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mRNA vaccines in tumor targeted 
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Abstract 

Malignant tumors remain a primary cause of human mortality. Among the various treatment modalities for neo-
plasms, tumor vaccines have consistently shown efficacy and promising potential. These vaccines offer advantages 
such as specificity, safety, and tolerability, with mRNA vaccines representing promising platforms. By introducing 
exogenous mRNAs encoding antigens into somatic cells and subsequently synthesizing antigens through gene 
expression systems, mRNA vaccines can effectively induce immune responses. Katalin Karikó and Drew Weissman 
were awarded the 2023 Nobel Prize in Physiology or Medicine for their great contributions to mRNA vaccine research. 
Compared with traditional tumor vaccines, mRNA vaccines have several advantages, including rapid preparation, 
reduced contamination, nonintegrability, and high biodegradability. Tumor-targeted therapy is an innovative treat-
ment modality that enables precise targeting of tumor cells, minimizes damage to normal tissues, is safe at high 
doses, and demonstrates great efficacy. Currently, targeted therapy has become an important treatment option 
for malignant tumors. The application of mRNA vaccines in tumor-targeted therapy is expanding, with numerous clini-
cal trials underway. We systematically outline the targeted delivery mechanism of mRNA vaccines and the mechanism 
by which mRNA vaccines induce anti-tumor immune responses, describe the current research and clinical applica-
tions of mRNA vaccines in tumor-targeted therapy, and forecast the future development trends of mRNA vaccine 
application in tumor-targeted therapy.
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Background
Although there have been considerable advancements 
in cancer treatment, malignant tumors still remain a 
primary cause of human mortality [1]. Conventional 
modalities such as surgery, chemotherapy, and radio-
therapy remain widely utilized. Additionally, immune 
checkpoint inhibitors (ICIs) have pioneered novel 
avenues in tumor-targeted therapy, showing efficacy 
across diverse malignancies [2]. The growing land-
scape of tumor-targeted therapy offers hope to can-
cer patients. This innovative modality enables precise 
tumor cell targeting, minimizes damage to normal 
tissues, is tolerable at high doses, and demonstrates 
significant therapeutic efficacy [3]. mRNA vaccines 
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represent a novel technology at the intersection of 
molecular biology and immunology and is at the fore-
front of gene therapy (Table  1). In these vaccines, 
exogenous antigens encoded by mRNA are introduced 
into somatic cells, promoting the synthesis of antigenic 
proteins. This concurrent activation of the body’s 
principal immune mechanisms, namely, cellular and 
humoral immunity [4, 5], underscores the pivotal role 
of mRNA vaccines in tumor-targeted therapy. In recent 
decades, great strides in experimental techniques have 
catalysed the widespread utilization of mRNA vaccines 
across diverse domains, with an emphasis on tumor-
targeted therapy. Currently, mRNA vaccines are used 
for the treatment of various diseases, yielding favour-
able outcomes [6–10]. (Fig.  1). This review compre-
hensively discusses the targeted delivery mechanisms 
of mRNA vaccines and their pivotal role in tumor-
targeted therapy. It explores in detail the processes by 
which mRNA vaccines activate the immune system to 
recognize and attack tumor cells. Furthermore, this 
review explores the role of mRNA vaccines in modu-
lating the tumor microenvironment, emphasizing their 
potential to enhance anti-tumor efficacy by optimizing 
the working conditions of immune cells. A thorough 
assessment of the research and application progress 
of mRNA vaccines in tumor-targeted therapy is pre-
sented, including numerous clinical trials that dem-
onstrate their actual effectiveness and potential across 
multiple cancer types. Finally, this review anticipates 
future trends in this field, which are expected to fur-
ther advance the development of mRNA vaccines in 
cancer treatment. Through this review, we aim to pro-
vide readers with a comprehensive and in-depth per-
spective that aids in understanding the central role of 
mRNA vaccines in cancer therapy and their promising 
future prospects.

Overview of mRNA vaccines: principle, 
classification, synthesis and biomarkers
mRNA vaccines are based on the "central dogma" of 
molecular biology and involve the optimization, chemi-
cal modification, and purification of mRNAs with spe-
cific antigens [34]. There are two main types of mRNA 
vaccines: self-amplifying (SAM) and nonreplicating 
vaccines [35]. SAM vaccines alter a virus’s genome to 
include mRNAs encoding antigens, allowing self-replica-
tion without viral protein synthesis and increasing safety 
and efficiency. Nonreplicating vaccines contain only 
full-length mRNAs encoding the antigen, with a 5’ cap 
structure and 3’ poly(A) tail. Despite their simple struc-
ture and direct antigen focus, they have the drawbacks of 
a short half-life and low in vivo antigen expression [36], 
necessitating higher doses for effectiveness. The genera-
tion of designed DNA templates into an RNA strand is 
guided by the principle of base complementarity [37]. 
This process is accomplished through in vitro transcrip-
tion (IVT), which involves sequence construction, IVT, 
capping, and tailing, is the primary method for synthe-
sizing mRNA vaccines [38]. DNA templates for IVT 
must have an open reading frame (ORF), a 5’ UTR and 
3’ UTR, and for self-amplification, a long ORF. The ORF 
contains start and stop codons [39], allowing splicing for 
mature mRNA production. The 5’ UTR and 3’ UTR regu-
late mRNA stability and translation [40]. The primary 
challenge facing IVT mRNAs is their immunogenicity. 
To address this issue, modifications using nucleotides 
can increase RNA stability and minimize immunogenic-
ity. Among various nucleotide modification methods, 
chemical alterations, poly(A) tail addition, and sequence 
optimization are commonly employed [15]. Furthermore, 
mRNA purification is crucial for eliminating immuno-
genic properties [41]. Purification techniques mainly 
include different chromatographic methods (e.g., high-
performance liquid chromatography (HPLC) [42], ion 

Table 1  Breakthroughs of mRNA vaccines in research

Year Breakthrough in mRNA vaccine research References

1990 Concept proposal of mRNA vaccines  [11]

1995 mRNA tested as cancer vaccine (in mice)  [12]

2000 Exploration of mRNA as a novel vaccine approach  [13]

2002 The first clinical trial with ex vivo DCs transfected with mRNA against cancer  [14]

2006–2008 mRNA modifications to enhance stability and efficacy, leading to improved performance and lon-
gevity in vaccine applications and therapeutic interventions

 [15–18]

2010 Significant Progress of mRNA technology in infectious disease vaccines  [19]

2012 Intranodal delivery of mRNA transfects DCs and elicits anti-tumor immunity  [20]

2013 Debate on type I IFN in efficacy and safety of mRNA vaccines  [21]

2020–2022 FDA approval of two mRNA vaccines of COVID-19  [22, 23]

