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Reconstructing SARS‑CoV‑2 
lineages from mixed wastewater 
sequencing data
Isaac Ellmen 1,2,3*, Alyssa K. Overton 1, Jennifer J. Knapp 1, Delaney Nash 1,2, Hannifer Ho 1, 
Yemurayi Hungwe 1, Samran Prasla 1, Jozef I. Nissimov 1 & Trevor C. Charles 1,2

Wastewater surveillance of SARS-CoV-2 has emerged as a critical tool for tracking the spread of 
COVID-19. In addition to estimating the relative case numbers using quantitative PCR, SARS-CoV-2 
genomic RNA can be extracted from wastewater and sequenced. There are many existing techniques 
for using the sequenced RNA to determine the relative abundance of known lineages in a sample. 
However, it is very challenging to predict novel lineages from wastewater data due to its mixed 
composition and unreliable genomic coverage. In this work, we present a novel technique based on 
non-negative matrix factorization which is able to reconstruct lineage definitions by analyzing data 
from across different samples. We test the method both on synthetic and real wastewater sequencing 
data. We show that the technique is able to determine major lineages such as Omicron and Delta as 
well as sub-lineages such as BA.5.2.1. We provide a method for determining emerging lineages in 
wastewater without the need for genomic data from clinical samples. This could be used for routine 
monitoring of SARS-CoV-2 as well as other emerging viral pathogens in wastewater. Additionally, it 
may be used to determine more full-genome sequences for viruses with fewer available genomes.
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SARS-CoV-2, the virus which causes COVID-19, has been continuously evolving into new lineages and sub-
lineages since its discovery in humans in 20191–3. New lineages and sub-lineages can differ in virulence, trans-
missibility, symptoms, and other factors that cause public health agencies to categorize them as variants of 
concern (VOCs)3. The genome of SARS-CoV-2 consists of genes in an order similar to previous coronaviruses: 
non-structural ORFs ORF1a and ORF1b followed by structural genes spike (S), envelope (E), membrane (M), 
and nucleocapsid (N)2. The spike protein encoded by the S gene allows interaction with the human angiotensin-
converting enzyme 2 (ACE2) receptor for cell entry during infection and portions of this gene acquire muta-
tions that are more likely to lead to immune escape2–4. The E, M, and N genes encode for packaging proteins2. 
Mutations do not always cause changes in the viral structure or behavior, but can be used as markers to identify 
sub-lineages. Lineages can be monitored using quantitative PCR (qPCR) or digital PCR (dPCR) assays specifically 
designed to target lineage-defining mutations, however, the number of mutations that can feasibly be targeted 
is limited by the short length of the genomic targets required in PCR experiments1. Additionally, development 
of each mutation-targeting PCR assay requires prior knowledge of lineage defining mutations5. Whole genome 
sequencing (WGS) provides an alternative approach that is not constrained by mutation targeting or prior 
knowledge of mutations, but is more time-consuming and expensive6. In practice, most WGS experiments in 
wastewater still require PCR amplification, in a series of overlapping amplicons, however these amplicons are 
typically designed to target more conserved sequences7. Whereas PCR primers often need to be redesigned for 
each new lineage, amplicon panels only need to be redesigned if there is a mutation in a primer-binding site 
which substantially reduces amplification of an amplicon. Clinical sampling provided the first sample material 
for both qPCR and whole genome sequencing of SARS-CoV-28. A large number of clinical samples from tested 
individuals are required to follow trend data in a community. This limitation makes wastewater sequencing an 
attractive alternative as a less invasive way to survey whole communities with fewer samples8. Whole genome 
sequencing and qPCR can be performed on viral RNA extracted from wastewater samples for the purpose of 
variant tracking because SARS-CoV-2 is shed in feces6,9,10. When a new lineage is defined, the constellation of 
mutations that defines it can be searched for in the composite SARS-CoV-2 genomic sequences isolated from 
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wastewater samples and be used to estimate the percentage of that population’s COVID-19 cases which are 
caused by each lineage6. Wastewater sequencing and analysis, known as wastewater-based surveillance (WBS), 
can capture the arrival of new variants in a community if they have previously been defined elsewhere using 
tools which identify lineages based on defined constellations such as Freyja, cojac, and Alcov6,8,11–13. Ideally, WBS 
could be used to track the emergence of variants which have been seen clinically in other parts of the world 
prior to or during early transmission to new regions. Many current WBS variant analysis tools rely on existing 
lineage definitions obtained by analyzing clinical sequencing data14,15. This delays the detection and monitoring 
of emerging variants. Therefore, it would be very useful if WBS analysis did not need to rely on existing lineage 
definitions to detect emerging variants in a community. Additionally, even known lineage definitions are usually 
not specific to regional variants, so the lineage composition predictions which rely on them are usually slightly 
inaccurate as they don’t capture regional mutations due to low prevalence globally16,17. In short, it is difficult to 
track the emergence of new variants in wastewater if we are only looking for variants which have already appeared 
in clinical samples. For instance, current methods would have been incapable of identifying an emerging vari-
ant such as Omicron until it was well-characterized by clinical sequencing. Finally, we would like to be able to 
use wastewater to study poorly characterized viruses such as emerging pathogens. Having the capability to use 
wastewater as a source of discovering all the current variants of a virus would provide useful context early in 
studying zoonotic pathogens, or even plant viruses. As with abundance estimation, the challenges for lineage 
discovery are two-fold: the data is usually composed of a mixture of different lineages and there are often sub-
stantial gaps in coverage. This means that taking a consensus genome from a wastewater sample will usually have 
large gaps (which are called to the reference) and is likely to contain mutations from multiple lineages especially 
if the sample isn’t strongly dominated by a single lineage. However, the frequencies of mutations which belong 
to a particular variant will be correlated within each sample and these correlations will be found across multiple 
samples which contain the same variant. Therefore, if we find mutations which are correlated over many samples 
we may deduce that they belong to the same lineage. This paper illustrates how such deductions can be used to 
reconstruct SARS-CoV-2 lineages in wastewater.

