NEUROG1, and PAX3 are mostly active in excitatory neurons, whereas SPL1 and 

SPI1 are specific to microglia. We further observed differences between proximal and distal 

regulation, for example, in ELF1 (Fig. 2G; data S11). We were able to validate many TF 

activities with footprinting (38) (Fig. 2H; fig. S27).

Measuring transcriptome and epigenome variation across the cohort at the single-cell 
level

Single-cell data across a large cohort offers a unique opportunity to study the sources of 

expression variation in the brain (Fig. 3A; figs. S28–S30; (20)) (39). We partitioned the 

variation in expression of each gene based on the relative contribution of individual and cell-

type variability while correcting for covariates (data S12–S13). This allowed us to determine 

relative contributions to variability based on the function of each gene. For example, brain-
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specific genes, such as those associated with central nervous system (CNS) morphogenesis 

and neurotransmitter reuptake, demonstrate a high degree of cell-type variability and a lower 

inter-individual variation (Figs. 3B–3C; fig. S31; data S14). Conversely, genes associated 

with common molecular or cellular processes, tend to have lower cell-type variation and 

higher individual variation (for instance, carbohydrate homeostasis and ATP generation; Fig. 

3B). Furthermore, within families of CNS-specific genes, some neurotransmitter families 

manifest higher inter-individual variation compared to others (for example, glutamate vs 

serotonin, p-value=3.7×10−6, one-sided t-test; Fig. 3C; fig. S31). We also identified a few 

outliers with very large inter-individual variation such as ARL17B, likely resulting from 

copy-number variation (40, 41).

An additional application of quantifying expression variability is characterizing drug-target 

genes. In particular, we selected 280 common CNS-related drug-target genes and showed 

that, overall, they have high cell-type variability and low individual-level variability (Fig. 

3C; fig. S32A) (42). That said, some of the 280 exhibit much higher inter-individual 

variation than others; HSPA5 and CNR1 provide a good illustration (Figs. 3C–3E; fig. 

S32B). Also, two adrenergic receptor family genes, ADRA1A and ADRA1B, demonstrate 

high cell-type variation but distinctly different cell-type expression patterns (fig. S32C).

Next, we found that genes with lower expression variability have higher sequence 

conservation (Fig. 3F; figs. S33–S34; (20)). However, some genes not following this 

trend serve as interesting exceptions (that is, highly conserved genes with high expression 

variance). The gene deviating most from the trend is IL1RAPL1 (Fig. 3F; fig. S34B), an 

interleukin-1 receptor-family gene inhibiting neurotransmitter release (43); IL1RAPL1 is 

highly expressed in the brain and has been implicated in intellectual disability and ASD 

(44).

We also leveraged our snATAC-seq profiles to deconvolve population-scale chromatin 

data (fig. S33; (20)). Similar to the transcriptome, open chromatin regions with higher 

sequence conservation have less variability in their chromatin openness (Fig. 3G; fig. S35). 

Furthermore, an increase in variability is concurrently observed with an increase in cell-type 

specificity. These patterns held when we jointly considered a gene and its linked upstream 

regulatory region; that is, a more variably expressed gene is associated with a more variable 

upstream chromatin region, and both of these are less conserved at the sequence level. 

(fig. S34A; (20)). Finally, we found that microglia scCREs exhibit the least sequence 

conservation, consistent with previous studies (Fig. 3H) (19, 45, 46).

Determining cell-type-specific eQTLs from single-cell data

To evaluate cell-type expression variation in more detail, we used our processed snRNA-seq 

data to identify single-cell cis-eQTLs (hereafter referred to as “scQTLs”). We followed the 

same general procedure used by GTEx (5), including conservative filtering at the cell-type 

level when generating pseudobulk data (20). We used this set of scQTLs as our “core 

callset,” with the objective of facilitating consistent comparisons with those from existing 

datasets (such as GTEx and PsychENCODE bulk data) (data S15). Note the sparsity intrinsic 

to snRNA-seq data reduces power, particularly for rarer cell types (fig. S36; table S7; (20)) 

(47). To ameliorate the low power, we developed a Bayesian linear mixed-effects model to 
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identify more scQTLs for rare cell types as an additional callset (Fig. 4A; figs. S36C, S37; 

table S8; (20)). We also generated further alternative callsets and a merge of results from all 

approaches (figs. S38–S39). These callsets include results based on linkage-disequilibrium 

pruning (table S9; (20)), regression across pseudo-time trajectories (below and (20)), and 

conditional analysis (giving rise to ~1 signal per eGene, where an eGene is a gene involved 

in an eQTL; (20)). Finally, we identified a limited number of cell-type-specific isoform-

usage QTLs (iso-QTLs), taking into account limitations in isoform identification from 

short-read snRNA-seq data (~134K candidate iso-QTLs with 1389 associated “isoGenes”; 

figs. S40–S42; data S16; (20)).

Overall, we identified an average of ~85K scQTLs and ~690 eGenes per cell type in our 

core set, resulting in ~1.4M scQTLs when totaled over cell types (Fig. 4A; fig. S36A, S43; 

table S7; (20)). Many of the scQTLs are uniquely cell-type-specific (i.e. not in any other 

cell type), but ~47% appear in more than one cell type (Fig. 4A; fig. S36). About 30% 

of the scQTLs overlap with bulk cis-eQTLs (4). Among these “overlappers,” the direction 

of effect is consistent (Fig. 4B), but the magnitude of the scQTL effect size is greater 

than that of the matched bulk eQTL (Fig. 4C; fig. S44; table S10). We posit a “dilution 

effect” as an explanation, wherein scQTL effect sizes may be diluted in bulk data when they 

occur only in a relatively small number of cell types. This line of reasoning is supported 

by comparing scQTLs appearing in a few cell types to those observed in many (Fig. 4B; 

fig. S36A). Overall, we found cell-type-specific QTLs were likely difficult to detect in bulk 

measurements, which is borne out by the fact that more than two-thirds of our scQTLs are 

not found in bulk despite much larger sample sizes available in bulk.

Our scQTLs are strongly enriched in narrow regions around the transcription start sites 

(Fig. 4D; figs. S45–S46). We validated some of our core scQTLs by comparing them 

with functional elements identified by STARR-seq, mut-STARR-seq, and massively parallel 

reporter assays (MPRA) (Fig. 4E; figs. S47–S48; (20, 32)). As further validation, we were 

able to identify allele-specific expression (ASE) at the single-cell level in samples with 

WGS-based phased variants (Fig. 4F; fig. S49; (20)). Determination of single-cell ASE 

is particularly challenging due the sparsity of the data (48–52). Here, we compared the 

magnitude of the ASE effect at an SNV with the corresponding effect size of the scQTL 

involving the same SNV, finding significant correlation as expected (Fig. 4F; fig. S49; p< 

2.0×10−16, Fisher’s exact test).

Overall, we identified 330 scQTLs for eGenes related to brain disorders (Fig. 4G; figs. 

S50–S51; data S17). For example, we found scQTLs for SYNE1, a candidate autism and 

schizophrenia gene (53, 54), and NLGN1, a candidate gene for multiple brain disorders 

encoding a ligand for neurexin signaling (55). We also found multiple scQTLs within the 

complex 17q21.31 locus related to brain disorders, including an astrocyte-specific scQTL for 

the Tau protein gene MAPT and a multi-cell type scQTL for the neurodegenerative-disorder 

risk gene KANSL1 (Fig. 4G) (40). We further highlight an iso-QTL for LYPD6, which 

inhibits acetylcholine-receptor activity in Pax6-type inhibitory neurons (56) (Fig. 4G).

Finally, we developed a Poisson-regression model that incorporates a continuous trajectory 

and a pseudotime-genotype interaction term to further expand our scQTLs, allowing for the 
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calculation of “dynamic scQTLs” that exhibit a changing effect size along the pseudotime 

trajectory (figs. S52–S53; data S18–S19; (20)) (57). In particular, for 1692 of the 6255 

unique eGenes in four types of excitatory neurons, we found a corresponding dynamic 

scQTL (with a non-zero interaction term); Fig. 4H and fig. S52 show examples. Moreover, 

many of these dynamic scQTLs imply widespread QTL effects in cell types where we do not 

discover a scQTL with our core approach (fig. S52).

Building a gene regulatory network for each cell type

By integrating multiple data modalities, including scQTLs, snATAC-seq, TF-binding sites, 

and gene co-expression, we constructed gene-regulatory networks (GRNs) for PFC cell 

types (Fig. 5A; figs. S54–S58; data S20; (20)). In particular, we linked TFs to potential 

target genes based on their co-expression relationships from snRNA-seq data (58, 59), and 

mapped scQTLs to connect promoters and enhancers (data S21). We make these networks 

available in a variety of easy-to-use formats (20). For instance, we applied a network-

diffusion method that provides the key regulators of a given target gene -- specifically, the 

aggregate regulatory score of each TF for that target (figs. S59–S60).

We experimentally validated a subset of these linkages using CRISPR knockouts (Fig. 

5B; fig. S61; data S22; (20)). Overall, we found that TF expression in the GRNs explain 

an average of 52% of the variation in expression of target genes, with merged networks 

explaining more variance than just the promoter or enhancer connections (Fig. 5C; fig. 

S62). Additionally, mapping loss-of-function (LOF) mutations in individuals to select TFs 

(“natural knock-outs”) provided further validation by showing the expected change in 

expression of their target genes in a cell-type-specific manner (fig. S63; (20)). Overall, 77% 

of TFs with LOF variants, including TCF7L2 and STAT2, lead to the expected expression 

alteration within their cell-type-specific regulons (Fig. 5D; fig. S63).

Our analyses of GRNs uncovered complex network rewiring across the cell types (Fig. 5E; 

figs. S64–S66; data S23; (20)). In particular, the most highly connected TFs (“hubs”) are 

largely shared across cell types, suggesting their involvement in common machinery used 

by all brain cells (Fig. 5F). In contrast, bottlenecks (key connector TFs) have much more 

cell-type-specific activity (Fig. 5F; fig. S67A). Furthermore, the targets of bottleneck TFs 

are enriched for cell-type-specific functions, such as myelination and axon ensheathment for 

oligodendrocytes (60) (fig. S67B; data S24). Additionally, cell-type-specific GRNs greatly 

differ in the usage of network motifs, such as feed-forward loops (Fig. 5G). These particular 

motifs, which are thought of as a noise-filtering mechanism (61), are notably enriched in 

certain non-neuronal cell types.

Finally, disease genes for a particular disorder tend to be co-regulated in a cell-type-specific 

manner (Fig 5H; figs. S65,S68; (20)). For instance, gene sets related to schizophrenia 

form relatively dense subnetworks in neurons, whereas the AD subnetwork is actively 

co-regulated just in microglia and immune cells (fig. S69) (37, 62, 63).

Constructing a cell-to-cell communication network

To further understand cellular signaling and regulation, we leveraged publicly available 

ligand-receptor pairs (64) in combination with our snRNA-seq data to construct a cell-to-cell 
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communication network (Fig. 6A; table S11–S12, fig. S70; (20)). As expected, we observed 

three broad ligand-receptor usage patterns among excitatory, inhibitory, and glial cell types, 

indicating that these cell types use distinct signaling pathways in their communication. For 

instance, in both incoming and outgoing communication, we observed that all nine glial cell 

types are grouped together based on their ligand-receptor interactions, with growth-factor 

genes as some of the top contributing ligand-receptor pairs (65–67) (Fig. 6B).

We next explored how cell-cell communication patterns are altered in individuals with 

neuropsychiatric disorders, finding that they are greatly changed for schizophrenia and 

bipolar disorder (Fig. 6B; figs. S71A–B, S72; data S25–S26). In fact, notable inter-mixings 

occur among the three broad patterns of ligand-receptor usage. For instance, in bipolar 

disorder, the excitatory pattern (inferred from controls) now also contains OPCs and some 

inhibitory neurons (Pvalb and Sst Chodl). In individuals with schizophrenia (compared to 

controls), we also found that excitatory neurons received less incoming signaling, while 

inhibitory neurons received more (Fig. 6C).