2022 to present Research and clinical trials on personalized mRNA cancer vaccines  [24–26]
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exchange [43], size exclusion [44], affinity [45], and Fast 
protein liquid chromatography (FPLC) [46]), adsorption 
[47], and membrane technology [41]. The cap structure 
shields mRNA from exonuclease degradation, ensur-
ing mRNA stability and enhancing translation efficiency 
[48]. Methylation can be utilized to cap mRNAs in three 
primary forms: Cap0, Cap1, and Cap2. Traditional enzy-
matic capping is achieved by enzymatic capping [49], 
which involves RNA 5’-triphosphatase (RTPase) hydro-
lysing the 5′ end of RNA, which transfers guanosine 
monophosphate (GMP) via guanylyltransferase (GTase) 
to form a cap structure (m7GpppNp), which can be fur-
ther modified to cap1 (m7GpppN1mp) or cap2 through 
2’-O-methyltransferase. Cotranscriptional capping with 

a Cap analogue (m7GpppG) is also a common method 
[50] used during mRNA transcription [51]. However, 
studies have indicated that capping analogues may dis-
rupt mRNA binding, affecting translation efficiency by 
hindering ribosome recognition and proper 5’ end deter-
mination [52, 53]. Adding a poly(A) tail is essential for 
ensuring the stability of mRNA after transcription [54]. 
There are two main methods used for adding poly(A) 
tails to mRNAs. The first involves traditional enzymatic 
polyadenylation, in which the poly(A) tail is added to the 
3’ end of the mRNA without changing the length of the 
tail [55]. The other method involves obtaining a poly(A) 
tail of controllable length by formatting a fixed-length 
poly(A) sequence on the basis of a DNA template and 

Fig. 1  Application field of mRNA vaccines. Legend: The mRNA vaccine delivery systems primarily encompass three categories: 1) Carrier-based 
delivery systems, including lipid nanoparticles (LNPs), cationic nanoemulsions (CNEs), cationic peptides (e.g., protamine), viral replicating particles 
(VRPs), and polymers. 2) Dendritic cell mRNA delivery systems (DCs mRNA). 3) Naked mRNA. Presently, mRNA vaccines are predominantly 
employed in the treatment of various diseases, such as: 1) Cardiovascular diseases, including myocardial infarction and heart failure [6]. 2) Metabolic 
diseases, such as muscular dystrophy [7] and porphyria [8]. 3) Genetic disorders, including glycogen storage disease [9]. 4) Allergic diseases, such 
as food allergies [27]. 5) Infectious diseases, including human papillomavirus (HPV) [28], Corona Virus Disease 2019 (COVID-19) [29], and human 
immunodeficiency virus (HIV) [30], among others. 6) Tumors, such as prostate cancer [10] and glioma [31], among others. Naked mRNA vaccines 
are primarily utilized in the treatment of tumors [32] and infectious diseases [33]. DC-loaded mRNA vaccines are mainly applied in the treatment 
of tumors [10]
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transcribing it [56]. The ideal length of the poly(A) tail 
falls within the range of 120 to 150 nucleotides [57–59]. 
Research on biomarkers for mRNA vaccines remains 
limited, encompassing two primary areas: 1) Immu-
nophenotyping. Studies have indicated that immunophe-
notyping can reflect the expression levels of immune 
checkpoint (ICP) and immunogenic cell death (ICD) 
regulators, suggesting its potential as a therapeutic bio-
marker for mRNA vaccines [60]. 2) Tumor antigens. Lin 
et al. identified six genes that may serve as vaccine targets 
and stimulate antigen-presenting cell (APC) activation 
in glioblastoma (GBM), suggesting that these genes are 
potential biomarkers for mRNA vaccines [61]. Another 
study demonstrated that patients with malignant meso-
thelioma (MESO) characterized by high expression of the 
oncogene fibronectin 1 (FN1) may develop resistance to 
mRNA vaccination. Consequently, the authors suggest 
that FN1 could serve as a potential biomarker for mRNA 
vaccines [62]. However, these studies are primarily bio-
informatics analyses, and further exploration through 
in vitro and in vivo studies is necessary to elucidate the 
biomarkers associated with mRNA vaccines.

Targeted delivery mechanism of mRNA vaccines
A reliable and secure targeted delivery mechanism is 
highly important for the progress of mRNA vaccine tech-
nology [63]. Currently, several mRNA delivery systems 
are known, including, Carrier based delivery system, 
naked mRNA and the dendritic cell-mRNA delivery sys-
tem (DCs-mRNA) [64](Table 2).

Carrier based delivery system
Two major types of carrier molecules have been uti-
lized in nucleotide delivery systems: viral carriers and 
non-viral carriers [98]. However, owing to associated 
limitations such as potential immunogenicity, tumo-
rigenicity, and low drug loading, the use of viral carriers 
has been limited. Conversely, nonviral carriers, includ-
ing liposomes and their derivatives [65], polymers [70], 
virus-like replicon particles [73], cationic nanoemulsion 
(CNE) [77], and cationic cell-penetrating peptides (CPP) 
[84, 85], have garnered significant attention. Among 
these carriers, liposomes and their derivatives, particu-
larly lipid nanoparticles (LNPs) [99, 100], stand out as 
widely employed delivery systems. LNPs typically have 
four key components: ionizable amino lipids, cholesterol, 
polyethylene glycol lipids, and auxiliary lipids such as 
double stearyl phosphatidylcholine (DSPC) [101–103]. 
LNPs, which are approximately 100 nm in diameter, are 
strikingly similar in both size and composition to vari-
ous viral entities, mirroring the dimensions of infectious 
agents such as the SARS-CoV-2 virus (approximately 100 
nm), influenza A virus (ranging from 80 to 120 nm), and 