Methods
Code availability
The implementation of the method was written in Python. It has been tested on macOS and is available for 
download at https://​github.​com/​Ellmen/​deriv​ed-​waste​water-​linea​ges.

Preprocessing the samples
Wastewater samples were collected as part of the Wastewater Surveillance Initiative from sites across Ontario 
(Canada). Wastewater sample viral content was concentrated using Nanotrap� Microbiome A Particles (Ceres 
Nanosciences, Inc., 44202). RNA extraction was automated on a QIAcube Connect using QIAGEN RNeasy mini 
kit (QIAGEN, 74116, 9002864). The optional, on-column DNase II treatment step was not performed during 
RNA extraction. RNA was reverse transcribed to yield cDNA using the LunaScript� RT SuperMix Kit, according 
to the manufacturer’s protocol (New England Biolabs, M3010L). SARS-CoV-2 cDNA was then amplified by PCR 
using the ARTIC V4.1 primers (IDT, 10011442) and Q5 High Fidelity 2X Master Mix (NEB, M0492L) according 
to the nCoV-2019 sequencing protocol v3 provided by IDT. ARTIC V4.1 primers are designed to amplify 98 400 
bp amplicons which must be re-assembled during analysis to complete the SARS-CoV-2 genome7. After PCR, a 
0.8X bead to sample ratio of AMPure XP (Beckman Coulter, Inc., A63881) beads were used for sample cleanup 
and PCR fragments were prepared for sequencing using the Illumina DNA Prep kit (20060059) during which 
a size of 350-400 bp was selected. All samples were sequenced using an Illumina MiSeq using 2x250 reads and 
V2 chemistry (MS-102-2003).

The resulting read fastq data was processed by Gromstole1.018 which runs cutadapt19 and minimap220 to trim 
and map the reads to a reference. Gromstole determines the frequency of each observed mutation (i.e., difference 
from the reference sequence) in a sample and saves the mutation frequencies, and positional depth of coverage 
in CSV files. We parsed the CSVs to determine the set of all mutations which were observed at least once with 
a depth of at least 20 reads. Empirically, the 20 read cutoff prevented the inclusion of mutations which were the 
result of sequencing errors or contamination. Samples were then encoded as vectors wherein each element cor-
responds to the observed frequency of a given mutation in that sample.