To further highlight network perturbations in disease, we assessed signaling-pathway 

changes for bipolar disorder and schizophrenia (Fig. 6D). In bipolar, we observed 

downregulation of the Wnt pathway, consistent with previous findings (Fig. 6D) (68–71). 

Mechanistically, this downregulation could result in the overactivity of the lithium-targeted 

GSK3β enzyme in neurons (72, 73). In schizophrenia, the Wnt pathway is downregulated 

as expected, but we also found increased sender communication strength for L6 IT Car3 

neurons, different from bipolar (74). We further found downregulation of PTN pathway 

interactions from glial cells to neurons, consistent with previous studies (75–77), and a 

decrease in signaling to glial cells involving various growth factors (fibroblast, epidermal 

and insulin) (figs. S71C–E). These findings support the “glial cell hypothesis,” which posits 

that deleterious effects on glial cells cascade to neurons (78).

Lastly, we extended our extracellular cell-to-cell communication analysis by considering 

related disruptions to intracellular signaling pathways (Fig. 6E; fig. S73; (20)) (79). By 

utilizing disease-risk genes and setting support cells (non-neurons) as the senders and 

neurons as the receivers, we identified ligand-receptor links connecting known risk genes to 

potential upstream effectors. For instance, we linked FOXP1 and its ligand EBI3 in bipolar 

disorder and MECP2 and its ligand PDGFB in schizophrenia (80, 81).

Assessing cell-type-specific transcriptomic and epigenetic changes in aging

We used our population-scale single-cell data to systematically highlight transcriptomic 

and epigenetic changes due to aging. First, we assessed cell-fraction changes based on 

deconvolution of bulk data using our single-cell profiles and found that Chandelier and 

OPC cell types decrease with age, as in previous reports (FDR<0.05, two-sided t-test; Fig. 

7A, data S27) (82, 83). This result is consistent with findings from raw cell counts in the 

single-cell data (FDR<0.05, two-sided t-test; Fig. 7A; data S27; (20)). Next, we identified a 

list of aging DE genes across cell types (Fig. 7B; fig. S74; data S28; (20)). This list shows, 

for instance, that HSPB1, which encodes a heat-shock protein and has been previously 

implicated in longevity, is upregulated in multiple cell types in older individuals (84, 85).
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To further explore the relationship between the transcriptome and aging, we constructed a 

model to predict an individual’s age from their single-cell expression data (Fig. 7C; figs. 

S75A–B; (20)). The model shows that the transcriptomes of six cell types (L2/3 IT, L4 

IT, L5 IT, L6 IT, Oligodendrocytes, and OPC) have strong predictive value (Fig. 7C; fig. 

S75C). It also shows that many individual genes contribute to the model, highlighting broad 

transcriptome changes in aging. From these, we selected two particularly predictive genes 

previously associated with aging, FKBP5 and MKRN3, and observed a clear correlation 

between their expression and aging (Fig. 7C; fig. S76) (86–88).

We also investigated the effects of age on the epigenome using our scCREs to deconvolve 

bulk chromatin accessibility for 628 individuals into those for specific cell types (Fig. 7D; 

fig. S77). The resulting scCRE activity patterns in certain cell types, particularly microglia, 

cluster individuals into distinct age groups (Fig. 7D; fig. S77; (20)). We further expanded 

our analysis to highlight how patterns of enriched TF motifs in active scCREs change with 

age in a cell-type-specific fashion (Fig. 7E; fig. S78; (20)). Some TFs demonstrate consistent 

patterns across cell types (FOXO4 and RXRA), while others exhibit more cell-type-specific 

patterns (NEUROG1).

Finally, we extended our analysis to identify cell-type-specific changes in neurodegenerative 

disease. We obtain cell-type fractions by using our single-cell expression profiles to 

deconvolve 638 bulk RNA-seq samples, containing AD cases and controls (fig. S79A; (20)) 

(89). Certain glial fractions show a significant increase in AD (p<0.005, t-test), while several 

neuronal fractions decrease, especially Sst, Pvalb, and L2/3 IT, in line with previous studies 

(90) (Fig. 7F). We compared this result with that from directly comparing cell-type-specific 

gene-expression and methylation signatures to determine case-control status (91), finding 

that the fractions and signatures capture independent information (fig. S79B; data S29; (20)).

Imputing gene expression and prioritizing disease genes across cell types with an 
integrative model

We incorporated many of the preceding single-cell datasets and derived networks into 

an integrative framework to model and interpret the connections between genotype and 

phenotype. We term our modeling framework a Linear Network of Cell Type Phenotypes 

(LNCTP; Fig. 8A; (20)). This framework serves four tasks: (1) to impute cell-type-specific 

and bulk tissue gene expression from genotype; (2) to predict the risk of disorders based on 

input genotypes; (3) to highlight genes and pathways contributing to particular phenotypes 

in their specific cell type of action; and (4) to simulate perturbations of select genes 

and quantify their impact on overall gene expression or trait propensity. The LNCTP has 

several visible layers associated with components of the resource described above, including 

genotypes at scQTL and bulk eQTL sites, cell-type-specific and bulk tissue-based GRNs, 

cell-type fractions, cell-to-cell communication networks, gene co-expression modules, and 

sample covariates (20).

The LNCTP was trained as a conditional energy-based model that represents the joint 

distribution of the above “visible” variables conditioned on genotype, with additional latent 

layers (Fig. 8A; (20)). It imputes cell-type-specific gene expression from genotype with 

high cross-validated accuracy: the mean correlation between the imputed and experimentally 
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observed expression profiles is 69% across major cell types and ~78% in excitatory and 

inhibitory neurons (Fig. 8B). This corresponds to explaining 38% of the variance in cell-type 

gene expression (or, equivalently, estimating the heritability of cell-type gene expression h2), 

compared to a 34% baseline achieved by combining prior methods for bulk-imputation and 

cell-type deconvolution (20, 92, 93). The baseline does not include our derived GRNs and 

cell-to-cell networks, so the improvement represents the additional predictive performance 

possible with these networks (Fig. 8C). Moreover, the inclusion of imputed single-cell gene 

expression data also improves the overall prediction accuracy of disorders (discussed below) 

and accounts for a larger fraction of common-SNP heritability of these disorders beyond 

predictions based solely on bulk expression or polygenic risk scores (94) (table S13).

We exploited the ability of the LNCTP to impute missing data for discovery of cell-type-

specific molecular phenotypes important for neuropsychiatric disorders. Doing so allowed 

us to link variants with their “intermediate” functional genomic activities, such as cell-

type-specific gene expression, pathway activity, and cell-cell communication. We used 

a hierarchical linear architecture for the trait-prediction portion of the LNCTP, which 

performed comparably to or better than non-linear architectures (table S14–S15; (20)). 

Moreover, the LNCTP generates a model that is directly interpretable at multiple scales, 

avoiding many of the difficulties arising in the interpretation of deep neural networks, 

while maintaining a hierarchical structure. Our linear architecture allowed us to prioritize 

intermediate phenotypes by both gradient-based saliency, a metric directly derived from 

weights in the model, and co-heritability, which directly compares the genetic components 

of two traits. For instance, we can use the LNCTP to calculate the co-heritability of 

the genetic component of a particular gene’s cell-type-specific expression with respect to 

schizophrenia or other disorders (fig. S80; (20)).

Fig. 8D and fig. S81 provide an overview of key prioritized genes, cell types, and cell-to-cell 

interactions in various disorders (full lists in data S30–S32). We found 64, 51, 108, and 34 

gene/cell-type pairs for schizophrenia, bipolar disorder, ASD, and AD, respectively (20). 

In particular, TCF4, the first identified cross-psychiatric disorder locus (95), is important 

for neurons in schizophrenia (96), LINGO2 is important for excitatory neurons in bipolar 

disorder, and ANKHD1 is highly weighted in ASD, supporting current hypotheses (97, 98). 

Fig. 8E shows the associated cell types for the most highly prioritized genes. For example, 

RORA is important in many cell types for schizophrenia (but is, nevertheless, not prioritized 

in the bulk data; (20)). It is associated with retinoic-acid signaling, which has been proposed 

to be an important determinant of schizophrenia and bipolar risk (99). Further, we note the 

retinoic-acid signaling-associated gene ESRRG is prioritized in oligodendrocytes (Fig. 8D).

Overall, prioritized genes associated with bulk expression exhibit only a modest overlap 

with the prioritized cell-type-specific genes, indicating that integration of single-cell data in 

the LNCTP permits the prioritization of distinct genes compared to those found with bulk 

data alone (Fig. 8E). Moreover, as expected, the prioritized genes are enriched for cell-type-

specific scQTLs, disease DE genes, and brain-related functional categories (figs. S82–S83). 

They are also enriched for prior GWAS and literature support as well as bottleneck locations 

in the regulatory network (figs. S84–S85; data S33). However, several genes specifically 

prioritized by the LNCTP are not differentially expressed for their respective disorders, 
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including MEF2A and ID1, perhaps highlighting that they act through network effects (figs. 

S83, S85) (100).

In terms of cell types, excitatory neurons and microglia are prioritized in schizophrenia 

and bipolar disorder, supporting their importance for conferring genetic risk (101), with 

oligodendrocytes also prioritized in bipolar disorder. Moreover, in schizophrenia, we 

observed an increase in cell-to-cell interactions between excitatory neurons and microglia as 

well as a decrease between microglia and oligodendrocytes, consistent with the known glial 

dysregulation in the disease (Fig. 8D) (78).

We further used the LNCTP to perform in silico perturbation analysis, where we perturbed a 

specific gene’s expression and observed the induced expression changes in other genes (and 

the ensuing changes in trait propensity). Perturbations of our prioritized genes, as well as 

known drug targets (retrieved via DrugBank (102)) both induce overall expression changes 

strongly characteristic of case status (figs. S86A–B). As expected, the induced changes more 

strongly impact genes in close proximity to the perturbed gene in the GRNs (fig. S87; 

table S16). We synthesized the perturbations into a workflow to suggest potential drugs for 

repurposing with CLUE (42) by matching a perturbation’s effects to drugs inducing changes 

potentially complementary to those found in a particular disorder (fig. S86C; table S17; 

(20)).

Finally, to independently validate the results of our simulated perturbation analysis, we 

used data from CRISPR perturbations (CRISPRi and CRISPRa) applied to specific genes in 

glutamatergic neurons (103). Induced gene-expression changes resulting from the CRISPR 

perturbations are more highly correlated with those resulting from LNCTP perturbations 

when the direction of the perturbation is matched (versus not matched; Fig. 8F; figs. S88–

S89; table S18; (20)). Furthermore, they are more aligned with the direction of case-control 

DE for LNCTP-prioritized genes than for non-prioritized ones (fig. S90). While more 

comprehensive validation is essential, these results offer promising indications that LNCTP 

can find verifiable prioritizations of gene/cell-type pairs.

Discussion

Here, we used population-scale multi-omic data to build a comprehensive single-cell 

functional genomics resource (brainSCOPE) for investigating brain disorders in adults 

(Figs. S3–S5; (20)). The resource can be summarized at multiple levels: (1) raw data and 

metadata with a harmonized identifier system for each of the individuals; (2) quantifications 

of single-cell gene expression (count matrices) with a BICCN-compatible cell-typing 

system for the PFC; (3) lists of DE genes and differential cell-fractions for various 

phenotypes; (4) snATAC-seq signal tracks for various cell types and ENCODE-compatible 

regulatory elements (b-cCREs and scCREs), including lists of validated ones; (5) the 

variability for each gene and functional category (by individual, cell type, and brain region) 

and the associated sequence conservation of genes and regulatory elements; (6) a core 

set of GTEx-compatible scQTLs and other additional sets of QTLs (such as dynamic 

eQTLs); (7) full GRNs for each cell type, including enhancer-to-gene and TF-to-regulatory 

element links, and associated files relating each downstream gene to its most significant 
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upstream regulators; (8) cell-to-cell communication networks (expressed as ligand-receptor-

by-cell-type matrices); (9) integrative models with code for imputation, perturbation and 

prioritization of cell-type-specific functional genomics in brain disease; and (10) the 

resulting prioritized genes, cell types, and cell-to-cell linkages. The brainSCOPE portal also 

includes visualizer tools for many of the data types (fig. S4).