mature HIV particles (approximately 100 nm in diameter) 
[104]. Post-administration, LNPs are dynamically trans-
ported to cells expressing lipid or scavenger receptors 
akin to natural apolipoprotein conveyance. LNPs offer 
notable advantages, including high delivery efficacy [105] 
and commendable biocompatibility. Polymer materials 
primarily feature cationic liposome polymers (LPPs) with 
a positive charge that are proficient in mRNA encapsu-
lation to enable protein expression while mitigating deg-
radation risks. However, these methods have limitations 
such as polydispersity and macromolecule elimination 
[106]. Lipid nanoparticles (LNPs) exhibit high mRNA 
encapsulation efficiency and effective cellular transfec-
tion, coupled with robust tissue penetration, low cytotox-
icity and immunogenicity, and potent adjuvant properties 
[66–68]. However, LNPs are prone to degradation and 
exhibit relatively poor stability during storage, tending 
to aggregate and fuse [69]. Nevertheless, numerous pre-
clinical and clinical trials have confirmed that LNPs hold 
promising potential as mRNA vaccine carriers, capable 
of effectively activating immune responses. Continuous 
technological advancements have led to LNPs with more 
complex structures and enhanced physical stability [107], 
yielding substantial achievements in the innovation of 
vaccine delivery systems [71]. LPPs encompass diverse 
materials like polyethyleneimine (PEI) [108], polyam-
ide amine (PAMAM) dendritic polymer [109], dendritic 
macromolecular polypropylene imine [pol (propylene 
imine), PPI], polyurethane [poly (aminoester), PAE], and 
polysaccharides [110]. Polyethylenimine (PEI) has been 
shown to enhance endosomal escape, protect mRNAs 
from degradation, and facilitate safe release into the cyto-
plasm [111]. However, the low purity and high molecular 
weight of polymer-based delivery vectors, coupled with 
their high charge density, can result in significant cyto-
toxicity [72]. Cationic peptides, characterized by cations 
or amphiphilic amino groups (e.g., arginine) in the main 
and side chains, facilitate mRNA delivery. Notably, pro-
tamine, a renowned cationic peptide for mRNA trans-
port [86], forms nanosized complexes with mRNAs to 
safeguard against RNA enzyme degradation and stabi-
lize immunogenicity across temperatures while preserv-
ing the efficacy of antigen-encoded mRNA vaccines [87]. 
Protamine can spontaneously condense mRNA through 
electrostatic interactions, thereby protecting the encap-
sulated mRNA from degradation by extracellular RNases 
[88, 89]. Additionally, protamine-mRNA complexes can 
function as adjuvants, activating TLR7/8 to elicit innate 
immune responses [90]. The combination ratio and bind-
ing strength between protamine and mRNA can have 
implications for the translation process, potentially lim-
iting vaccine protein expression efficiency and overall 
vaccine effectiveness [91]. Viral replicon particles (VRPs) 
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have the capacity to encapsulate self-amplifying RNA 
(saRNA)-encoded antigens and facilitate their transpor-
tation to the cytosol. In vitro synthesis of viral structural 
proteins allows for their encapsulation as saRNAs encod-
ing specific antigens. Numerous studies have highlighted 
the therapeutic potential of mRNA vaccines delivered 
via VRPs against a spectrum of viral diseases, bacterial 
diseases, and cancer [74]. It enhances RNA replication, 
triggers innate immune responses, and promotes the 
maturation of dendritic cells. However, it also has the 
drawback of inducing neutralizing antibody responses 
against the viral surface [75, 76]. CNE can enhance the 
efficacy of mRNA vaccines by binding to saRNA in a 
pH-dependent manner, comprising nanoemulsions and 
cationic lipids. Nanoemulsions can be generated via tech-
niques such as ultrasound, microfluidics, and vigorous 
stirring [78]. Notably, among the CNE components, the 
cationic lipid 1.2-diol sn glycerol-3-phosphate choline 
(DOTAP) stands out for its positive charge, being emulsi-
fied with MF59, the identical adjuvant component of the 
lotion [79]. Additionally, a preclinical study conducted 
by Brito et  al. on the ability of CNE saRNA delivery in 
rabbits, mice, and nonhuman primates revealed promis-
ing therapeutic effects of CNE and indicated that lower 
doses of adjuvant subunits in CNE complexes could 
elicit substantial immune responses [80]. Numerous 
studies have been conducted to investigate the stabil-
ity, toxicity, and biodistribution of CNE, with findings 
confirming its stability [81]. However, the conclusions 
regarding its toxicity vary across different models. One 
study demonstrated that the toxicity of nanoemulsions 
on human foetal lung cells (MRC-5) is dose-dependent 
[82]. In contrast, another investigation revealed that the 
rabies animal model exhibited suitable tolerance to CNE-
delivered self-amplifying mRNA (SAM) vaccines [83]. 
Biomimetic carriers represent an innovative drug deliv-
ery concept employing endogenous substances, biologi-
cal structures, and processes. Exosomes, a type of lipid 
bilayer microvesicle characterized by small size and low 
immunogenicity, are a particularly auspicious biomimetic 
carrier. Exosomes can prolong the duration of drugs in 
circulation by evading mononuclear phagocytic system 
clearance, thereby increasing drug delivery efficiency 
[112]. In addition, promising new materials for mRNA 
vaccine delivery research, such as inorganic nanomate-
rials and hydrogels, are also being explored. Compared 
with traditional materials, these new materials have 
great advantages in terms of improving the efficiency and 
intensity of vaccine mRNA translation [113].

Naked mRNA
Naked mRNA delivery refers to the direct administration 
of mRNA. This technology has been successfully used 

in vivo for immune responses, specifically targeting anti-
gen-presenting cells through intradermal [92, 114] and 
intranodular injections [115, 116]. There are many advan-
tages associated with this delivery method [92, 93]. First, 
the mRNA cannot be integrated into the genome, reduc-
ing the risk of genetic mutations. Second, ribosomes can 
bind directly to the mRNA in the cytoplasm, causing the 
mRNA to be translated immediately and rapidly initiat-
ing an immune response after vaccination. Third, the 
final position of the mRNA determines the site of pro-
tein expression, allowing for precise control of protein 
expression. Despite its advantages, naked mRNA delivery 
also has some major drawbacks [94]. The lack of a carrier 
during the delivery process can lead to unstable protein 
translation and expression. However, this can be miti-
gated by altering the administration method and proper 
chemical modifications. However, research in this area is 
relatively limited at present.

Dendritic Cell‑mRNA Delivery System (DCs‑mRNA)
DCs are the orchestrators of the immune response, 
showing unparalleled efficiency in capturing and pre-
senting antigens through a meticulously regulated 
process of internalization and proteolytic degrada-
tion. Subsequently, DCs present antigens to CD8 + T or 
CD4 + T cells through major histocompatibility com-
plexes (MHCs), specifically MHCI or MHCII, thereby 
initiating an adaptive immune response [95]. This 
highlights DCs as prime targets for vaccination. Typi-
cally, specific mRNAs encoding antigens are delivered 
into DCs via electroporation, lipid transfection, nuclear 
transfection, or in  vitro acoustic evaporation. Among 
these techniques, electroporation is preferred [24]due 
to its high transfection efficacy and independence from 
carrier molecules. Challenges primarily include the fol-
lowing two aspects: Firstly, serum protein aggregation 
and mRNA degradation upon systemic administration. 
Experts suggest addressing this issue by supplementing 
DCs with granulocyte–macrophage colony-stimulating 
factor (GMCSF) and IL-4 [96]. The second challenge lies 
in the systematic dissemination of mRNA vaccines [97].

Mechanism of mRNA Vaccine‑Induced anti‑ tumor 
immune response
The mechanisms by which mRNA vaccines induce an 
anti-tumor immune response involve two primary mech-
anisms. First, they directly induce tumor-specific T-cell 
responses, including both innate and adaptive immune 
responses. During this process, mRNA vaccines deliver 
tumor-associated antigens or tumor-specific antigens 
generated by intratumoral mutations to the immune 
system, activating antigen-presenting cells (APCs) 
and T cells and thereby initiating a specific antitumor 
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immune response. Second, they achieve induction of an 
antitumor immune response by modulating the tumor 
microenvironment.

Key factors in the induction of anti‑ tumor immune 
response by mRNA vaccines
The key factors in the mRNA vaccine-induced antitumor 
immune response include the following aspects. First, 
the design of the vaccine is crucial [117]. By precisely 
selecting tumor-associated antigens, a vaccine can ensure 
high specificity and effectiveness. Second, efficient anti-
gen presentation is a key step in inducing an anti-tumor 
immune response [118]. mRNA vaccines express tumor-
associated antigens, making them targets antigen-pre-
senting cells (APCs) in  vivo and thereby enhancing 
antigen presentation efficiency [119]. Third, a refined 
immune regulatory mechanism contributes to achieving 
immune balance [120]. mRNA vaccines can induce the 
generation of immunosuppressive cells and inflamma-
tory factors to balance the immune response, preventing 
excessive immune damage [121].

Molecular mechanisms underlying the activation of anti‑ 
tumor immune response by mRNA vaccines
The molecular mechanisms underlying mRNA vaccine-
induced activation of anti-tumor immune responses 
involve multiple factors, including antigen presentation, 
immune cell activation, immune regulation, and antigen 
stimulation of B cells [122].