Imputing data from amplicon dropouts
All of our data vectors must have the same dimension, so we must have a value for the frequency of each muta-
tion. This is sometimes problematic because we often get dropout of amplicons, due to a lack of PCR amplifica-
tion over certain genomic regions, and as a result do not have information about the mutations located within 
dropped amplicons. To solve this, we impute missing data using a k-nearest neighbours (KNN) model. KNN 
imputation has been used in a similar setting to fill in gaps in DNA micro-array data21. KNN finds the k most 
similar data points (samples) and fills in the missing mutations with the average of their frequencies. This means 
that the missing mutation frequencies have a tendency to be filled in with values from samples with similar line-
age abundances. We used the standard scikit-learn22 implementation of KNN imputation with its default value 
of k = 5  . Imputing from the 5 nearest neighbours was a reasonable balance between having enough similar 
samples without imputing from samples which were too dissimilar.

Non‑negative matrix factorization
As discussed, we cannot assume that each variant will be present at the consensus level. Additionally, the fre-
quencies of mutations in a sample are highly variable, so each sample may not show an accurate snapshot of 
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the lineages it contains. However, we know that on average, the frequency of a given mutation in our sample 
will be the sum of the abundances of the lineages which contain that mutation. This means that frequencies of 
mutations which are contained in the same lineage will be correlated across different samples. Our task then is to 
determine which mutation frequencies tend to be correlated (increase and decrease together) across all samples, 
and predict that those mutations form a lineage.

To solve this problem, we use a technique called non-negative matrix factorization (NMF) which is similar 
to PCA.

NMF has been used to find similar types of patterns in image data and facial recognition programs24.
NMF optimizes the loss function in Eq. (1):

Where ||X||2Fro =
∑

i,j A
2
ij is the Frobenius norm of a matrix and the optimization is subject to the additional 

constraint that all entries of W and H be non-negative. In our task, X corresponds to the observed mutation 
frequencies within each sample. Then, we seek to find matrices W and H which correspond to lineage frequen-
cies per sample, and mutation frequencies per lineage such that their product is as close as possible to X. If there 
are m idenitified mutations, s samples, and n lineages then X is s×m , W is s×n , and H is n×m . The rows of H 
are also called the components, and the number of components, n is a parameter of the model. Since positive 
linear combinations of the components of H are used to approximate the observed mutation frequencies, each 
component corresponds to a lineage where the non-zero elements are mutations which are present in that 
predicted lineage. Similarly, the non-negative elements of W correspond to the predicted frequency of each 
lineage in each sample. Crucially, with enough data, we can predict the lineages and frequencies without any 
prior knowledge of real variants.

NMF is conceptually similar to PCA with two key differences. The first difference is that the learned values 
are all positive which is important since lineage frequencies and mutation frequencies are positive. The second 
difference is that the learned components need not be orthogonal. This allows us to learn similar lineages with 
overlapping mutations, such as subvariants. NMF can also be trained to minimize the ℓ1  norm of the learned 
matrices which encourages sparseness. This is desirable since the vectors correspond to lineage definitions. 
Since there are tens of thousands of possible mutations and each lineage only contains tens to hundreds, the 
lineage definitions should be sparse26, however we found the learned solutions were sparse without the need 
for regularization.

We used the scikit-learn implementation of NMF which minimizes the l2 error using the coordinate descent 
algorithm described in27.

A framework for finding conserved lineages
The strategy we devised for extracting lineage definitions from our wastewater samples is illustrated in Fig. 1 
and described as follows: 

1.	 The samples are run through Gromstole1.0 to extract the mutation frequencies from SARS-CoV-2 fastq 
reads.

2.	 The frequencies of each mutation are recorded for each sample, where mutations with a coverage of less than 
20 reads are omitted.

3.	 The samples are cast as vectors where each entry corresponds to the frequency of each of the observed muta-
tions.

4.	 Missing data in each of the sample vectors is imputed using KNN imputation with k = 5.
5.	 NMF is run on the samples to find n components where n is the number of lineages which are thought to be 

present.
6.	 The learned NMF vectors are normalized (divided by the maximum value) so that the highest value of each 

is 1.