The resource allows for several important observations. These include the robustness of 

cell typing to population variation in 388 individuals and the identification, via shared 

scQTLs and dynamic scQTLs, of common regulatory programs between cell types. 

Moreover, by partitioning the observed expression variation, we identified certain drug 

targets demonstrating high variability between cell types but low variation across individuals 

(e.g., CNR1), a fact that is perhaps key to their therapeutic efficacy. We also found that 

gene-expression changes in certain neurons and glial cells can accurately predict the age of 

an individual.

Finally, a key outcome of our work is providing a set of promising targets for experimental 

validation. We see these falling into three classes. Class 1 comprises genes that are 

prioritized by the LNCTP model but not found by traditional DE analysis. This class 

is ideal for CRISPR assays seeking to test predicted cell-type and phenotypic effects. 

Other intriguing candidates are genes that have impacts on cell-to-cell communication 

spanning multiple cell types (class 2), and genes prioritized in disorders by the LNCTP with 

further support from DE analysis but lacking prior literature support (class 3). Overall, the 

LNCTP prioritized gene targets consistent with previous findings, and also suggested new 

avenues for investigation. We further used the LNCTP to simulate perturbations and make 

predictions regarding the effects of known drug-gene interactions on resulting phenotypes 

-- for instance, by perturbing drug-target expression levels. This application will potentially 

allow for assessing combinations of drugs for targeting multiple genes.

A few limitations should be noted regarding the data used in this study. Firstly, a number 

of recent works have demonstrated that RNA expression does not completely correlate with 

protein abundance, and this observation can be even more pronounced in the context of 

sub-regions within the brain (104–106). Another related complication is the uncertainty 

in the extent to which expression in postmortem tissues accurately reflects the expression 

patterns in live ones (107).

Future efforts could potentially address these limitations. They can also expand our analyses 

beyond the PFC and integrate functional genomic data from other connecting brain regions 

(such as the anterior cingulate cortex) to create a comprehensive brain-wide functional 

genomic atlas. This work could include the incorporation of developmental data as well as 

experimentally tractable models (such as those from cortical organoids); regulatory network 

changes over time can then be imputed across developmental axes toward fully mature 

brain GRNs. We could also incorporate imaging into our integrative model to improve our 

predictions of brain-associated phenotypes. Finally, more extensive validation of our results 

would be valuable, such as via targeted CRISPR assays.
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Overall, the brainSCOPE resource has the potential to facilitate precision medicine by 

linking variants to specific cell types and their cell-type-specific impacts -- for example, to 

help identify the cell type of action for potential therapies. Through our integrative analyses, 

we provide an extensive collection of inferences and predictions for neuroscientists to verify 

in new cohorts, populations, assays, and experimental conditions.

Materials and Methods Summary

The Materials and Methods for each section of the Main Text are available in the 

Supplementary Materials (20), which is organized using the same section headings as in the 

main text. These include a detailed description of the individuals and datasets assessed in the 

integrative analysis, protocols used for generating additional sequencing data and replication 

experiments for the analysis, and all computational and statistical analysis performed for 

each part of the integrative analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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cohorts, as well as protected-access integrated datasets such as imputed genotypes, are 

available at the PsychENCODE Knowledge portal (108). For the external cohorts, AMP-AD 

raw datasets and imputed genotypes are available at the AD Knowledge Portal (109). 

Girgenti-snMultiome datasets are deposited at NCBI GEO (GSE261983) (110). Ma-Sestan 

and Velmeshev datasets are available from their respective publications (18, 19, 111). 

Other key resources and additional datasets used in the integrative analysis are available 
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References

1. Sullivan PF, Geschwind DH, Defining the Genetic, Genomic, Cellular, and Diagnostic Architectures 
of Psychiatric Disorders. Cell 177, 162–183 (2019). [PubMed: 30901538] 

Emani et al. Page 16

Science. Author manuscript; available in PMC 2024 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://brainscope.psychencode.org/


2. PsychENCODE Consortium, Revealing the brain’s molecular architecture. Science 362, 1262–1263 
(2018). [PubMed: 30545881] 

3. Gandal MJ, Leppa V, Won H, Parikshak NN, Geschwind DH, The road to precision psychiatry: 
translating genetics into disease mechanisms. Nat. Neurosci. 19, 1397–1407 (2016). [PubMed: 
27786179] 

4. Wang D, Liu S, Warrell J, Won H, Shi X, Navarro FCP, et al. , Comprehensive functional genomic 
resource and integrative model for the human brain. Science 362, eaat8464 (2018).

5. GTEx Consortium, The GTEx Consortium atlas of genetic regulatory effects across human tissues. 
Science 369, 1318–1330 (2020). [PubMed: 32913098] 

6. Ng B, White CC, Klein H-U, Sieberts SK, McCabe C, Patrick E, et al. , An xQTL map integrates 
the genetic architecture of the human brain’s transcriptome and epigenome. Nat. Neurosci. 20, 
1418–1426 (2017). [PubMed: 28869584] 

7. Liu S, Won H, Clarke D, Matoba N, Khullar S, Mu Y, et al. , Illuminating links between cis-
regulators and trans-acting variants in the human prefrontal cortex. Genome Med. 14, 133 (2022). 
[PubMed: 36424644] 

8. Bryois J, Calini D, Macnair W, Foo L, Urich E, Ortmann W, et al. , Cell-type-specific cis-eQTLs 
in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders. 
Nat. Neurosci. 25, 1104–1112 (2022). [PubMed: 35915177] 

9. Kim-Hellmuth S, Aguet F, Oliva M, Muñoz-Aguirre M, Kasela S, Wucher V, et al. , Cell type–
specific genetic regulation of gene expression across human tissues. Science 369, eaaz8528 (2020).

10. Zeng B, Bendl J, Kosoy R, Fullard JF, Hoffman GE, Roussos P, Multi-ancestry eQTL meta-
analysis of human brain identifies candidate causal variants for brain-related traits. Nat. Genet. 54, 
161–169 (2022). [PubMed: 35058635] 

11. Zhang K, Hocker JD, Miller M, Hou X, Chiou J, Poirion OB, et al. , A single-cell atlas 
of chromatin accessibility in the human genome. Cell 184, 5985–6001.e19 (2021). [PubMed: 
34774128] 

12. BRAIN Initiative Cell Census Network (BICCN), A multimodal cell census and atlas of the 
mammalian primary motor cortex. Nature 598, 86–102 (2021). [PubMed: 34616075] 

13. Luo C, Liu H, Xie F, Armand EJ, Siletti K, Bakken TE, et al. , Single nucleus multi-omics 
identifies human cortical cell regulatory genome diversity. Cell Genomics 2, 100107 (2022).

14. Zeng H, What is a cell type and how to define it? Cell 185, 2739–2755 (2022). [PubMed: 
35868277] 

15. La Manno G, Siletti K, Furlan A, Gyllborg D, Vinsland E, Mossi Albiach A, et al. , Molecular 
architecture of the developing mouse brain. Nature 596, 92–96 (2021). [PubMed: 34321664] 

16. Song M, Yang X, Ren X, Maliskova L, Li B, Jones IR, et al. , Mapping cis-regulatory chromatin 
contacts in neural cells links neuropsychiatric disorder risk variants to target genes. Nat. Genet. 51, 
1252–1262 (2019). [PubMed: 31367015] 

17. De Jager PL, Ma Y, McCabe C, Xu J, Vardarajan BN, Felsky D, et al. , A multi-omic atlas of the 
human frontal cortex for aging and Alzheimer’s disease research. Sci Data 5, 180142 (2018).

18. Velmeshev D, Schirmer L, Jung D, Haeussler M, Perez Y, Mayer S, et al. , Single-cell genomics 
identifies cell type-specific molecular changes in autism. Science 364, 685–689 (2019). [PubMed: 
31097668] 

19. Ma S, Skarica M, Li Q, Xu C, Risgaard RD, Tebbenkamp ATN, et al. , Molecular and cellular 
evolution of the primate dorsolateral prefrontal cortex. Science 377, eabo7257 (2022).

20.
Materials and methods are available as supplementary materials

.

21. Pantazopoulos H, Wiseman JT, Markota M, Ehrenfeld L, Berretta S, Decreased Numbers 
of Somatostatin-Expressing Neurons in the Amygdala of Subjects With Bipolar Disorder 
or Schizophrenia: Relationship to Circadian Rhythms. Biol. Psychiatry 81, 536–547 (2017). 
[PubMed: 27259817] 

22. Lin L-C, Sibille E, Reduced brain somatostatin in mood disorders: a common pathophysiological 
substrate and drug target? Front. Pharmacol. 4, 110 (2013). [PubMed: 24058344] 

Emani et al. Page 17

Science. Author manuscript; available in PMC 2024 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



23. Love MI, Huber W, Anders S, Moderated estimation of fold change and dispersion for RNA-seq 
data with DESeq2. Genome Biol 15, 550 (2014). [PubMed: 25516281] 

24. Ruzicka WB, Mohammadi S, Fullard JF, Davila-Velderrain J, Subburaju S, Tso DR, et al. , 
“Single-cell multi-cohort dissection of the schizophrenia transcriptome” (preprint, Psychiatry and 
Clinical Psychology, 2022); 10.1101/2022.08.31.22279406.

25. Karpiński P, Samochowiec J, Sąsiadek MM, Łaczmański Ł, Misiak B, Analysis of global gene 
expression at seven brain regions of patients with schizophrenia. Schizophr. Res. 223, 119–127 
(2020). [PubMed: 32631700] 

26. Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, et al. , Slingshot: cell lineage and 
pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018). [PubMed: 
29914354] 

27. Van den Berge K, Roux de Bezieux H, Street K, Saelens W, Cannoodt R, Saeys Y, et al. , 
Trajectory-based differential expression analysis for single-cell sequencing data. Nat Commun 11, 
1201 (2020). [PubMed: 32139671] 

28. Zhang M, Eichhorn SW, Zingg B, Yao Z, Cotter K, Zeng H, et al. , Spatially resolved cell 
atlas of the mouse primary motor cortex by MERFISH. Nature 598, 137–143 (2021). [PubMed: 
34616063] 

29. Fang R, Xia C, Close JL, Zhang M, He J, Huang Z, et al. , Conservation and divergence of 
cortical cell organization in human and mouse revealed by MERFISH. Science 377, 56–62 (2022). 
[PubMed: 35771910] 

30. Bryois J, Garrett ME, Song L, Safi A, Giusti-Rodriguez P, Johnson GD, et al. , Evaluation of 
chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nat. Commun. 9, 
3121 (2018). [PubMed: 30087329] 

31. Consortium EP, Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, et al. , Expanded 
encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020). 
[PubMed: 32728249] 

32. Validation of enhancer regions in primary human neural progenitor cells using capture STARR-seq, 
(2023); 10.7303/SYN50900302.1.

33. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. , UK biobank: an open access 
resource for identifying the causes of a wide range of complex diseases of middle and old age. 
PLoS Med. 12, e1001779 (2015).

34. Polioudakis D, de la Torre-Ubieta L, Langerman J, Elkins AG, Shi X, Stein JL, et al. , A Single-
Cell Transcriptomic Atlas of Human Neocortical Development during Mid-gestation. Neuron 103, 
785–801.e8 (2019). [PubMed: 31303374] 

35. Ruzzo EK, Pérez-Cano L, Jung J-Y, Wang L-K, Kashef-Haghighi D, Hartl C, et al. , Inherited 
and De Novo Genetic Risk for Autism Impacts Shared Networks. Cell 178, 850–866.e26 (2019). 
[PubMed: 31398340] 

36. Hartl CL, Ramaswami G, Pembroke WG, Muller S, Pintacuda G, Saha A, et al. , Coexpression 
network architecture reveals the brain-wide and multiregional basis of disease susceptibility. Nat. 
Neurosci. 24, 1313–1323 (2021). [PubMed: 34294919] 

37. Hu B, Won H, Mah W, Park RB, Kassim B, Spiess K, et al. , Neuronal and glial 3D chromatin 
architecture informs the cellular etiology of brain disorders. Nat. Commun. 12, 3968 (2021). 
[PubMed: 34172755] 

38. Granja JM, Corces MR, Pierce SE, Bagdatli ST, Choudhry H, Chang HY, et al. , ArchR is a 
scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 
53, 403–411 (2021). [PubMed: 33633365] 

39. Johansen N, Somasundaram S, Travaglini KJ, Yanny AM, Shumyatcher M, Casper T, et al. , 
Interindividual variation in human cortical cell type abundance and expression. Science 382, 
eadf2359 (2023).