Inducing innate immunity
Congenital immune stimulation is driven primarily by 
the response mechanism of immune cells in defence 
against pathogens. The Golgi apparatus and endoplas-
mic reticulum cooperate to translate protein fragments 
via the MHC [123]. Following DC activation, the MHC 
can identify corresponding T cells and initiate cytotoxic 
lymphocyte immunity [124]. MHC complexes and TCRs 
found on the surface of T cells are the first signals that 
trigger cellular immune responses. Several components 
of mRNA vaccines can interact with pattern recognition 
receptors (PRRs) in endosomes, including TLR3/7/8, 
which can detect pathogen-associated molecular patterns 
(PAMPs) in mRNAs. TLR7/8 recognizes single-stranded 
RNA (ssRNA), whereas TLR3 detects double-stranded 
RNA (dsRNA). APCs can identify mRNAs and activate 
TLRs [125]. The activated TLR detects PAMPs and trig-
gers the second signal. The activated second messenger 
translocates to the nucleus and functions as a potential 
transcription factor. It can recruit various transactivat-
ing factors to promote the expression of proinflammatory 
cytokines and chemokines such as interleukin-6(IL-6), 
interleukin-2(IL-2), and tumor necrosis factor-α (TNF-α), 

thereby activating naive T cells via dual signalling path-
ways. However, there may be insufficient T lympho-
cytes to initiate cellular immune responses. Therefore, 
when these stored cells are exposed to the same antigen 
again, they are quickly activated. The proper absorption 
of APCs is a prerequisite for the activation of an immune 
response, with DCs being primarily responsible. A pre-
vious study [126] showed that mRNA vaccines have the 
ability to stimulate DC cell maturation. In non-immune 
cells, RIG/MDA5 recognize exogenous mRNA, activating 
cytokine and chemokine production [127]. Subsequently, 
they are able to recruit innate immune cells (Fig. 2).

Inducing adaptive immunity
After translation, APCs, such as DCs, take up the protein 
encoded by mRNA by a variety of mechanisms includ-
ing micropinocytosis, endocytosis, or phagocytosis [128]. 
Antigens can be transiently expressed and accumulate in 
the cytoplasm, allowing for rapid processing into peptides 
that can be recognized by MHC I. Ribosomal transla-
tion generates various antigenic proteins, which are then 
degraded into fragments in proteasomes and presented as 
CD8 + T-cell epitopes by MHC-I. Alternatively, antigens 
can also be transported directly from the cytoplasm to 
lysosomes, or lysosomal-targeting sequence antigen pro-
teins can be incorporated into mRNA structural design, 
followed by lysosomal disintegration and presentation 
as CD4 + T-cell epitopes by MHC-II. In summary, APCs 
can present exogenous antigens to CD4 + T cells through 
MHC-II while also cross-presenting exogenous antigens 
to CD8 + T cells via MHC-I, resulting in the activation of 
cytotoxic T cells. This stimulation method is termed cross-
stimulation. CD4 + T cells can provide support to other 
immune cells, including B cells and CD8 + T cells, through 
their helper functions. Ultimately, the cloning amplifica-
tion of alloantigen-specific T and B cells can result in the 
elimination of target cells. Furthermore, all nucleated cells 
possess the ability to process mRNA and present vari-
ous translated proteins as well as peptides in the MHC-I 
pathway. Among them, only APCs can present on both 
MHC-I and MHC-II, triggering immunological responses 
from CD4 + T or B cells. However, prior to activating adap-
tive immunity, understanding how cells recognize non-
self mRNAs and activate signaling cascades through the 
interplay of mRNAs, PRRs, and PAMPs is critical. PRRs 
that can perceive these PAMPs are mainly categorized into 
two distinct types: extracellular and intracellular [129]. 
PRRs that recognize RNA contribute to the production of 
IFN-I. Furthermore, IFN-γ can stimulate the activation of 
Protein Kinase R (PKR) and eIF2α phosphorylation, lead-
ing to cellular and humoral immune responses. As a result, 
IFN-γ is expected to provide immunological protection to 
the body. However, mRNA vaccines can overstimulate the 
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immune response, causing excited cells to generate a sig-
nificant amount of IFN-I, which inhibits mRNA transla-
tion and promotes mRNA degradation. Consequently, this 
downregulates the expression of the target protein, causing 
a negative reaction on the immune response. Therefore, an 
effective mRNA vaccine should completely activate innate 
immunity before initiating adaptive immunity (Fig. 3).

Modulation of the tumor microenvironment by mRNA 
vaccines
Based on definition provided in a previous report [130], 
the tumor microenvironment can be described as a 

local inner environment composed of tumor-infiltrat-
ing immune cells, interstitial cells, and active media-
tors released by these cells along with tumor cells. This 
microenvironment is critical for tumor growth and 
progression because it provides important nutrients 
and energy while also assisting tumor cells in evad-
ing immune system responses. Furthermore, the tumor 
microenvironment has been shown to increase the pro-
pensity of tumors to metastasize to other parts of the 
body. mRNA vaccines, as novel strategies for cancer 
immunotherapy, also greatly affect the tumor microen-
vironment [131].

Fig. 2  mRNA vaccine induces innate immune mechanism. Legend: Upon stimulation of DC cells, the T cells undergo identification, whereby 
the MHC complex and TCR receptor on their surface serve as the initial signals for cellular immune response. Antigen-presenting cells (APCs) 
recognize the mRNA, activating TLR and prompting the detection of PAMP, thereby initiating the second signal. The activated second signal 
translocates to the nucleus as a transcription factor, recruiting various Trans-acting factors to facilitate the expression of proinflammatory cytokines 
and chemokines. This dual signal pathway effectively activates the initial T cells. In non-immune cells, RIG-I and MDA5 are involved in sensing 
exogenous mRNA and inducing cytokines/chemokines to recruit innate immune cells
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The role of tumor microenvironment during tumor 
progression
The tumor microenvironment is a complex and dynamic 
ecosystem within tumor tissue that consists of a diverse 
array of components, such as tumor cells, immune cells, 
fibroblasts, extracellular matrix proteins, and an intri-
cate network of cytokines and chemokines. These ele-
ments interact in a highly regulated manner, playing 
crucial roles in tumor growth, invasion, immune evasion, 

and response to therapy. Understanding the interac-
tions within the tumor microenvironment is essential for 
developing effective strategies for cancer treatment and 
improving patient outcomes [132]. For example, cancer-
associated fibroblasts (CAFs) and other immune cells 
have been reported to contribute to this process [133].
The tumor microenvironment provides a favorable habi-
tat in which the tumor cells can rapidly proliferate, evade 
immune surveillance, and metastasize [134]. Tumor 

Fig. 3  mRNA vaccine induces adaptive immune mechanism. Legend. After translation, the proteins encoded by mRNA are taken 
up by antigen-presenting cells (APCs) via mechanisms such as micropinocytosis, endocytosis, or phagocytosis. These antigens are subsequently 
processed into peptides and loaded onto the MHC class I pathway. The translation conducted by ribosomes produces immunogenic proteins, 
which are degraded into fragments within the proteasome and presented to CD8 + T cells via MHC-I. An alternative pathway allows for the direct 
transport of antigens from the cytoplasm to lysosomes, or the incorporation of a lysosome-targeting sequence within the mRNA structure 
for lysosomal degradation. The resulting MHC-II peptide complexes are then recognized by the T cell receptor (TCR) on CD4 + T cells
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cells adapt and evade the immune system by modulat-
ing immune suppression signals in response to antitumor 
immunological pressure [135]. Ultimately, tumor cells 
create an immunosuppressive microenvironment, which 
can enhance anti-tumor immunity and promote tumor 
survival. Thus, an ideal mRNA vaccine may alter the 
composition of local immune cells while restoring tumor 
immune surveillance.