(1)L(W ,H) = 0.5 ∗ ||X −WH||2Fro

Figure 1.   Overview of our proposed method for determining viral variant genomes from wastewater samples.
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7.	 For each lineage vector, all mutations which have a corresponding value of at least 0.25 are included in that 
lineage’s definition. The 0.25 cutoff was chosen instead of 0.5 to be sensitive enough to capture mutations 
even when some samples are incorrectly imputed to 0.

8.	 The mutations are applied to the reference genome of SARS-CoV-2 to create fasta files which can be fed into 
downstream phylogenetic analysis tools to classify which lineage/sub-lineage they represent.

Results
Finding lineages in simulated reads
Synthetically combined datasets with known frequencies are a valuable control and self-test when developing 
wastewater data analysis techniques. One such dataset has been created to test frequency prediction tools by28, 
available on Github (https://​github.​com/​sgsut​cliffe/​ww_​bench​mark), which we used to test our method’s ability 
to detect known lineages.

The dataset contained simulated reads from 35 genomes, representing four major SARS-CoV-2 lineages (BA.1, 
BA.2, Delta, and a “deltacron” recombinant lineage) as well as a synthetic SARS-CoV-2 lineage which contained 
random mutations. The dataset was composed of 100 simulated samples with different combinations of the five 
lineages and some with simulated amplicon dropout. The proportion of each lineage in a sample ranged from 
as little as 1% to 100%.

We ran the method on the 100 simulated samples and identified 5 NMF components (corresponding to the 
five lineage definitions included in the dataset). Note that this tool requires the user to input the number of line-
ages to identify in the sample. The five predicted lineages (NMF components) were run through Nextclade29, a 
tool that performs sequence alignment, mutation calling, and clade assignment for various pathogens including 
SARS-CoV-2, as Pangloin struggles with recombinant lineages making it unsuitable for this analysis. As expected, 
Nextclade classified the five predicted lineages as BA.1.18 (BA.1), AY.4 (Delta), BA.2.3 (BA.2), B (undetermined 
synthetic), and XS (Deltacron).

Accession numbers for each of the 34 genomes which were used to simulate the reads are available on GitHub 
(https://​github.​com/​sgsut​cliffe/​ww_​bench​mark/​blob/​main/​conse​nsus_​linea​ges.​txt). Each of these sequences 
were downloaded from GISAID and classified with Nextclade, alongside the five predicted sequences from our 
method. Nextclade predicted a range of BA.1, BA.2, and Delta sub-lineages. All deltacrons were predicted to be 
XS which corresponded with our predicted deltacron sequence. The synthetic genome was not included since it 
was not uploaded to GISAID. We downloaded the alignment from Nextclade and built a neighbour joining (NJ) 
tree using Seaview30, shown in Fig. 2. Our predicted lineages are highlighted in yellow and clearly cluster with 
the four major lineages. Additionally, our fourth predicted lineage, “lineage4” clusters distinctly alone, which 
would be consistent with a synthetic genome containing random mutations. Therefore, our method was able to 
pick out the four real major lineages in the simulated dataset, as well as the novel synthetic lineage.