40. Cooper YA, Teyssier N, Dräger NM, Guo Q, Davis JE, Sattler SM, et al. , Functional regulatory 
variants implicate distinct transcriptional networks in dementia. Science 377, eabi8654 (2022).

41. Jorstad NL, Song JHT, Exposito-Alonso D, Suresh H, Castro-Pacheco N, Krienen FM, et al. , 
Comparative transcriptomics reveals human-specific cortical features. Science 382, eade9516 
(2023).

Emani et al. Page 18

Science. Author manuscript; available in PMC 2024 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



42. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et al. , A Next Generation 
Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 171, 1437–1452.e17 
(2017). [PubMed: 29195078] 

43. Gambino F, Pavlowsky A, Béglé A, Dupont J-L, Bahi N, Courjaret R, et al. , IL1-receptor 
accessory protein-like 1 (IL1RAPL1), a protein involved in cognitive functions, regulates N-type 
Ca2+-channel and neurite elongation. Proc. Natl. Acad. Sci. U. S. A. 104, 9063–9068 (2007). 
[PubMed: 17502602] 

44. Montani C, Ramos-Brossier M, Ponzoni L, Gritti L, Cwetsch AW, Braida D, et al. , The X-Linked 
Intellectual Disability Protein IL1RAPL1 Regulates Dendrite Complexity. J. Neurosci. Off. J. Soc. 
Neurosci. 37, 6606–6627 (2017).

45. Pembroke WG, Hartl CL, Geschwind DH, Evolutionary conservation and divergence of the human 
brain transcriptome. Genome Biol. 22, 52 (2021). [PubMed: 33514394] 

46. Miller KJ, Schalk G, Fetz EE, den Nijs M, Ojemann JG, Rao RPN, Cortical activity during motor 
execution, motor imagery, and imagery-based online feedback. Proc. Natl. Acad. Sci. U. S. A. 107, 
4430–4435 (2010). [PubMed: 20160084] 

47. Maria M, Pouyanfar N, Örd T, Kaikkonen MU, The Power of Single-Cell RNA Sequencing in 
eQTL Discovery. Genes 13, 502 (2022). [PubMed: 35328055] 

48. Deng Q, Ramsköld D, Reinius B, Sandberg R, Single-cell RNA-seq reveals dynamic, random 
monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014). [PubMed: 
24408435] 

49. Borel C, Ferreira PG, Santoni F, Delaneau O, Fort A, Popadin KY, et al. , Biased allelic expression 
in human primary fibroblast single cells. Am. J. Hum. Genet. 96, 70–80 (2015). [PubMed: 
25557783] 

50. Mu W, Sarkar H, Srivastava A, Choi K, Patro R, Love MI, Airpart: interpretable statistical models 
for analyzing allelic imbalance in single-cell datasets. Bioinformatics 38, 2773–2780 (2022). 
[PubMed: 35561168] 

51. Choi K, Raghupathy N, Churchill GA, A Bayesian mixture model for the analysis of allelic 
expression in single cells. Nat. Commun. 10, 5188 (2019). [PubMed: 31729374] 

52. Jiang Y, Zhang NR, Li M, SCALE: modeling allele-specific gene expression by single-cell RNA 
sequencing. Genome Biol. 18, 74 (2017). [PubMed: 28446220] 

53. Yu TW, Chahrour MH, Coulter ME, Jiralerspong S, Okamura-Ikeda K, Ataman B, et al. , Using 
whole-exome sequencing to identify inherited causes of autism. Neuron 77, 259–273 (2013). 
[PubMed: 23352163] 

54. Sloan SA, Barres BA, Mechanisms of astrocyte development and their contributions to 
neurodevelopmental disorders. Curr. Opin. Neurobiol. 27, 75–81 (2014). [PubMed: 24694749] 

55. Craig AM, Kang Y, Neurexin–neuroligin signaling in synapse development. Curr. Opin. Neurobiol. 
17, 43–52 (2007). [PubMed: 17275284] 

56. Kulbatskii D, Shenkarev Z, Bychkov M, Loktyushov E, Shulepko M, Koshelev S, et al. , Human 
Three-Finger Protein Lypd6 Is a Negative Modulator of the Cholinergic System in the Brain. 
Front. Cell Dev. Biol. 9, 662227 (2021).

57. Nathan A, Asgari S, Ishigaki K, Valencia C, Amariuta T, Luo Y, et al. , Single-cell eQTL models 
reveal dynamic T cell state dependence of disease loci. Nature 606, 120–128 (2022). [PubMed: 
35545678] 

58. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. , 
SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14, 1083–1086 
(2017). [PubMed: 28991892] 

59. Jin T, Rehani P, Ying M, Huang J, Liu S, Roussos P, et al. , scGRNom: a computational pipeline 
of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks. 
Genome Med. 13, 95 (2021). [PubMed: 34044854] 

60. Duncan ID, Radcliff AB, Heidari M, Kidd G, August BK, Wierenga LA, The adult 
oligodendrocyte can participate in remyelination. Proc. Natl. Acad. Sci. U. S. A. 115, E11807–
E11816 (2018). [PubMed: 30487224] 

61. Alon U, Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007). 
[PubMed: 17510665] 

Emani et al. Page 19

Science. Author manuscript; available in PMC 2024 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



62. Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al. , Genome-wide 
meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. 
Nat. Genet. 51, 404–413 (2019). [PubMed: 30617256] 

63. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. , 
A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell 
169, 1276–1290.e17 (2017). [PubMed: 28602351] 

64. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan C-H, et al. , Inference and analysis 
of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021). [PubMed: 33597522] 

65. Savchenko E, Teku GN, Boza-Serrano A, Russ K, Berns M, Deierborg T, et al. , FGF family 
members differentially regulate maturation and proliferation of stem cell-derived astrocytes. Sci. 
Rep. 9, 9610 (2019). [PubMed: 31270389] 

66. Carter CJ, Multiple genes and factors associated with bipolar disorder converge on growth 
factor and stress activated kinase pathways controlling translation initiation: implications for 
oligodendrocyte viability. Neurochem. Int. 50, 461–490 (2007). [PubMed: 17239488] 

67. Cui Q-L, Zheng W-H, Quirion R, Almazan G, Inhibition of Src-like kinases reveals Akt-dependent 
and -independent pathways in insulin-like growth factor I-mediated oligodendrocyte progenitor 
survival. J. Biol. Chem. 280, 8918–8928 (2005). [PubMed: 15632127] 

68. McAfee JC, Lee S, Lee J, Bell JL, Krupa O, Davis J, et al. , Systematic investigation of 
allelic regulatory activity of schizophrenia-associated common variants. Cell Genomics 3, 100404 
(2023).

69. Muneer A, Wnt and GSK3 Signaling Pathways in Bipolar Disorder: Clinical and Therapeutic 
Implications. Clin Psychopharmacol Neurosci 15, 100–114 (2017). [PubMed: 28449557] 

70. Santos R, Linker SB, Stern S, Mendes APD, Shokhirev MN, Erikson G, et al. , Deficient LEF1 
expression is associated with lithium resistance and hyperexcitability in neurons derived from 
bipolar disorder patients. Mol. Psychiatry 26, 2440–2456 (2021). [PubMed: 33398088] 

71. Wexler EM, Geschwind DH, Palmer TD, Lithium regulates adult hippocampal progenitor 
development through canonical Wnt pathway activation. Mol. Psychiatry 13, 285–292 (2008). 
[PubMed: 17968353] 

72. Hoseth EZ, Krull F, Dieset I, Morch RH, Hope S, Gardsjord ES, et al. , Exploring the Wnt 
signaling pathway in schizophrenia and bipolar disorder. Transl Psychiatry 8, 55 (2018). [PubMed: 
29507296] 

73. Valvezan AJ, Klein PS, GSK-3 and Wnt Signaling in Neurogenesis and Bipolar Disorder. Front 
Mol Neurosci 5, 1 (2012). [PubMed: 22319467] 

74. Lovestone S, Killick R, Di Forti M, Murray R, Schizophrenia as a GSK-3 dysregulation disorder. 
Trends Neurosci. 30, 142–149 (2007). [PubMed: 17324475] 

75. Panaccione I, Napoletano F, Forte AM, Kotzalidis GD, Del Casale A, Rapinesi C, et al. , 
Neurodevelopment in schizophrenia: the role of the wnt pathways. Curr Neuropharmacol 11, 
535–58 (2013). [PubMed: 24403877] 

76. McCurdy RD, Feron F, Perry C, Chant DC, McLean D, Matigian N, et al. , Cell cycle alterations 
in biopsied olfactory neuroepithelium in schizophrenia and bipolar I disorder using cell culture and 
gene expression analyses. Schizophr Res 82, 163–73 (2006). [PubMed: 16406496] 

77. Xu J, Sun J, Chen J, Wang L, Li A, Helm M, et al. , RNA-Seq analysis implicates dysregulation of 
the immune system in schizophrenia. BMC Genomics 13 Suppl 8, S2 (2012).

78. van Scheltinga A. F. Terwisscha, Bakker SC, Kahn RS, Fibroblast growth factors in schizophrenia. 
Schizophr. Bull. 36, 1157–1166 (2010). [PubMed: 19429845] 

79. Browaeys R, Saelens W, Saeys Y, NicheNet: modeling intercellular communication by linking 
ligands to target genes. Nat Methods 17, 159–162 (2020). [PubMed: 31819264] 

80. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY, Rett syndrome is caused 
by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–
188 (1999). [PubMed: 10508514] 

81. Bacon C, Rappold GA, The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in 
cognitive disorders. Hum. Genet. 131, 1687–1698 (2012). [PubMed: 22736078] 

Emani et al. Page 20

Science. Author manuscript; available in PMC 2024 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



82. Inda MC, Defelipe J, Muñoz A, The distribution of chandelier cell axon terminals that express the 
GABA plasma membrane transporter GAT-1 in the human neocortex. Cereb. Cortex N. Y. N 1991 
17, 2060–2071 (2007).

83. Allen WE, Blosser TR, Sullivan ZA, Dulac C, Zhuang X, Molecular and spatial signatures of 
mouse brain aging at single-cell resolution. Cell 186, 194–208.e18 (2023). [PubMed: 36580914] 

84. Gomez CR, Role of heat shock proteins in aging and chronic inflammatory diseases. GeroScience 
43, 2515–2532 (2021). [PubMed: 34241808] 

85. Schultz C, Dick EJ, Cox AB, Hubbard GB, Braak E, Braak H, Expression of stress proteins alpha 
B-crystallin, ubiquitin, and hsp27 in pallido-nigral spheroids of aged rhesus monkeys. Neurobiol. 
Aging 22, 677–682 (2001). [PubMed: 11445268] 

86. Abreu AP, Dauber A, Macedo DB, Noel SD, Brito VN, Gill JC, et al. , Central precocious puberty 
caused by mutations in the imprinted gene MKRN3. N. Engl. J. Med. 368, 2467–2475 (2013). 
[PubMed: 23738509] 

87. Zannas AS, Jia M, Hafner K, Baumert J, Wiechmann T, Pape JC, et al. , Epigenetic upregulation 
of FKBP5 by aging and stress contributes to NF-κB-driven inflammation and cardiovascular risk. 
Proc. Natl. Acad. Sci. U. S. A. 116, 11370–11379 (2019). [PubMed: 31113877] 

88. Zannas AS, Wiechmann T, Gassen NC, Binder EB, Gene-Stress-Epigenetic Regulation of 
FKBP5: Clinical and Translational Implications. Neuropsychopharmacol. Off. Publ. Am. Coll. 
Neuropsychopharmacol. 41, 261–274 (2016).

89. Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA, Religious Orders 
Study and Rush Memory and Aging Project. J Alzheimers Dis 64, S161–S189 (2018). [PubMed: 
29865057] 

90. Saura CA, Deprada A, Capilla-Lopez MD, Parra-Damas A, Revealing cell vulnerability in 
Alzheimer’s disease by single-cell transcriptomics. Semin Cell Dev Biol 139, 73–83 (2023). 
[PubMed: 35623983] 

91. Wang J, Roeder K, Devlin B, Bayesian estimation of cell type-specific gene expression with prior 
derived from single-cell data. Genome Res 31, 1807–1818 (2021). [PubMed: 33837133] 

92. Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. , A 
gene-based association method for mapping traits using reference transcriptome data. Nat Genet 
47, 1091–8 (2015). [PubMed: 26258848] 

93. Wang YH, Hou HA, Lin CC, Kuo YY, Yao CY, Hsu CL, et al. , A CIBERSORTx-based immune 
cell scoring system could independently predict the prognosis of patients with myelodysplastic 
syndromes. Blood Adv 5, 4535–4548 (2021). [PubMed: 34614508] 

94. Brainstorm Consortium, Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, et al. , 
Analysis of shared heritability in common disorders of the brain. Science 360 (2018).

95. Cross-Disorder Group of the Psychiatric Genomics Consortium, Identification of risk loci with 
shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet Lond. Engl. 
381, 1371–1379 (2013).

96. Gelernter J, Sun N, Polimanti R, Pietrzak R, Levey DF, Bryois J, et al. , Genome-wide association 
study of post-traumatic stress disorder reexperiencing symptoms in >165,000 US veterans. Nat 
Neurosci 22, 1394–1401 (2019). [PubMed: 31358989] 

97. Pisanu C, Williams MJ, Ciuculete DM, Olivo G, Del Zompo M, Squassina A, et al. , Evidence 
that genes involved in hedgehog signaling are associated with both bipolar disorder and high BMI. 
Transl. Psychiatry 9, 315 (2019). [PubMed: 31754094] 

98. Chopra M, McEntagart M, Clayton-Smith J, Platzer K, Shukla A, Girisha KM, et al. , 
Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, 
speech delay, and dysmorphism. Am. J. Hum. Genet. 108, 1138–1150 (2021). [PubMed: 
33909992] 

99. Reay WR, Atkins JR, Quidé Y, Carr VJ, Green MJ, Cairns MJ, Polygenic disruption of retinoid 
signalling in schizophrenia and a severe cognitive deficit subtype. Mol. Psychiatry 25, 719–731 
(2020). [PubMed: 30532020] 

100. Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, et al. , Transcriptome-wide 
isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 
(2018).

Emani et al. Page 21

Science. Author manuscript; available in PMC 2024 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



101. Wang M, Zhang L, Gage FH, Microglia, complement and schizophrenia. Nat. Neurosci. 22, 
333–334 (2019). [PubMed: 30796420] 

102. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. , DrugBank: a 
comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, 
D668–672 (2006). [PubMed: 16381955] 

103. Tian R, Abarientos A, Hong J, Hashemi SH, Yan R, Dräger N, et al. , Genome-wide CRISPRi/a 
screens in human neurons link lysosomal failure to ferroptosis. Nat. Neurosci. 24, 1020–1034 
(2021). [PubMed: 34031600] 

104. Bauernfeind AL, Babbitt CC, The predictive nature of transcript expression levels on protein 
expression in adult human brain. BMC Genomics 18, 322 (2017). [PubMed: 28438116] 

105. Moritz CP, Mühlhaus T, Tenzer S, Schulenborg T, Friauf E, Poor transcript-protein correlation in 
the brain: negatively correlating gene products reveal neuronal polarity as a potential cause. J. 
Neurochem. 149, 582–604 (2019). [PubMed: 30664243] 

106. Carlyle BC, Kitchen RR, Kanyo JE, Voss EZ, Pletikos M, Sousa AMM, et al. , A multiregional 
proteomic survey of the postnatal human brain. Nat. Neurosci. 20, 1787–1795 (2017). [PubMed: 
29184206] 

107. Liharska LE, Park YJ, Ziafat K, Wilkins L, Silk H, Linares LM, et al. , A study of gene 
expression in the living human brain. medRxiv [Preprint] (2023). 10.1101/2023.04.21.23288916.

108. PsychENCODE Consortium (PEC), PyschENCODE Consortium (PEC) Capstone II Cross-study 
Harmonized Data, Synapse (2023); 10.7303/SYN51111084.1.

109. PEC Integrative Analysis Processing of ROSMAP data, (2024); 10.7303/SYN53479857.1.

110. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE261983. 

111. Rodin RE, Dou Y, Kwon M, Sherman MA, D’Gama AM, Doan RN, et al. , The landscape 
of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by 
ultra-deep whole-genome sequencing. Nat. Neurosci. 24, 176–185 (2021). [PubMed: 33432195] 

112. Emani P, at el., gersteinlab/PsychENCODE_SingleCell_Integrative: v1.0.0, version v1.0.0 (2024); 
10.5281/ZENODO.10849968.

113. Akbarian S, Liu C, Knowles JA, Vaccarino FM, Farnham PJ, Crawford GE, et al. , The 
PsychENCODE project. Nat. Neurosci. 18, 1707–1712 (2015). [PubMed: 26605881] 

114. Stoeckius M, Zheng S, Houck-Loomis B, Hao S, Yeung BZ, Mauck WM, et al. , Cell Hashing 
with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. 
Genome Biol. 19, 224 (2018). [PubMed: 30567574] 

115. Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, et al. , Single-
cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019). [PubMed: 
31042697] 

116. Greenwood AK, Montgomery KS, Kauer N, Woo KH, Leanza ZJ, Poehlman WL, et al. , The AD 
Knowledge Portal: A Repository for Multi-Omic Data on Alzheimer’s Disease and Aging. Curr. 
Protoc. Hum. Genet. 108, e105 (2020). [PubMed: 33085189] 

117. Freund M, Taylor A, Ng C, Little AR, The NIH NeuroBioBank: creating opportunities for human 
brain research. Handb. Clin. Neurol. 150, 41–48 (2018). [PubMed: 29496155] 

118. Li B, Gould J, Yang Y, Sarkizova S, Tabaka M, Ashenberg O, et al. , Cumulus provides cloud-
based data analysis for large-scale single-cell and single-nucleus RNA-seq. Nat. Methods 17, 
793–798 (2020). [PubMed: 32719530] 

119. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. , Massively parallel 
digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017). [PubMed: 
28091601] 

120. McGinnis CS, Patterson DM, Winkler J, Conrad DN, Hein MY, Srivastava V, et al. , MULTI-seq: 
sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. Methods 16, 
619–626 (2019). [PubMed: 31209384] 

121. Roelli P, Bbimber B Flynn Santiagorevale, Gui Gege, Hoohm/CITE-seq-Count: 1.4.2, version 
1.4.2, Zenodo (2019); 10.5281/ZENODO.2585469.

122. Fleming SJ, Chaffin MD, Arduini A, Akkad A-D, Banks E, Marioni JC, et al. , Unsupervised 
removal of systematic background noise from droplet-based single-cell experiments using 
CellBender. Nat. Methods 20, 1323–1335 (2023). [PubMed: 37550580] 

Emani et al. Page 22

Science. Author manuscript; available in PMC 2024 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE261983


123. Rath S, Sharma R, Gupta R, Ast T, Chan C, Durham TJ, et al. , MitoCarta3.0: an updated 
mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic 
Acids Res. 49, D1541–D1547 (2021). [PubMed: 33174596] 

124. Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, et al. , Conserved 
cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019). 
[PubMed: 31435019] 

125. Wolock SL, Lopez R, Klein AM, Scrublet: Computational Identification of Cell Doublets in 
Single-Cell Transcriptomic Data. Cell Syst. 8, 281–291.e9 (2019). [PubMed: 30954476] 

126. Gayoso A, Shor J, JonathanShor/DoubletDetection: doubletdetection v4.2, Zenodo (2022); 
10.5281/zenodo.6349517.

127. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. , Fast, sensitive and 
accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019). 
[PubMed: 31740819] 

128. Jorstad NL, Close J, Johansen N, Yanny AM, Barkan ER, Travaglini KJ, et al. , Transcriptomic 
cytoarchitecture reveals principles of human neocortex organization. Science 382, eadf6812 
(2023).

129. Bakken TE, Jorstad NL, Hu Q, Lake BB, Tian W, Kalmbach BE, et al. , Comparative cellular 
analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021). [PubMed: 
34616062] 

130. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. , Integrated analysis of 
multimodal single-cell data. Cell 184, 3573–3587.e29 (2021). [PubMed: 34062119] 

131. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, et al. , 
“Scaling accurate genetic variant discovery to tens of thousands of samples” (preprint, Genomics, 
2017); 10.1101/201178.

132. Li H, Durbin R, Fast and accurate short read alignment with Burrows-Wheeler transform. 
Bioinformatics 25, 1754–60 (2009). [PubMed: 19451168] 

133. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. , STAR: ultrafast universal 
RNA-seq aligner. Bioinformatics 29, 15–21 (2013). [PubMed: 23104886] 

134. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ, Second-generation PLINK: 
rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015). [PubMed: 
25722852] 

135. Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, et al. , Next-generation genotype 
imputation service and methods. Nat Genet 48, 1284–1287 (2016). [PubMed: 27571263] 

136. Pedersen BS, Quinlan AR, Who’s Who? Detecting and Resolving Sample Anomalies in Human 
DNA Sequencing Studies with Peddy. Am J Hum Genet 100, 406–413 (2017). [PubMed: 
28190455] 

137. Gursoy G, Emani P, Brannon CM, Jolanki OA, Harmanci A, Strattan JS, et al. , Data Sanitization 
to Reduce Private Information Leakage from Functional Genomics. Cell 183, 905–917 e16 
(2020). [PubMed: 33186529] 

138. Wang K, Li M, Hakonarson H, ANNOVAR: functional annotation of genetic variants from 
high-throughput sequencing data. Nucleic Acids Res 38, e164 (2010). [PubMed: 20601685] 

139. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, et al. , The mutational 
constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020). 
[PubMed: 32461654] 

140. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M, CADD: predicting the deleteriousness 
of variants throughout the human genome. Nucleic Acids Res 47, D886–D894 (2019). [PubMed: 
30371827] 

141. Ebler J, Ebert P, Clarke WE, Rausch T, Audano PA, Houwaart T, et al. , Pangenome-based 
genome inference allows efficient and accurate genotyping across a wide spectrum of variant 
classes. Nat. Genet. 54, 518–525 (2022). [PubMed: 35410384] 

142. Ebert P, Audano PA, Zhu Q, Rodriguez-Martin B, Porubsky D, Bonder MJ, et al. , Haplotype-
resolved diverse human genomes and integrated analysis of structural variation. Science 372 
(2021).

Emani et al. Page 23

Science. Author manuscript; available in PMC 2024 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



143. Li X, Kim Y, Tsang EK, Davis JR, Damani FN, Chiang C, et al. , The impact of rare variation on 
gene expression across tissues. Nature 550, 239–243 (2017). [PubMed: 29022581] 

144. Jew B, Alvarez M, Rahmani E, Miao Z, Ko A, Garske KM, et al. , Accurate estimation of 
cell composition in bulk expression through robust integration of single-cell information. Nat. 
Commun. 11, 1971 (2020). [PubMed: 32332754] 

145. Hoffman G, Lee D, Bendl J, Fnu P, Hong A, Casey C, et al. , Efficient differential expression 
analysis of large-scale single cell transcriptomics data using dreamlet. Res. Sq, rs.3.rs-2705625 
(2023).

146. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R, Integrating single-cell transcriptomic 
data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018). 
[PubMed: 29608179] 

147. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. , Comprehensive 
Integration of Single-Cell Data. Cell 177, 1888–1902.e21 (2019). [PubMed: 31178118] 

148. Hafemeister C, Satija R, Normalization and variance stabilization of single-cell RNA-seq 
data using regularized negative binomial regression. Genome Biol. 20, 296 (2019). [PubMed: 
31870423] 

149. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. , Gene ontology: tool 
for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000). 
[PubMed: 10802651] 

150. Gene Ontology Consortium, The Gene Ontology resource: enriching a GOld mine. Nucleic Acids 
Res. 49, D325–D334 (2021). [PubMed: 33290552] 

151. Li M, Santpere G, Kawasawa Y. Imamura, Evgrafov OV, Gulden FO, Pochareddy S, et al. , 
Integrative functional genomic analysis of human brain development and neuropsychiatric risks. 
Science 362, eaat7615 (2018).