mRNA vaccines can alter the distribution of cytokines 
in the tumor microenvironment
First, mRNA vaccines can alter the levels of cytokines 
in the tumor microenvironment by expressing tumor-
associated antigens, thereby influencing the activation 
of immune cells and inflammatory responses [136]. 
The expression of tumor-associated antigens activates 
immune cells, particularly CD4 + T cells and CD8 + T 
cells, prompting them to release more cytokines [137]. 
An increase in these cytokines can disrupt the balance 
between immunosuppressive cells and inflammatory 
factors in the TME, making it easier for immune cells to 
penetrate into tumor tissues and eliminate tumor cells 
[138]. mRNA vaccines can promote DC maturation 
through TLR signaling. mRNA vaccines activate the tran-
scription factor NF-κB via the MyD88 and TRIF path-
way, thus promoting the generation of cytokines such 
as interleukins(ILs), tumor necrosis factors(TNFs), and 
interferon(IFNs), as well as the maturation of cytotoxic T 
lymphocytes (CTLs), resulting in the elimination of solid 
tumors during tumor targeted therapy [139]. Further-
more, mRNA vaccines can promote cytokine release by 
helper T cells, thereby increasing the level of antibodies 
of the humoral dependent immunity [140]. Furthermore, 
mRNA vaccines can enhance the recruitment and activa-
tion of antigen-presenting cells (APCs) in the TME [141]. 
APCs, like dendritic cells, macrophages, and B cells, ini-
tiate immune responses by presenting tumor antigens to 
T cells through mRNA vaccines, activating specific anti-
tumor immunity [142]. This process helps to establish a 
bridge between innate and adaptive immune responses 
in the TME, thereby enhancing anti-tumor immune 
activity. In addition, mRNA vaccines can also regulate 
the expression of immune checkpoint molecules in the 
TME [143]. Immune checkpoints are a type of immune 
inhibitory molecules that play a key role in regulating 
immune responses and maintaining self-tolerance [144]. 
mRNA vaccines can influence the expression of immune 
checkpoint molecules on immune cells and tumor cells, 
potentially overcoming the immune evasion mechanisms 
employed by tumors [28]. By intervening in immune 
checkpoints, mRNA vaccines can enhance anti-tumor 
immune responses and improve the efficacy of tumor 
immune therapy [119].

mRNA vaccines can modulate tumor immune 
microenvironment (TIME)
mRNA vaccines have the potential to reshape the tumor 
immune microenvironment (TIME) via two primary 
mechanisms: 1) regulating the balance between M1 and 
M2 macrophages and 2) stimulating cytokine release 
by different types of T cells (Fig.  4). The interaction of 
malignant cells and immunological components in the 
tumor microenvironment (TME) has a great effect on 
tumor growth and maturation. Tumor cells frequently 
exploit immunosuppressive mechanisms, such as the 
production of immunosuppressive proteins, to evade 
immune surveillance. However, studies have shown that 
mRNA vaccines can restore tumor immunosurveillance 
by increasing MHC-I expression [145]. mRNA vaccines 
can also inhibit tumor growth by regulating the ratio of 
M1 to M2 macrophages to control tumor progression. 
Macrophages carry out their functions through two sub-
types: M1 and M2. M1 macrophages promote inflamma-
tion, whereas M2 macrophages suppress it. In the tumor 
microenvironment, macrophages mostly exhibit the M2 
phenotype. However, studies have shown that mRNA 
vaccines can increase the ratio of M1 macrophages to 
M2 macrophages by promoting the transformation of 
M2 macrophages into M1 macrophages. This is particu-
larly useful for suppressing tumor growth and mitigating 
tumor immune escape [146].

Research and current applications of mRNA 
vaccines in tumor targeted therapy
In the realm of tumor-targeted therapy, mRNA vaccines 
are utilized in two main ways: mRNA tumor vaccines 
directly target tumor cells, and increasing treatment 
effectiveness by combining mRNA vaccines with other 
tumor-targeted therapies, such as immune checkpoint 
inhibitors. The continual evolution of these strategies has 
revolutionized tumor-targeted therapy, presenting novel 
avenues to enhance treatment outcomes among cancer 
patients and illustrating the promising role of mRNA 
vaccines in combating cancer.

mRNA tumor vaccines
Currently, mRNA tumor vaccines produced using IVT 
mainly target four distinct types of molecules: (1) encod-
ing tumor-associated antigens (TAA), (2) encoding 
tumor-specific antigens (TSA), (3) encoding tumor-Asso-
ciated Viruses.

mRNA vaccines encoding TAAs
TAAs are expressed in normal cells as well, but at rela-
tively higher levels in tumor cells [147]. These antigens 
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typically arise from abnormal differentiation or dys-
function of tumor cells, such as carcinoembryonic 
antigen (CEA), PRAME, NY-ESO-1, etc. [148–150]. 
Although TAAs are expressed to some extent in normal 
tissues, the significant upregulation of their expression 
in tumor cells allows the immune system to generate 
targeted immune responses [151]. The utilization of 
TAAs as targets for mRNA vaccines has already initi-
ated clinical investigations in various solid tumors and 
haematologic malignancies. mRNA vaccines have the 
potential to be designed for TAAs that are selectively 
expressed in cancer cells. CA125 is a TAA in ovarian 
epithelial carcinoma, whereas AFP is a TAA in liver 
cancer. Several clinical trials have used mRNA vac-
cines targeting similar TAAs for therapy, including 

NCT00831467, NCT03164772, and NCT01995708 
[24]. (Table 3).

mRNA vaccines encoding TSAs
During the carcinogenesis process, malignant cells 
develop somatic mutations, resulting in the expres-
sion of protein sequences that are not expressed in nor-
mal cells. Proteasomes can convert these proteins into 
peptides. Thereafter, the peptides produced can bind to 
MHC-I receptors and be recognized as new antigens by 
T-cell receptors. These novel antigens are distinct to each 
patient, representing tumor specificity and providing 
opportunities for tumor-targeted therapies [25, 155]. The 
specific process procedure involves removing a single 
tumor and identifying specific novel antigens via next-
generation sequencing. The new antigens encoded by 

Fig. 4  mRNA vaccines reshape tumor immune microenvironment (TIME). Legend.mRNAvaccine possesses the potential to reshape the tumor 
immune microenvironment via two primary mechanisms. Firstly, it regulates the equilibrium between M1 and M2 macrophages, thus transforming 
M2 macrophages into M1 macrophages. Secondly, it induces the secretion of cytokines by various T cells (For example T helper cell). Additionally, 
the vaccine promotes the maturation of dendritic cells (DC) through Toll-like receptor (TLR) receptors, activates the transcription factor NF kB 
to stimulate the maturation of cytotoxic T lymphocytes (CTL), and prompts T helper cells to secrete cytokines
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mRNAs are subsequently injected into the same patient, 
eliciting an immune response that can attack the tumor 
[156]. mRNA can encode several antigens, resulting in the 
presentation of many epitopes. mRNA can express multi-
ple neoantigens, either as individual molecular forms or 
concatenated forms of multiple coding sequences. Some 
tumor types can produce a large number of novel anti-
gens, and expressing multiple epitopes may stimulate T 
cell responses from a perspective of inducing a broad 
immune response. The most critical aspect of this ther-
apy is verifying the precise immunogenic non-synony-
mous somatic mutation found in the patients’ tumors 
and discovering new gene expression epitopes. Interest-
ingly, in a clinical trial (NCT03394937), 20 postoperative 
(IIc, III, and IV) melanoma patients received an intra-
nasal injection of non-formulated mRNA vaccine (ECI-
006) [32]. The results indicated that patients tolerated the 
low-dose mRNA vaccination (600 μg) well and experi-
enced a significant immunological response. No adverse 
reactions of level 3 or higher were noted [32]. In a second 
study cohort (NCT03394937), patients with metastatic 
melanoma in stable condition following conventional 
treatment for 3–12 months were given ECI-006 vaccina-
tion and standard anti-PD-1 treatment, but the results 
have yet to be announced [32]. Some clinical trials have 
reported persistent objective reactions in cancer patients 
following treatment without unmanageable toxic effects 
(NCT03323398, NCT03480152, etc.) [24, 26] (Table 4).