hCoV-19/Canada/BC-BCCDC-326252/2022|EPI_ISL_9757034.|2022-01-03

hCoV-19/England/ALDP-335E483/2022|EPI_ISL_9173628.|2022-01-19

hCoV-19/Scotland/QEUH-320BC60/2022|EPI_ISL_8822590.|2022-01-05

hCoV-19/Canada/AB-ABPHL-47244/2021|EPI_ISL_8595541.|2021-12-15

hCoV-19/Scotland/QEUH-35F1D58/2022|EPI_ISL_9898641.|2022-02-07

hCoV-19/Denmark/DCGC-348305/2022|EPI_ISL_9505648.|2022-01-23

hCoV-19/Germany/ST-RKI-I-528761/2022|EPI_ISL_10021450.|2022-02-01

hCoV-19/England/BRBR-31D0D35/2022|EPI_ISL_8755967.|2022-01-08

hCoV-19/India/un-LNHD7/2021|EPI_ISL_7877191.|2021-12-14

hCoV-19/Russia/SPE-RII-6094S/2021|EPI_ISL_7891529.|2021-12-17

hCoV-19/Switzerland/BS-UHB-43321728/2022|EPI_ISL_9755871.|2022-02-02

hCoV-19/Denmark/DCGC-331760/2022|EPI_ISL_9163335.|2022-01-20

hCoV-19/Indonesia/KR-NIHRD-WGS-22-00433/2022|EPI_ISL_9468151.|2022-01-05

hCoV-19/Scotland/QEUH-3970F93/2022|EPI_ISL_11035940.|2022-03-06

hCoV-19/Scotland/QEUH-377A098/2022|EPI_ISL_10337543.|2022-02-18

hCoV-19/Singapore/2437/2022|EPI_ISL_11019970.|2022-03-06

hCoV-19/Germany/RP-RKI-I-517374/2022|EPI_ISL_10005779.|2022-02-01

hCoV-19/England/MILK-34B1872/2022|EPI_ISL_9582210.|2022-01-30

hCoV-19/England/LSPA-34C0C65/2022|EPI_ISL_9586229.|2022-01-27

hCoV-19/Australia/QLD2568/2021|EPI_ISL_7190366.|2021-12-01

hCoV-19/USA/NJ-CDC-ASC210553978/2022|EPI_ISL_10389339.|2022-02-12

hCoV-19/USA/PA-CDC-LC0474055/2022|EPI_ISL_8981824.|2022-01-04

hCoV-19/USA/PA-CDC-LC0474301/2022|EPI_ISL_8981459.|2022-01-04

hCoV-19/USA/NJ-CDC-ASC210553977/2022|EPI_ISL_10389336.|2022-02-12

hCoV-19/Scotland/QEUH-1797A51/2021|EPI_ISL_2729292.|2021-06-23

hCoV-19/England/ALDP-17411AC/2021|EPI_ISL_2701451.|2021-06-15

hCoV-19/Denmark/DCGC-208970/2021|EPI_ISL_6723534.|2021-11-03

hCoV-19/Canada/BC-BCCDC-188298/2021|EPI_ISL_4833392.|2021-08-28

hCoV-19/Finland/11593/2021|EPI_ISL_4093267.|2021-07-26

hCoV-19/England/RAND-14DD366/2021|EPI_ISL_1631836.|2021-04-06

hCoV-19/Slovenia/5C-039815-KP/2021|EPI_ISL_5105429.|2021-09-17

hCoV-19/Denmark/DCGC-129368/2021|EPI_ISL_3028262.|2021-07-16

hCoV-19/Japan/IC-1701/2021|EPI_ISL_3392341.|2021-07-31

hCoV-19/Sweden/5464031987/2021|EPI_ISL_2793160.|2021-06-19

BioNJ 29592 sites J-C 0.0002

Delta

XS

BA.2

BA.1

Synthetic

Figure 2.   Phylogenetic tree (NJ) showing how the predicted lineages cluster with the isolates that were used to 
simulate the reads. Predicted lineages are highlighted in yellow. Predicted lineage 4 clusters alone, and is likely 
the dataset’s novel synthetic lineage.

https://github.com/sgsutcliffe/ww_benchmark
https://github.com/sgsutcliffe/ww_benchmark/blob/main/consensus_lineages.txt
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Finding major VOCs across all samples
Ongoing wastewater collection for surveillance from sites across Ontario (Canada) provided an environmental 
dataset of raw SARS-CoV-2 amplicon sequencing data. All available data at the time of download (1026 samples 
collected between October 2021 and June 2022) from our routine sequencing of Ontario wastewater was pro-
cessed using NMF with 3 components so that 3 lineages would be predicted. We applied the mutations listed in 
the predicted lineages to the SARS-CoV-2 reference genome to create a fasta with the sequence for each NMF-
predicted lineage. We ran Pangolin31 on the resulting fastas to assign a lineage to each of them. Pangolin also 
runs a tool called Scorpio which assigns lineages and provides a confidence score for the particular lineage call. 
The predicted lineages for Pangolin and Scorpio along with the Scorpio support values are shown in Table 1.