152. Stuart T, Srivastava A, Madad S, Lareau CA, Satija R, Single-cell chromatin state analysis with 
Signac. Nat. Methods 18, 1333–1341 (2021). [PubMed: 34725479] 

153. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. , Model-based analysis 
of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008). [PubMed: 18798982] 

154. Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, et al. , 
JASPAR 2020: update of the open-access database of transcription factor binding profiles. 
Nucleic Acids Res. 48, D87–D92 (2020). [PubMed: 31701148] 

155. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P-R, et al. , Partitioning 
heritability by functional annotation using genome-wide association summary statistics. Nat. 
Genet. 47, 1228–1235 (2015). [PubMed: 26414678] 

156. Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of 
the Psychiatric Genomics Consortium, et al. , LD Score regression distinguishes confounding 
from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015). 
[PubMed: 25642630] 

157. Köhler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, Vasilevsky NA, et al. , The 
Human Phenotype Ontology in 2021. Nucleic Acids Res. 49, D1207–D1217 (2021). [PubMed: 
33264411] 

158. Gazal S, Finucane HK, Furlotte NA, Loh P-R, Palamara PF, Liu X, et al. , Linkage 
disequilibrium-dependent architecture of human complex traits shows action of negative 
selection. Nat. Genet. 179, 1421–1427 (2017).

159. Stein JL, de la Torre-Ubieta L, Tian Y, Parikshak NN, Hernández IA, Marchetto MC, et al. , A 
Quantitative Framework to Evaluate Modeling of Cortical Development by Neural Stem Cells. 
Neuron 83, 69–86 (2014). [PubMed: 24991955] 

160. de la Torre-Ubieta L, Stein JL, Won H, Opland CK, Liang D, Lu D, et al. , The Dynamic 
Landscape of Open Chromatin during Human Cortical Neurogenesis. Cell 172, 289–304.e18 
(2018). [PubMed: 29307494] 

161. Trevino AE, Sinnott-Armstrong N, Andersen J, Yoon S-J, Huber N, Pritchard JK, et al. , 
Chromatin accessibility dynamics in a model of human forebrain development. Science 367, 
eaay1645 (2020).

Emani et al. Page 24

Science. Author manuscript; available in PMC 2024 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



162. Walker RL, Ramaswami G, Hartl C, Mancuso N, Gandal MJ, de la Torre-Ubieta L, et al. , Genetic 
Control of Expression and Splicing in Developing Human Brain Informs Disease Mechanisms. 
Cell 179, 750–771.e22 (2019). [PubMed: 31626773] 

163. Hoffman GE, Schadt EE, variancePartition: interpreting drivers of variation in complex gene 
expression studies. BMC Bioinformatics 17, 483 (2016). [PubMed: 27884101] 

164. Gandal MJ, Haney JR, Wamsley B, Yap CX, Parhami S, Emani PS, et al. , Broad transcriptomic 
dysregulation occurs across the cerebral cortex in ASD. Nature 611, 532–539 (2022). [PubMed: 
36323788] 

165. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. , Evolutionarily 
conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 
(2005). [PubMed: 16024819] 

166. Dong X, Li X, Chang TW, Scherzer CR, Weiss ST, Qiu W, powerEQTL: An R package and shiny 
application for sample size and power calculation of bulk tissue and single-cell eQTL analysis. 
Bioinformatics 37, 4269–71 (2021). [PubMed: 34009297] 

167. Delaneau O, Ongen H, Brown AA, Fort A, Panousis NI, Dermitzakis ET, A complete tool set for 
molecular QTL discovery and analysis. Nat Commun 8, 15452 (2017). [PubMed: 28516912] 

168. Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O, Fast and efficient QTL mapper for 
thousands of molecular phenotypes. Bioinformatics 32, 1479–1485 (2016). [PubMed: 26708335] 

169. Storey JD, Tibshirani R, Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. 
100, 9440–9445 (2003). [PubMed: 12883005] 

170. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. , g:Profiler: a web server for 
functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 
47, W191–W198 (2019). [PubMed: 31066453] 

171. Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, Weiss LA, et al. , SFARI 
Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol. 
Autism 4, 36 (2013). [PubMed: 24090431] 

172. Jia P, Han G, Zhao J, Lu P, Zhao Z, SZGR 2.0: a one-stop shop of schizophrenia candidate genes. 
Nucleic Acids Res. 45, D915–D924 (2017). [PubMed: 27733502] 

173. Franklin C, Dwyer DS, Candidate risk genes for bipolar disorder are highly conserved during 
evolution and highly interconnected. Bipolar Disord. 23, 400–408 (2021). [PubMed: 32959503] 

174. Hu Y-S, Xin J, Hu Y, Zhang L, Wang J, Analyzing the genes related to Alzheimer’s disease via a 
network and pathway-based approach. Alzheimers Res. Ther. 9, 29 (2017). [PubMed: 28446202] 

175. Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T, et al. , Human Ageing 
Genomic Resources: new and updated databases. Nucleic Acids Res. 46, D1083–D1090 (2018). 
[PubMed: 29121237] 

176. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. , PLINK: A 
Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. 
Genet. 81, 559–575 (2007). [PubMed: 17701901] 

177. Casella G, Berger RL, Statistical Inference (Duxbury, Pacific Grove, Calif, 2. ed., 2002).

178. An Introduction to Statistical Learning: with Applications in R | SpringerLink. https://
link.springer.com/book/10.1007/978-1-4614-7138-7.

179. Hoff PD, A First Course in Bayesian Statistical Methods (Springer, New York, NY, 2009; http://
link.springer.com/10.1007/978-0-387-92407-6)Springer Texts in Statistics.

180. Xiong L, Tian K, Li Y, Ning W, Gao X, Zhang QC, Online single-cell data integration through 
projecting heterogeneous datasets into a common cell-embedding space. Nat. Commun. 13, 6118 
(2022). [PubMed: 36253379] 

181. Pan L, Dinh HQ, Pawitan Y, Vu TN, Isoform-level quantification for single-cell RNA sequencing. 
Bioinformatics 38, 1287–1294 (2022). [PubMed: 34864849] 

182. Garrido-Martin D, Borsari B, Calvo M, Reverter F, Guigo R, Identification and analysis of 
splicing quantitative trait loci across multiple tissues in the human genome. Nat Commun 12, 727 
(2021). [PubMed: 33526779] 

183. Garrido-Martín D, Palumbo E, Guigó R, Breschi A, ggsashimi: Sashimi plot revised for browser- 
and annotation-independent splicing visualization. PLoS Comput. Biol. 14, e1006360 (2018).

Emani et al. Page 25

Science. Author manuscript; available in PMC 2024 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://link.springer.com/book/10.1007/978-1-4614-7138-7
https://link.springer.com/book/10.1007/978-1-4614-7138-7
http://link.springer.com/10.1007/978-0-387-92407-6
http://link.springer.com/10.1007/978-0-387-92407-6


184. Rozowsky J, Abyzov A, Wang J, Alves P, Raha D, Harmanci A, et al. , AlleleSeq: analysis of 
allele-specific expression and binding in a network framework. Mol. Syst. Biol. 7, 522 (2011). 
[PubMed: 21811232] 

185. Chen J, Rozowsky J, Galeev TR, Harmanci A, Kitchen R, Bedford J, et al. , A uniform survey of 
allele-specific binding and expression over 1000-Genomes-Project individuals. Nat. Commun. 7, 
11101 (2016). [PubMed: 27089393] 

186. Rozowsky J, Gao J, Borsari B, Yang YT, Galeev T, Gürsoy G, et al. , The EN-TEx resource 
of multi-tissue personal epigenomes & variant-impact models. Cell 186, 1493–1511.e40 (2023). 
[PubMed: 37001506] 

187. Konopka G, Wexler E, Rosen E, Mukamel Z, Osborn GE, Chen L, et al. , Modeling the functional 
genomics of autism using human neurons. Mol. Psychiatry 17, 202–214 (2012). [PubMed: 
21647150] 

188. Lee D, Shi M, Moran J, Wall M, Zhang J, Liu J, et al. , STARRPeaker: uniform processing and 
accurate identification of STARR-seq active regions. Genome Biol. 21, 298 (2020). [PubMed: 
33292397] 

189. Deng C, Whalen S, Steyert M, Ziffra R, Przytycki PF, Inoue F, et al. , “Massively parallel 
characterization of psychiatric disorder-associated and cell-type-specific regulatory elements in 
the developing human cortex” (preprint, Genomics, 2023); 10.1101/2023.02.15.528663.

190. Quinlan AR, Hall IM, BEDTools: a flexible suite of utilities for comparing genomic features. 
Bioinformatics 26, 841–842 (2010). [PubMed: 20110278] 

191. Baran Y, Bercovich A, Sebe-Pedros A, Lubling Y, Giladi A, Chomsky E, et al. , MetaCell: 
analysis of single-cell RNA-seq data using K-nn graph partitions. Genome Biol 20, 206 (2019). 
[PubMed: 31604482] 

192. Moerman T, Santos S. Aibar, Gonzalez-Blas C. Bravo, Simm J, Moreau Y, Aerts J, et 
al. , GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. 
Bioinformatics 35, 2159–2161 (2019). [PubMed: 30445495] 

193. Suo S, Zhu Q, Saadatpour A, Fei L, Guo G, Yuan GC, Revealing the Critical Regulators of Cell 
Identity in the Mouse Cell Atlas. Cell Rep 25, 1436–1445 e3 (2018). [PubMed: 30404000] 

194. Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, et al. , Software for 
computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

195. Gupta C, Xu J, Jin T, Khullar S, Liu X, Alatkar S, et al. , Single-cell network biology 
characterizes cell type gene regulation for drug repurposing and phenotype prediction in 
Alzheimer’s disease. PLoS Comput. Biol. 18, e1010287 (2022).

196. Garcia-Alonso L, Holland CH, Ibrahim MM, Turei D, Saez-Rodriguez J, Benchmark and 
integration of resources for the estimation of human transcription factor activities. Genome Res. 
29, 1363–1375 (2019). [PubMed: 31340985] 

197. Himmelstein DS, Lizee A, Hessler C, Brueggeman L, Chen SL, Hadley D, et al. , Systematic 
integration of biomedical knowledge prioritizes drugs for repurposing. Elife 6 (2017).

198. Kashtan N, Itzkovitz S, Milo R, Alon U, Efficient sampling algorithm for estimating subgraph 
concentrations and detecting network motifs. Bioinformatics 20, 1746–58 (2004). [PubMed: 
15001476] 

199. Liu G, Wong L, Chua HN, Complex discovery from weighted PPI networks. Bioinformatics 25, 
1891–7 (2009). [PubMed: 19435747] 

200. Baptista A, Gonzalez A, Baudot A, Universal multilayer network exploration by random walk 
with restart. Commun. Phys. 5, 170 (2022).

201. Brunet J-P, Tamayo P, Golub TR, Mesirov JP, Metagenes and molecular pattern discovery 
using matrix factorization. Proc. Natl. Acad. Sci. U. S. A. 101, 4164–4169 (2004). [PubMed: 
15016911] 

202. Gaujoux R, Seoighe C, A flexible R package for nonnegative matrix factorization. BMC 
Bioinformatics 11, 367 (2010). [PubMed: 20598126] 

203. Huuki-Myers L, Spangler A, Eagles N, Montgomery KD, Kwon SH, Guo B, et al. , 
“Integrated single cell and unsupervised spatial transcriptomic analysis defines molecular 
anatomy of the human dorsolateral prefrontal cortex” (preprint, Neuroscience, 2023); 
10.1101/2023.02.15.528722.