mRNA vaccines targeting tumor‑associated viruses
Tumor viruses are a class of viruses capable of induc-
ing and promoting carcinogenesis in host cells [157]. 
Currently, the main viruses associated with human 
tumors include hepatitis B virus (HBV), hepatitis C virus 
(HCV), Epstein-Barr virus (EBV), human papillomavirus 
(HPV), and human T-lymphotropic virus type 1 (HTLV-
1) [158]. In recent years, significant progress has been 
made in mRNA vaccine research targeting HPV. Zhou 
et  al. developed an mRNA-based vaccine against the 
late oncoproteins E6 and E7 of HPV16, which are abun-
dantly expressed in high-grade squamous intraepithelial 
lesions (HSIL). In vitro and in vivo studies demonstrated 
that the translated mRNA was functional and elicited 
antigen-specific adaptive immune responses. Mice with 
HPV16 + lesions exhibited tumor growth inhibition, 
extended lifespan, and the development of protective 
immune memory following vaccination [159]. Hepatitis 
B virus (HBV) infection is a major pathogenic factor for 
liver cancer [160]. Research has shown that mRNA vac-
cines can activate the innate immune system, inducing 
the production of potent immunogenicity, high levels of 
virus-specific antibodies, memory B cells, and T cells, 
offering prospects for functional cure and prevention of 

HBV recurrence in chronic patients. However, further 
in-depth evaluation of mRNA vaccines is needed [161]. 
HIV infection increases the risk of certain tumors, such 
as Kaposi’s sarcoma and non-Hodgkin’s lymphoma [162]. 
Xie et al. [163] utilized mRNA technology to induce the 
generation of broadly neutralizing antibody (bnAb) pre-
cursors essential for multiple HIV subtypes, providing 
evidence for the feasibility of germline targeting (GT) 
and progressive immunization strategies in HIV vaccine 
development. Through animal models, researchers have 
successfully elicited specific immune responses to HIV 
bnAbs, providing new strategies for the development of 
effective HIV vaccines (Table 5).

Adjuvants for mRNA vaccines
Adjuvants are additional immunostimulatory agents in 
vaccines that activate the innate immune system and pro-
vide the necessary "help" to increase the magnitude and 
quality of adaptive responses, thereby offering maximal 
protection against specific pathogens [164]. Different 
adjuvants can elicit various immune responses, influenc-
ing overall vaccine outcomes. Currently, the adjuvants 
used in mRNA vaccines generally include four catego-
ries: 1) the intrinsic adjuvant effects of mRNA vaccines; 
2) mRNAs encoding immunostimulatory molecules; 3) 
mRNAs encoding antibodies; and 4) adjuvants for mRNA 
vaccines on the basis of delivery carrier components.

The intrinsic adjuvant effect of mRNA vaccines
Exogenous RNA molecules can induce immune 
responses in mammalian cells. Unmodified exogenous 
nucleotide mRNAs used to express antigens in mRNA 
vaccines exhibit intrinsic adjuvant activity by triggering 
innate immune signalling pathways. Notably, double-
stranded RNA (dsRNA) can activate TLR3, while sin-
gle-stranded RNA is capable of activating mouse TLR7, 
and RNA oligonucleotides containing thio-phospho-
rylated nucleotide linkages serve as ligands for human 
TLR8 [165]. Polyuridine (U) and short dsRNA with 5’ 
triphosphate blunt ends can enhance immune responses 
through the TLR3 and retinoic acid-inducible gene 
(RIG)-I signaling pathways without compromising anti-
gen expression, thus functioning as adjuvants for mRNA 
vaccines [166, 167]. The activation of TLRs and RIG-I 
signaling can induce the production of proinflammatory 
cytokines such as tumor necrosis factor-alpha (TNF-α), 
interleukin-6 (IL-6), IL-12, IL-1β, and interferon-alpha/
beta (IFNα/β) (Fig.  1), which enhances the protective 
immunity required by mRNA vaccines while poten-
tially leading to excessive inflammation [168]. Pioneer-
ing work by Kariko et al. demonstrated that unmodified 
RNA molecules activate TLR or RIG-I signaling path-
ways, triggering antiviral-like immune responses that 
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Table 5  Clinical trials of mRNA vaccines targeting tumors associated viruses

Cancer type NCT number Drug 
administration

Phase Viruse Status Delivery 
system

Result

Reproductive 
system tumors

cervical carci-
noma

NCT06273553 RG002 Injection 
(an mRNA 
Therapeutic 
Vaccine)

I HPV16/18 Not yet recruit-
ing

Lipid nanopar-
ticles

Not published

NCT02116920 mRNA E6/E7 I HPV genotypes 
16, 18, 31, 33 
and 45

Not yet recruit-
ing

Lipid nanopar-
ticles

Unknown

NCT05119855 mRNA-1273 
Vaccine

IV 9-valent human 
papillomavirus 
(Types 6, 11, 16, 
18, 31, 33, 45, 
52, 58)

Completed Lipid nanopar-
ticles

Not published

Skin tumor Kaposi’s sar-
coma

NCT05217641 BG505 MD39.3 
mRNA, BG505 
MD39.3 gp151 
mRNA or BG505 
MD39.3 gp151 
CD4KO mRNA

I HIV Active,not 
recruiting

Lipid nanopar-
ticles

Not published

NCT02413645 TriMix 100, 
TriMix 300

I HIV Completed Lipid nanopar-
ticles

The vaccine 
was secure 
and well toler-
ated. There were 
31 grade 1/2 
and 1 grade 3 
adverse events, 
mostly unrelated 
to the vaccina-
tion. Patients 
who received 
the highest dose 
showed a moder-
ate increase 
in T-cell responses 
spanning HTI 
sequence at week 
8. In addition, 
the proportion 
of responders 
receiving any 
dose of HTI 
increased 
from 31% at w0 
to 80% postvac-
cination. The 
intervention 
had no impact 
on caHIV-DNA 
levels, however, 
caHIV-RNA 
expression 
and usVL were 
transiently 
increased 
at weeks 5 and 6 
in the highest 
dose of iHIV-
ARNA, and these 
changes were 
positively cor-
related with HIV-
1-specific-
induced immune 
responses.
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may impair RNA translation and promote RNA degrada-
tion [15]. Nucleoside-modified mRNA can circumvent 
this immune activation, such as pseudouridine, which 
has been widely applied in mRNA vaccines [145, 165]. 
Recent studies indicate that the modified mRNA in the 
Pfizer-BioNTech BNT162b2 mRNA vaccine may be rec-
ognized by melanoma differentiation-associated protein 
5 (MDA-5), triggering IFNα production and contributing 
to the magnitude of antigen-specific T cell and antibody 
responses [169].