The three NMF-predicted lineages were BA.2, BA.1.1, and B.1.617.2. All three of these were highly abundant 
in clinical sequencing data in Ontario during the time frame that we analyzed. B.1.617.2 is the parent lineage for 
all delta sub-lineages which were dominant in Ontario before being replaced by Omicron (BA.1.1). Eventually 
BA.2, another Omicron sub-lineage, replaced BA.1.132. Together, these give an accurate snapshot of the most 
significant lineages in Ontario between October 2021 and June 2022.

We downloaded the frequency of each mutation for the three predicted lineages from outbreak.info and 
compared them to the learned mutation values33. Figure 3 shows the values for the spike mutations next to the 
frequency with which those values are observed in clinical sequences. For NMF-predicted lineages, the value 
is the normalized value from that lineage’s learned NMF component. For known lineages, the value is the pro-
portion of known clinical genomes which contain that mutation. In general, the predicted lineages agree well 
with their analogous known lineages. The lineages on outbreak.info do not include synonymous mutations or 
insertions. Some mutations may represent legitimate local variation (like S:A222V), albeit with poor coverage 
and therefore a small sample size. The confidence and accuracy of the predictions decreases with each consecu-
tive lineage which is logical because the components in NMF are ranked according to their relative importance.

Table 1.   Lineage assignments for each of the NMF-predicted lineages from all samples. The predicted lineages 
were all highly abundant in Ontario when these samples were collected32. Both Pangolin and Scorpio agree on 
all three and Scorpio indicates strong support for the predicted lineages (Pangolin does not provide support 
values)

Isolate Lineage Scorpio call Scorpio support

Lineage1 BA.2 Omicron (BA.2-like) 0.97

Lineage2 BA.1.1 Omicron (BA.1-like) 0.88

Lineage3 B.1.617.2 Delta (B.1.617.2-like) 0.92

Figure 3.   Heatmap showing the learned spike mutation values of the predicted lineages next to the 
frequency with which those mutations are observed in the corresponding lineage according to outbreak.info. 
Nonsynonymous mutations which cause the same amino acid change are grouped together and labelled by the 
amino acid change.
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Figure 4 plots the values for the N gene. All mutations which are predicted to be significant agree with the 
outbreak.info data, including the variable presence of N:G215C in Delta. The N gene carries fewer mutations than 
the S gene and has much better coverage which probably leads to increased accuracy in the predicted lineages.

Finding SARS‑CoV‑2 sub‑lineages in a single run
We also ran the NMF method to look for two lineages in a single sequencing run with samples from across 
Ontario in late June 2022. The lineage predictions are shown in Table 2.

Using samples from a single run, the method was able to accurately predict the two major Omicron lineages 
in Ontario at the time, BA.2 and BA.5. Surprisingly, the method was able to pick up all mutations with enough 
accuracy to predict specific sub-lineages of the two. Both of these sub-lineages have been identified in Ontario 
at the time according to outbreak.info, although the prevalence of BA.5.2.1 in clinical cases is lower than the 
prevalence predicted in wastewater using known lineage prediction pipelines (i.e., Alcov)11,34.

We plotted the predicted values of the spike mutations for the two sub-lineages, which are shown in Fig. 5. 
BA.2 and BA.5 are very similar which can pose a challenge for the method but it was able to identify distinguish-
ing mutations such as S:F486V.

It is worth noting that sub-lineages are notoriously difficult to distinguish in wastewater, even when muta-
tions are known. This is because closely-related sub-lineages are usually only differentiated by a few mutations 
and the frequency of those mutations can vary widely from sample to sample. Our primary aim was to develop 
a method which is capable of discovering SARS-CoV-2 lineages and mutations without the need for clinical 
sampling or WBS. Surprisingly, we are able to identify the mutations with such accuracy that not only can we 
deduce the major lineages which are present in a sample, but also accurately identify the specific sub-lineages 
which are most abundant without the need for lineage definitions. The accuracy likely comes from the ability of 
the method to pool information from multiple samples which works to smooth and reduce some of the noise 
within individual samples.

Figure 4.   Heatmap showing the learned N gene mutation values of the predicted lineages next to the 
frequency with which those mutations are observed in the corresponding lineage according to outbreak.info. 
Nonsynonymous mutations which cause the same amino acid change are grouped together and labelled by the 
amino acid change.