Emani et al. Page 26

Science. Author manuscript; available in PMC 2024 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



204. Anders S, Pyl PT, Huber W, HTSeq--a Python framework to work with high-throughput 
sequencing data. Bioinformatics 31, 166–169 (2015). [PubMed: 25260700] 

205. Ernst J, Bar-Joseph Z, STEM: a tool for the analysis of short time series gene expression data. 
BMC Bioinformatics 7, 191 (2006). [PubMed: 16597342] 

206. Dai M, Zhao L, Li Z, Li X, You B, Zhu S, et al. , The Transcriptional Differences of Avian 
CD4+CD8+ Double-Positive T Cells and CD8+ T Cells From Peripheral Blood of ALV-J 
Infected Chickens Revealed by Smart-Seq2. Front. Cell. Infect. Microbiol. 11, 747094 (2021).

207. Wei W, Jiang C, Chai X, Zhang J, Zhang C-C, Miao W, et al. , RNA Interference by 
Cyanobacterial Feeding Demonstrates the SCSG1 Gene Is Essential for Ciliogenesis during Oral 
Apparatus Regeneration in Stentor. Microorganisms 9, 176 (2021). [PubMed: 33467569] 

208. Song Q, Wang J, Bar-Joseph Z, scSTEM: clustering pseudotime ordered single-cell data. Genome 
Biol. 23, 150 (2022). [PubMed: 35799304] 

209. Ben-Kiki O, Bercovich A, Lifshitz A, Tanay A, Metacell-2: a divide-and-conquer metacell 
algorithm for scalable scRNA-seq analysis. Genome Biol. 23, 100 (2022). [PubMed: 35440087] 

210. Schulz M-A, Yeo BTT, Vogelstein JT, Mourao-Miranada J, Kather JN, Kording K, et al. , 
Different scaling of linear models and deep learning in UKBiobank brain images versus machine-
learning datasets. Nat. Commun. 11, 4238 (2020). [PubMed: 32843633] 

211. Arora S, Cohen N, Hu W, Luo Y, Implicit Regularization in Deep Matrix Factorization. arXiv 
arXiv:1905.13655 [Preprint] (2019). 10.48550/arXiv.1905.13655.

212. Wainwright MJ, Jordan MI, Graphical Models, Exponential Families, and Variational Inference. 
Found. Trends® Mach. Learn. 1, 1–305 (2007).

213. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. , Determining 
cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 
773–782 (2019). [PubMed: 31061481] 

214. Choi SW, Mak TS-H, O’Reilly PF, Tutorial: a guide to performing polygenic risk score analyses. 
Nat. Protoc. 15, 2759–2772 (2020). [PubMed: 32709988] 

215. Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. , Identification of common 
genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019). [PubMed: 
30804558] 

216. Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z, et al. , Genome-wide 
association study of more than 40,000 bipolar disorder cases provides new insights into the 
underlying biology. Nat. Genet. 53, 817–829 (2021). [PubMed: 34002096] 

217. Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. , Mapping 
genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 
(2022). [PubMed: 35396580] 

218. Wightman DP, Jansen IE, Savage JE, Shadrin AA, Bahrami S, Holland D, et al. , A genome-wide 
association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. 
Genet. 53, 1276–1282 (2021). [PubMed: 34493870] 

219. Privé F, Arbel J, Vilhjálmsson BJ, LDpred2: better, faster, stronger. Bioinformatics 36, 5424–5431 
(2021). [PubMed: 33326037] 

220. Satterstrom FK, Walters RK, Singh T, Wigdor EM, Lescai F, Demontis D, et al. , Autism 
spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare 
protein-truncating variants. Nat. Neurosci. 22, 1961–1965 (2019). [PubMed: 31768057] 

221. Kaplanis J, Akawi N, Gallone G, McRae JF, Prigmore E, Wright CF, et al. , Exome-wide 
assessment of the functional impact and pathogenicity of multinucleotide mutations. Genome 
Res. 29, 1047–1056 (2019). [PubMed: 31227601] 

222. Xia Y, Dai R, Wang K, Jiao C, Zhang C, Xu Y, et al. , Sex-differential DNA methylation and 
associated regulation networks in human brain implicated in the sex-biased risks of psychiatric 
disorders. Mol. Psychiatry 26, 835–848 (2021). [PubMed: 30976086] 

223. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. , Scikit-learn: 
Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

224. Reale M, Costantini E, Greig NH, Cytokine Imbalance in Schizophrenia. From Research to 
Clinic: Potential Implications for Treatment. Front. Psychiatry 12, 536257 (2021).

Emani et al. Page 27

Science. Author manuscript; available in PMC 2024 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



225. Tsimberidou A-M, Skliris A, Valentine A, Shaw J, Hering U, Vo HH, et al. , AKT inhibition 
in the central nervous system induces signaling defects resulting in psychiatric symptomatology. 
Cell Biosci. 12, 56 (2022). [PubMed: 35525984] 

226. Farrelly LA, Zheng S, Schrode N, Topol A, Bhanu NV, Bastle RM, et al. , Chromatin profiling 
in human neurons reveals aberrant roles for histone acetylation and BET family proteins in 
schizophrenia. Nat. Commun. 13, 2195 (2022). [PubMed: 35459277] 

227. Brin S, Page L, The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. 
ISDN Syst. 30, 107–117 (1998).

228. Csárdi G, Nepusz T, Müller K, Horvát S, Traag V, Zanini F, et al., igraph for R: R interface 
of the igraph library for graph theory and network analysis, version v2.0.2 (2024); 10.5281/
ZENODO.7682609.

229. West DB, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, 1996).

230. Wang J, Vasaikar S, Shi Z, Greer M, Zhang B, WebGestalt 2017: a more comprehensive, 
powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 45, 
W130–W137 (2017). [PubMed: 28472511] 

231. Jourquin J, Duncan D, Shi Z, Zhang B, GLAD4U: deriving and prioritizing gene lists from 
PubMed literature. BMC Genomics 13, S20 (2012).

232. Privé F, Albiñana C, Arbel J, Pasaniuc B, Vilhjálmsson BJ, Inferring disease architecture and 
predictive ability with LDpred2-auto. Am. J. Hum. Genet. 110, 2042–2055 (2023). [PubMed: 
37944514] 

233. Park C, Ha J, Park S, Prediction of Alzheimer’s disease based on deep neural network by 
integrating gene expression and DNA methylation dataset. Expert Syst. Appl. 140, 112873 
(2020).

234. Lee T, Lee H, Prediction of Alzheimer’s disease using blood gene expression data. Sci. Rep. 10, 
3485 (2020). [PubMed: 32103140] 

235. Sims R, Hill M, Williams J, The multiplex model of the genetics of Alzheimer’s disease. Nat. 
Neurosci. 23, 311–322 (2020). [PubMed: 32112059] 

236. Chen H, He Y, Ji J, Shi Y, A Machine Learning Method for Identifying Critical Interactions 
Between Gene Pairs in Alzheimer’s Disease Prediction. Front. Neurol. 10 (2019).

237. Li J, Cai T, Jiang Y, Chen H, He X, Chen C, et al. , Genes with de novo mutations are shared 
by four neuropsychiatric disorders discovered from NPdenovo database. Mol. Psychiatry 21, 298 
(2016). [PubMed: 25939403] 

238. Darnell JC, Van Driesche SJ, Zhang C, Hung KYS, Mele A, Fraser CE, et al. , FMRP Stalls 
Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism. Cell 146, 247–
261 (2011). [PubMed: 21784246] 

239. Basu SN, Kollu R, Banerjee-Basu S, AutDB: a gene reference resource for autism research. 
Nucleic Acids Res. 37, D832–D836 (2009). [PubMed: 19015121] 

240. Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. , Shared molecular 
neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359, 693–
697 (2018). [PubMed: 29439242] 

241. Parikshak NN, Swarup V, Belgard TG, Irimia M, Ramaswami G, Gandal MJ, et al. , Genome-
wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature 540, 
423–427 (2016). [PubMed: 27919067] 

242. Gupta S, Ellis SE, Ashar FN, Moes A, Bader JS, Zhan J, et al. , Transcriptome analysis reveals 
dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. 
Nat. Commun. 5, 5748 (2014). [PubMed: 25494366] 

243. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, et al. , Transcriptomic analysis 
of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011). [PubMed: 
21614001] 

244. International Schizophrenia Consortium, Rare chromosomal deletions and duplications increase 
risk of schizophrenia. Nature 455, 237–241 (2008). [PubMed: 18668038] 

245. Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, et al. , Convergent 
functional genomics of schizophrenia: from comprehensive understanding to genetic risk 
prediction. Mol. Psychiatry 17, 887–905 (2012). [PubMed: 22584867] 

Emani et al. Page 28

Science. Author manuscript; available in PMC 2024 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



246. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, et al. , Genome scan 
meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am. J. Hum. Genet. 
73, 34–48 (2003). [PubMed: 12802786] 

247. He X, Fuller CK, Song Y, Meng Q, Zhang B, Yang X, et al. , Sherlock: detecting gene-disease 
associations by matching patterns of expression QTL and GWAS. Am. J. Hum. Genet. 92, 667–
680 (2013). [PubMed: 23643380] 

248. Ng MYM, Levinson DF, Faraone SV, Suarez BK, DeLisi LE, Arinami T, et al. , Meta-analysis 
of 32 genome-wide linkage studies of schizophrenia. Mol. Psychiatry 14, 774–785 (2009). 
[PubMed: 19349958] 

249. Chen C, Cheng L, Grennan K, Pibiri F, Zhang C, Badner JA, et al. , Two gene co-expression 
modules differentiate psychotics and controls. Mol. Psychiatry 18, 1308–1314 (2013). [PubMed: 
23147385] 

Emani et al. Page 29

Science. Author manuscript; available in PMC 2024 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Constructing a single-cell genomic resource for 388 individuals.
(A) Overview of the integrative single-cell analysis performed on 388 adult prefrontal cortex 

samples. (Top) Schematic for 28 cell types grouped by excitatory (Exc), inhibitory (Inh), 

and non-neuronal cell types (table S3); color labels for each subclass are used consistently 

throughout all figures (table S4). Dashed box indicates cell types defined with Ma-Sestan 

marker genes (19), with Δ indicating cell types unique to Ma-Sestan (Bottom) Schematic 

showing all samples labeled by disease, biological sex, ancestry, age, and available data 

modalities, including a distribution plot for sample ages (gray indicates pediatric samples 

excluded from most analyses). (B) UMAP plot for clustering of 28 harmonized cell types 

from snRNA-seq data derived from 72 samples in the SZBDMulti-seq cohort (using this 

study as an example of pan-cohort cell typing; see fig. S10 for UMAPs of other studies). 

(C) UMAP plots highlighting expression of key marker genes in four broad cell types 

(excitatory: SLC17A7; inhibitory: GAD2; oligodendrocytes: MOG; and astrocytes: AQP4). 