mRNA vaccines encoding immune modulators
Immune modulators typically include cytokines, co-
stimulatory molecules, and PRR agonists [170]. Immune 
modulators such as interferons, interleukins, lym-
phokines, and tumor necrosis factors play different 
roles in the immune system. Some trigger inflammation, 

whereas others support cell growth and differentiation, 
whereas others enhance lymphocyte functions [171]. 
It is crucial to restore the anti-tumor immune response 
by inhibiting immune suppression through the modula-
tion of immune modulators [172]. The use of cytokines in 
cancer therapy has emerged as a viable treatment option 
in clinical settings for patients battling cancer [173]. One 
of the challenges associated with current immunomodu-
latory treatments is the occurrence of dose-related toxic-
ity resulting from the short half-life of the administered 
agents, necessitating frequent dosing and systemic dis-
tribution, as exemplified by IL-12 therapy [174]. There-
fore, intratumoral (IT) and intradermal (ID) injections 
are often used to induce local immune responses. The 
transient protein expression and prominent advantages 
of local delivery make mRNA vaccines complementary 
to immune modulators, making immune modulators 

Table 5  (continued)

Cancer type NCT number Drug 
administration

Phase Viruse Status Delivery 
system

Result

NCT00833781 mRNA-trans-
fected autolo-
gous dendritic 
cells

I HIV Completed DC There were 
no differences 
in interferon-
gamma enzyme-
linked immuno-
spot responses 
to HIV-1 Gag 
or Nef in the vac-
cine or placebo 
group. CD4 prolif-
erative responses 
to KLH increased 
2.4-fold (P = 0.026) 
and CD8 prolif-
erative responses 
to KLH increased 
2.5-fold (P = 0.053) 
after vaccina-
tion. There 
were increases 
in CD4 prolif-
erative responses 
to HIV-1 Gag (2.5-
fold vs. baseline, 
3.4-fold vs. pla-
cebo, P = 0.054) 
and HIV-1 Nef 
(2.3-fold vs. base-
line, 6.3-fold vs. 
placebo, P = 0.009) 
among vac-
cine recipients, 
but these 
responses were 
short-lived.

Lymphatic 
system tumor

Burkitt’s lym-
phoma

NCT05144748 EBV mRNA 
vaccine

I EBV Recruiting Lipid nanopar-
ticles

Unknown

Digestive Sys-
tem Cancer

Hepatocellular 
carcinoma

NCT05738447 HBV mRNA 
vaccine

I HBV Recruiting Lipid nanopar-
ticles

Unknown
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important targets for mRNA vaccines. IL-12, an essential 
cytokine, can activate CTL and NK cells. In 2018, IL-12 
mRNA-LNPs were shown to be effective in hepatocellu-
lar carcinoma (HCC) treatment [175]. Due to the unique 
functions of each cytokine, the efficacy of single cytokine 
therapy in tumor treatment is limited. Therefore, a com-
bination of multiple cytokines with different functions is 
often used to improve therapeutic outcomes. Research 
indicates that mRNA vaccines encoding IL-12 and IL-27 
can induce NK and CD8 + T cells within the melanoma 
tumor microenvironment (TME), demonstrating opti-
mal efficacy [176]. Another study found that a mixture 
of IL-12, GM-CSF, IL-15, and IFN-α mRNA increased 
the number of CD4 + T cells and CD8 + T cells in the 
TME, and adding anti-PD-1 antibody improved mouse 
survival rates [136]. In 2019, Haabeth et  al. [177] pio-
neered a novel approach to initiate anti-cancer immunity 
by combining cytokines with co-stimulatory molecules 
using mRNA. They used a specialized mRNA delivery 
system to locally express cytokines (CD70, IL-12, and 
IFN-γ) and co-stimulatory molecules (OX40L, CD80, 
and CD86) in two tumor models (B-cell lymphoma and 
colorectal cancer.). Their findings showed that mice 
given mRNA vaccines containing both cytokines and co-
stimulatory molecules achieved complete elimination of 
tumors, unlike those given other mRNA vaccines that 
only had partial effects. Combining OX40L with CD80 
or CD86, or OX40L with IL-12, notably improved sur-
vival rates and delayed tumor growth. These preclinical 
results indicate that specific cytokines and co-stimula-
tory molecules could effectively enhance T cell responses 
against cancer. Currently, most clinical trials on mRNA 
vaccines encoding immune modulators are in phase I/II 
to evaluate tolerability. One of the pioneers in this field 
is eTheRNA, which has developed an adjuvant based on 
TriMix mRNA consisting of three naked mRNA mol-
ecules. Both naked TriMix mRNA evaluated in multiple 
clinical trials and TriMix mRNA loaded onto DCs ex vivo 
have shown good tolerability and immunogenicity. Mod-
erna, a leading biotech firm, has created two mRNA ther-
apies enclosed in LNP frameworks to trigger immune 
responses within tumors. These therapies are undergoing 
phase I clinical trials to assess the safety and tolerance of 
repeated administration. One of the products, mRNA-
2416, contains mRNA encoding OX40L. It is being tested 
alone or combined with the intravenous PD-L1 inhibitor 
durvalumab for treating lymphoma and metastatic ovar-
ian cancer (NCT03323398) [154]. Another candidate, 
mRNA-2752, comprises OX40L/IL-23/IL-36γmRNA for 
the treatment of lymphoma (NCT03739931) [178]. Here, 
OX40L generates secondary signals, enhancing T-cell 
effector functions and promoting T-cell proliferation 
and survival. Moderna and AstraZeneca have teamed up 

to work on the development of MED I1191, which is an 
IL-12 mRNA product designed for intratumoral admin-
istration as part of cancer treatment. Preliminary results 
from the initial clinical trial revealed that sequential or 
combination therapy of MED I1191 with durvalumab in 
patients with advanced solid tumors and skin or subcu-
taneous lesions is safe and feasible. No treatment-related 
adverse events leading to treatment discontinuation from 
MEDI1191 or durvalumab were reported. The combina-
tion of MEDI1191 and durvalumab has demonstrated 
preliminary clinical efficacy; 29.0% of patients achieve 
either a partial response (PR) or stable disease (SD) for 
a minimum duration of 12 weeks (NCT03946800) [179] 
(Table 6).