Table 2.   Lineage assignments for each of the NMF-predicted lineages from a single run in late June 2022. The 
method accurately predicts BA.5 and BA.2 including sub-lineages which have been found in clinical samples 
with very high scorpio support.

Isolate Lineage Scorpio call Scorpio support

Lineage1 BA.5.2.1 Omicron (BA.5-like) 0.97

Lineage2 BA.2.12.1 Omicron (BA.2-like) 0.97
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Discussion
Here, we present a new method for determining the RNA sequences of SARS-CoV-2 variants from wastewater 
data, without prior lineage definitions, which could be used in surveillance programs. The method uses NMF 
to deconvolute the mixed data into single lineages. We show that the method is capable of reconstructing real 
SARS-CoV-2 lineages down to the sub-lineage level from mixed samples, as demonstrated on experimental and 
synthetic datasets.

We provide a starting point for using wastewater sequencing data to determine lineages without relying on 
clinical sequencing for lineage definitions, however some technical challenges remain. In practice, the number 
of lineages circulating in a given region has been low for much of the SARS-CoV-2 pandemic, but it would be 
useful to automatically determine this number, rather than needing to input a value. If the number were auto-
matically determined this would also be useful in deconvoluting closely related sub-lineages such as those seen 
more recently with BQ.1* and XBB*29. Currently, the number can be adjusted based on the desired resolution. For 
instance if only parental lineages are required a low number should be used, whereas closely related sub-lineages 
can be predicted by setting this number higher. Additionally, the imputation of missing values likely introduces 
error into the lineage predictions. It may be possible to modify the optimizer during the matrix factorization to 
simply ignore missing values in the distance calculation, removing the need for imputation.

In contraast to lineage identification tools, none of the lineages predicted in by our method were previously 
known to the model11–13. The ability to predict lineages without constellations or definitions of those lineages 
would allow lineages to be identified before a sufficient number of clinical sequences has been sequenced to define 
a new lineage. In this study existing data was used to verify that any predicted lineages defined by the model can 
be trusted, by showing that they align with true SARS-CoV-2 lineages from the clinical and wastewater data at 
that time. Additionally, the predicted presence of the novel synthetic genome from the bench-marking dataset 
demonstrates the model’s ability to predict lineages for which there are no clinical genomes. The NMF-predicted 
lineages from the methods described in this study could be manually curated and used to propose lineage defini-
tions after clinical sequencing of SARS-CoV-2 becomes infrequent or before clinical sequencing programs are 
established in future pandemics.

While SARS-CoV-2 wastewater sequencing has been of great interest during the COVID-19 pandemic, there 
are many other viruses which could benefit from this method. For instance, our method could be used to deter-
mine lineages for understudied plant viruses or seasonal influenza and RSV outbreaks. A similar method may be 
of interest outside of wastewater contexts, such as epigenetic sequencing of human cell cultures, or sequencing 
mixed viral populations within a single patient. Our method is quite flexible, requiring only a reference genome, 
the locations of genes on the reference for naming mutations, and the desired number of lineages to predict.

Conclusion
Herein, we present a method for determining viral lineage sequences from mixed samples in wastewater. Whereas 
much existing literature aims to determine the abundance of known lineages, our method enables the determina-
tion of novel lineages. We show the efficacy of the method both on synthetic and real SARS-CoV-2 wastewater 
sequencing data. On the synthetic dataset, the inferred genomes cluster appropriately with the genomes used 

Figure 5.   Heatmap showing the learned spike mutation values of the predicted lineages in the single run. 
Nonsynonymous mutations which cause the same amino acid change are grouped together and labelled by the 
amino acid change.
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to generate the data. On the real data, the inferred genomes match known lineages which were circulating in 
Ontario while the data was collected. Together, this provides a method for determining emerging lineages from 
wastewater without the need for existing clinical sequences. It may also be used to determine lineages of less-
studied viruses such as plant viruses in wastewater.

Data availability
The raw wastewater sequencing data which was used as a test dataset is available at bioproject PRJNA1027858 
on the Sequence Read Archive https://​www.​ncbi.​nlm.​nih.​gov/​biopr​oject/​PRJNA​10278​58.
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