(D) Differential expression (log2-fold change) of four schizophrenia-related genes across 

cell types in samples from individuals with schizophrenia (blue for upregulation, red for 

downregulation). (E) Numbers of DE genes upregulated (blue) and downregulated (red) 

in older (>70 years) control (left) and schizophrenia (right) individuals per cell type 
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when compared with younger individuals in each group (<70 years). “X” indicates no 

DE genes were observed for a particular cell type. (F) UMAP plot showing predicted 

trajectory for excitatory IT neurons in adult control samples from the SZBDMulti-seq 

cohort. The predicted trajectory proceeds along the cortical layer dimension from L2/3 to L6 

in the prefrontal cortex. Inset highlights log-normalized gene expression in cells along the 

pseudotime axis for three genes.
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Figure 2. Determining regulatory elements for cell types from snATAC-seq.
(A) UMAP plot for clustering of 28 harmonized cell types from snMultiome data derived 

from 40 individuals. (B) UMAP plots highlighting chromatin accessibility of key marker 

genes for four broad cell types (see Fig. 1C). (C) (Top) Counts of open chromatin 

regions from combined snATAC-seq and snMultiome peaks across cohorts by gene context 

(promoter, intronic, exonic, or distal). (Bottom) Percentage of unique ATAC peaks found in 

each cell type. Blue line indicates the percentage of ATAC peaks that overlap with b-cCREs 

derived from bulk data. (D) Change in enhancer activity among open chromatin regions 

using STARR-seq assays of predicted enhancers, comparing the log2-fold expression change 

of validated regions to non-validated regions (n.s.). (E) (Top) LDSC enrichment across 

GWAS summary statistics for UK BioBank traits and diseases, including brain-related 

traits (gray bars), cCREs (white circles), b-cCREs (gray circles), and snATAC-seq peaks in 

excitatory neurons (scCREs, green circles). (Bottom) LDSC enrichment (log-scaled p-values 

for LDSC analysis as explained in (20)) for select brain traits and disorders. Trait names are 

listed in table S6. (F) Enrichment (log-scaled FDR) of TF binding motifs among cell-type-
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specific snATAC-seq peaks. (G) Differential activity of ELF1 in proximal and distal regions 

across cell types. (H) Cell-type-specific location of TF binding for NEUROD1 (left) and 

ELF1 (right) across cell types (colors defined in Fig. 1A), based on snATAC-seq footprinting 

analysis.
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Figure 3. Measuring transcriptome and epigenome variation across the cohort at the single-cell 
level.
(A) Schematic for the calculation of overall gene-level variance partition by integrating 

individual, brain region, and cell-type-specific variation. Variation analysis using different 

brain regions (denoted with a dashed gray box) was performed on a subset of individuals, 

shown in fig. S28. (B) Percent expression variation attributed to individuals (green) 

and cell types (blue) for GO categories, with select GO categories highlighted. (C) 
Percent inter-individual and cell type variation for specific genes and gene sets, including 

neurotransmitter families and drug targets. (D) Distribution of individual variation and 

cell type variation in drug target genes versus all genes. (E) UMAP plot of example 

drug target, CNR1, demonstrating cell-type-specific expression patterns that contribute to 

high cell type variability. We also assessed other genes such as serotonin receptor genes 

in fig. S31C. (F) Comparison of observed expression variation of individual genes with 

predicted conservation scores (phastCons). Red dots indicate outlier genes. Black line 

shows a trend of decreasing conservation as expression variation increases. (G) Increased 

cell-type specificity (dashed blue line) and decreased conservation (black line) observed as 

the population variability of scCREs increases. (H) (Left) Conservation of protein-coding 

regions, b-cCREs, and scCREs. (Right) Conservation of scCREs by cell type.
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Figure 4. Determining cell-type-specific eQTLs from single-cell data.
(A) Partial UpSet plot with identified scQTLs (from the core analysis) that are unique to 

individual cell types (red) or present across all cell types (blue). Left histogram summarizes 

the log-scaled total number of core scQTLs per cell type. Right histogram summarizes 

the log-scaled total number of Bayesian scQTLs per cell type. More complete plots are 

presented in figs. S36C and S42. (B) Scatter plots comparing absolute eQTL effect sizes 

between single-cell and bulk RNA datasets, highlighting QTLs shared across >14 cell types 

(blue) and unique to one cell type (red). (C) Density plot comparing eQTL effect sizes 

between single-cell and bulk RNA datasets. (D) Histogram with the distribution of scQTLs 

by distance from eGene transcription start site, with normalized distributions highlighted for 

the union of scQTLs across excitatory, inhibitory, and non-neuronal cell types. (E) Boxplot 

showing a significantly higher enrichment of eSNPs in active STARR-seq peaks compared 

to the control group (p<1.0×10−4, Mann-Whitney U Test). Two replicates are shown. (F) 
Scatter plot comparing scQTL effect sizes with allelic ratios of ASE eGenes, or the fraction 

of ASE gene reads originating from the haplotype with the scQTL alternative allele. ASE 

genes were identified in 21 MultiomeBrain cohort samples; cell types are represented with 

the color scheme used in (A). (G) (Top) Chromosome ideogram for the location of eGenes 

in all cell types related to four brain disorders. (Bottom) Schematics for specific instances 
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of scQTLs for disease-related eGenes. Left schematic shows astrocyte-specific eSNP for 

SYNE1 along with chromatin accessibility (snATAC-seq) tracks for eight cell types. Top-

right schematic shows the isoQTL for LYPD6 in Pax6 inhibitory neurons, leading to altered 

expression of isoforms with different start codons. Middle and bottom-right schematics 

show SNP-gene pairs for scQTLs associated with NLGN1 in L4 IT neurons and MAPT 
in astrocytes, respectively. (H) UMAP plot for predicted trajectory of excitatory neurons in 

samples from the SZBDMulti-seq cohort. Box plots highlight the expression of EFCAB13, 

stratified by eSNP genotype in each sample, for cell types in each cortical layer; effect size 

(β) values for the eSNP increase over pseudotime. Additional information is shown in fig. 

S53.
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Figure 5. Building a gene regulatory network for each cell type.
(A) Schematic for the construction of cell-type-specific GRNs based on snRNA-seq, 

snATAC-seq, and scQTL datasets. (B) Change in expression of four genes after CRISPR-

mediated knockout of enhancers identified in cell-type-specific GRNs (blue bars) compared 

with control samples (gray bars). (C) Percent variance in target gene expression explained 

by the networks. Orange squares, blue triangles, and gray diamonds indicate variance 

explained by promoter, enhancer, and merged GRNs, respectively. (D) Changes in 

expression (average Z-score) of target genes in cell-type-specific regulons among samples 

with loss-of-function variants that disrupt the TFs TCF7L2 and STAT2. (E) Network graphs 

depicting a subset of the excitatory (L4 IT) and inhibitory (Chandelier) GRNs that show 

differential usage of enhancers and promoters. Nodes (TFs) are colored in pink, blue, or 

gray to represent out-hubs, bottlenecks, and in-hubs, respectively. Nodes without blue fill 

represent TFs that are absent as bottlenecks in that cell type. Solid orange lines indicate 

proximal links; distal links are indicated by dashed blue lines. (F) Panel representing the 

full set of TFs (y-axis) that act as hubs or bottlenecks in different cell types (x-axis). 

Cells are colored if the TF is found to be a pure hub (magenta) or bottleneck (cyan) in 

the corresponding cell type. (Note hubs here are out-hubs.) The right panel zooms in to 

highlight hubs (top) and bottlenecks (bottom). (G) Motif enrichment analysis bar plots 

showing a stronger enrichment of transcriptional feed-forward loops (illustrated inset) in 

inhibitory neurons (left) and most non-neuronal cell types (right) compared with excitatory 

neurons (center). (H) Co-regulatory network changes of disease gene sets across cell types. 

The white-to-black gradient shows low to high probability (log p-value obtained by random 

sampling, N=10,000)) of a disease gene set or housekeeping genes (H.keep, y-axis) forming 

a dense subnetwork in the corresponding cell type (x-axis) (20). Cell types on the x-axis in 

panels C, D, and F are colored uniquely according to names in panel G.
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Figure 6. Constructing a cell-to-cell communication network.
(A) Schematic for the construction of cell-to-cell communication networks, based on a 

matrix of co-expressed ligand-receptor gene pairs in signaling pathways between sender and 

receiver cell types. Circos plot on the right shows the strength of all identified cell-to-cell 

interactions, highlighting L5 IT to OPC cell types as an example. Note that this model does 

not consider the synaptic connectivity between neurons. (B) Sankey plots for differential 

clustering of incoming interactions in receiver cells across cell types and ligand-receptor 

signaling pathways for control (left) and bipolar disorder (right) samples. For example, 

inhibitory Sst and Sst Chodl cell types were assigned to Pattern 2 in controls, along with 
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the SST-SSTR signaling pathway. This makes sense, as these cell types are predominantly 

characterized by the SST gene. However, in BPD samples, Sst Chodl cells switched from 

Pattern 2 to 3, along with the SST-SSTR signaling pathway. (C) Circos plot showing 

differential strength of all cell-to-cell interactions between individuals with schizophrenia 

and control individuals. Red edges indicate increased interaction strength in schizophrenia 

samples, while blue edges indicate weaker interaction strength. (D) Circos plots showing 

changes in cell-to-cell interaction strengths for ligand-receptor genes in the Wnt signaling 

pathway between individuals with bipolar disorder (left) and schizophrenia (right) compared 

with control individuals. (E) Predicted likelihoods that ligand genes in non-neuronal cells 

(y-axis) regulate schizophrenia-associated risk genes (x-axis) in neuronal cell types, with the 

neurological risk gene MECP2 highlighted in red.
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Figure 7. Assessing cell-type-specific transcriptomic and epigenetic changes in aging.
(A) Normalized changes in the fraction of OPC (gray) and Chandelier cells (blue) by 

age, based on bulk RNA-seq deconvolution (top) and single-cell annotation (bottom), with 

best-fitted lines. (B) Log2-fold changes and p-values from DESeq2 (20) for differentially 

expressed genes in older vs. younger individuals (±70 years) among excitatory, inhibitory, 

and non-neuronal cell types. Values with -log(p)>8 are shown as crosses. (C) (Left) Pearson 

correlation values between model prediction of age and observed age for each cell type and 

baseline model (covariates). (Top right) Predicted and observed age for oligodendrocytes 
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and L2/3 IT neurons along the age spectrum. (Middle right) Transcriptomic profiles along 

the age spectrum of two key genes (MKRN3 and FKBP5) related to aging. (Bottom right) 

Genes demonstrate an increase (light gray) or decrease (dark gray) in expression along 

the age spectrum. (D) tSNE plot of chromatin peaks showing how chromatin patterns in 

microglia stratify younger and older individuals into three distinct clusters. (E) Examples 

of TF binding motifs that display distinct enrichment patterns across cell types and age. (F) 
(Left) Predictive accuracy (AUPRC) of cell-type-specific expression (bars) and methylation 

signatures (gray line) towards AD status. (Right) Enrichment of cell fraction changes among 

individuals with AD. L2/3 IT, Pvalb, and Sst (colored bars) are significantly associated with 

a decreased cell fraction in AD (log-p value, t-test). Gray line shows the overall median cell 

fraction of each cell type in AD individuals.
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Figure 8. Imputing gene expression and prioritizing disease genes across cell types with an 
integrative model.
(A) LNCTP schematic. Bulk and cell-type gene expression levels were imputed from 

genotype using a conditional energy-based model incorporating GRNs and cell-to-cell 

networks. Cell-type-specific nodes with dense connectivity were then incorporated into a 

deep linear model to predict phenotypes in each sample and prioritize cell types and genes 

for each trait. (B) (Left) Imputed single-cell expression values from LNCTP compared 

with observed snRNA-seq expression values, with best-fit lines for all cells and individual 

cell types. (Right) Correlations among imputed expression values for genes in excitatory 

and inhibitory neurons with best-fit lines. (C) Comparison of explained variance in gene 

expression from the LNCTP model with a baseline model using deconvolved, imputed 

bulk expression data and a model that includes only bulk expression data. Colored lines 

indicate the performance of individual cell types in each model (**p<0.01, two-tailed paired 

t-test over gene:cell-type pairs). (D) Schematic for LNCTP model interpretation, showing 

relationships between prioritized intermediate phenotypes for schizophrenia (SCZ, pink), 

bipolar disorder (BPD, orange) and ASD (light orange). Gene:cell-type:disease triplets are 

associated with salience (Sal) and coheritability (Co-h) values (*p<0.05, **p<0.01, two-

tailed t-test; data S30). Significant cell type, GRN, and cell-to-cell associations are shown 

at the latent-embedding layers (p<0.05, two-tailed t-test; data S31–S32). Tree structures 

connect representative subgraphs (feature combinations) in each model (figs. S80–S81). The 

schematic also highlights QTL variants linked to the prioritized genes: (I) eQTL (bulk) 

chr15:60578052, (II) scQTL (Oligo) chr1:216891970, (III) eQTL (bulk) chr9:27902874, 

(IV) scQTL (Oligo) chr11:66017740, (V) eQTL (bulk) chr15:61553688, and (VI) scQTL 

(Astro) chr3:158668177. (Note, we shorten the readthrough transcript ANKHD1-EIF4EBP3 
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to ANKHD1 in ASD.) (E) UpSet plot for SCZ showing overlap between genes with the 

highest saliency per cell type or bulk expression, including four genes highlighted in panel 

D (colored circles). (F) Pearson correlations of LNCTP (excitatory neurons in SCZ) and 

CRISPR perturbation vectors for three example genes, when perturbation directions are 

matched vs. unmatched, and correlations are calculated across imputed genes (*p<0.05, 

one-tailed t-test; Fig. S88).
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