mRNA vaccines encoding antibodies
Since the development of monoclonal antibodies (mAb) 
using hybridoma technology in 1975, antibodies have 
risen to prominence as a rapidly expanding category of 
pharmaceuticals that specifically target cancer cells [180]. 
These antibodies have anti-tumor effects through mecha-
nisms such as antibody-dependent cell-mediated cytotox-
icity (ADCC), antibody-dependent cellular phagocytosis 
(ADCP), complement-dependent cytotoxicity (CDC), 
and blockade of immunosuppressive signals. Conven-
tional antibodies consist of Fab and Fc fragments, with 
Fab binding to tumor antigens and the Fc region inter-
acting with FcγR on NK cells and macrophages to facili-
tate cancer cell lysis. In addition to traditional antibodies, 
single-chain variable fragments (scFvs), single-domain 
antibodies (sdAbs), and bispecific antibodies (bsAbs) 
have demonstrated potential in immunotherapy. BsAbs 
can form T-cell–bsAb–tumor cell complexes, mediating 
immune cell-mediated killing [181]. Researchers at Cure-
Vac studied mRNA vaccines targeting antibodies. After 9 
years, they were able to develop mRNA vaccines target-
ing antibodies that effectively reduced tumor growth in 
a mouse lymphoma model, supporting the use of mAb-
targeting mRNA vaccines in cancer immunotherapy 
[182]. Leiba-Kasper and colleagues conducted a study to 
explore the intricate relationship between the absorption, 
distribution, metabolism, and excretion of the mRNA-
encoded anti-HER2 antibody trastuzumab, elucidating 
its impact on the body and its ability to combat cancer. 
Through their research, they confirmed the potent anti-
cancer properties of this novel therapeutic approach, 
shedding light on the mechanisms underlying its efficacy 
in targeting HER2-positive tumors. The findings from 
this investigation serve to validate the promising thera-
peutic potential of mRNA-encoded antibodies in the 
fight against cancer, opening new avenues for optimized 
treatment strategies and improved patient outcomes 
[183]. In addition to monoclonal antibodies, a range of 
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mRNA-encoded bispecific antibodies (bsAbs) have been 
developed. CCL2 and CCL5 play critical roles in tumor-
associated macrophage (TAM) accumulation and HCC 
immunosuppression. The Wang group developed the 
bispecific antibody BisCCL2/5i, which targets CCL2 and 
CCL5, promoting TAM polarization towards the anti-
tumor M1 phenotype and reversing immune suppression 
in the tumor microenvironment (TME). BisCCL2/5i sen-
sitizes HCC to PD-L1 blockade and prolongs survival in 
a murine model of liver malignancy [184].Bi-specific T 
cell engagers (BiTEs) are a class of bispecific antibodies 
lacking an Fc region, consisting of two scFv domains—
one recognizing CD3 and the other binding to the can-
cer cell target antigen—facilitating T cell-mediated 
tumor killing [185]. The Staid team has developed the 
RiboMab platform, which includes BiTE mRNA targeting 
three tumor-associated antigens (TAA)—CD3 × CLDN6, 
CLDN18.2 × CD3, and EpCAM × CD3. The mRNA 
encoding CD3 × CLDN6 BiTE exhibits a longer half-life 
in serum compared to the protein counterpart, leading 
to complete tumor regression in a mouse model without 
eliciting systemic immune reactions [186]. CD3 × CLDN6 
mRNA (BNT142) is currently undergoing Phase I/II 
clinical trials (NCT05262530) [179]. While research on 
mRNA vaccine-encoded antibodies remains limited, 
monoclonal antibodies (mAbs) and bispecific antibodies 
(bsAbs) have already shown efficacy. By encoding anti-
cancer antigens, blocking immune checkpoint molecules, 
and mediating T-cell anti-tumor responses through 
mRNA vaccine-encoded antibodies, the potential of 
mRNA antibody immunotherapy is vast. (Table 7).

Adjuvants for mRNA vaccines based on delivery carrier 
components
Cationic lipids may play a critical role in the adjuvant 
activity of lipid nanoparticles (LNPs). LNPs based on the 
ionizable cationic lipid DLinDMA exhibit immunostimu-
latory properties and serve as adjuvants for nucleoside-
modified mRNA vaccines, effectively eliciting follicular 
helper T (TFH) cell responses and germinal centre B-cell 

responses that produce neutralizing antibodies [187]. 
The cationic lipid-like substance C1 facilitates the deliv-
ery of mRNA into cells, promoting the release of inflam-
matory cytokines such as IL-1β, IL-6, and IL-12P70 and 
upregulating the expression of costimulatory molecules 
via the TLR4 signalling pathway [141]. Lipid C12-TLRa, 
containing a TLR7/8 agonist, enhances mRNA vaccine 
delivery and TLR responses, collectively inducing high 
levels of neutralizing antibodies [188]. Another ioniz-
able lipid-like substance, A2-Iso5–2DC18 (A2), activates 
STING signaling and releases cytokines such as CXCL10, 
thereby enhancing the immune response [68]. The non-
nucleotide STING agonist-derived amino lipid SAL12, 
formulated into LNPs, induces the production of IFNβ, 
triggering potent neutralizing antibodies against SARS-
Cov-2 [189]. Additionally, the direct incorporation of 
all-trans retinoic acid (ATRA) during LNP self-assem-
bly results in ATRA-LNPs that effectively activate den-
dritic cells, eliciting robust systemic T-cell responses and 
increasing the infiltration of antigen-specific cytotoxic 
T cells in colorectal tumors [190]. However, the intrin-
sic immunostimulatory properties of lipid materials are 
not always beneficial for vaccines. A study reported that 
lipid components (DOTMA and DOPE) in mRNA vac-
cines promote mitochondrial ROS production in mono-
cytes, activating the NLRP3 inflammasome and releasing 
IL-1β, leading to inflammatory side effects [191]. These 
findings underscore the importance of selecting lipid 
components with appropriate immunostimulatory effects 
for the rational design and development of future mRNA 
vaccines.

Combined application of mRNA vaccines with other tumor 
targeted therapies
Currently, many patients have developed resistance to 
tumor-targeted monotherapies, substantially impacting 
the effectiveness of tumor-targeted therapy. Therefore, 
the combined application of mRNA vaccines with other 
tumor-targeted therapies holds tremendous potential 
in enhancing treatment outcomes. By harnessing the 

Table 7  Clinical trials of mRNA vaccines encoding Ab

Cancer type NCT number Drug administration  Phase Status  Delivery 
system

Result

Solid Tumor NCT05262530 BNT142 (mRNA 
encoding antibod-
ies targetingCD3 × 
CLDN6)

I  Recruiting  LNP Ongoing

Reproductive system tumors (mainly ovarian 
cancer)

ovarian cancer NCT04683939 BNT141 (mRNA 
encodinganti-Clau-
din18.2 monoclonal 
antibody)

I/II Recruiting  LNP Ongoing
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synergistic effects of different therapeutic approaches, 
this combination strategy offers a promising avenue for 
overcoming resistance and improving the overall efficacy 
of tumor-targeted therapy.

Combined application of mRNA Vaccines and Adoptive Cell 
Therapy (ACT)
ACT involves extracting immune-active cells from can-
cer patients, culturing and evaluating their function 
outside the body, and finally reintroducing them back 
into patients to target and destroy tumors directly [192]. 
Adoptive immune cell therapy mainly includes several 
categories such as TCR-T and CAR-T [193]. Currently, 
the most commonly used/most effective applications are 
CAR-T therapy and TCR-T therapy [194, 195].TCR-T cell 
therapy entails the isolation of T cells from the patient’s 
body, genetic engineering to express a specific T-cell 
receptor (TCR), and targeting tumor-associated antigens 
for recognition and elimination [196]. mRNA vaccines 
have the ability to induce a broad immune response, 
encompassing humoral and cellular immunity, while 
TCR-T therapy allows for direct targeting and destruc-
tion of tumor cells [197]. If these two therapies are uti-
lized in conjunction, it has the potential to enhance 
the anti-tumor capabilities of the innate immune sys-
tem and directly target [198] specific tumor antigens, 
thereby demonstrating synergistic efficacy. Further-
more, as a relatively safe and repeatable administration 
mode, mRNA vaccines could enhance the tolerability of 
TCR-T cell therapy [199]. However, the joint application 
of mRNA vaccines and TCR-T cell therapy is still in its 
early exploratory phase [200].CAR-T is a novel immu-
notherapy approach that employs genetic engineering 
technology to modify T cells, allowing them to exert anti-
tumor effects [201]. Specifically, CAR-T cells constitute 
a cutting-edge immunocellular therapy that uses genetic 
engineering to insert customized chimeric antigen recep-
tors (CARs) into T cells. CARs are generated by combin-
ing exogenous antigen recognition domains with T-cell 
receptor domains. This fusion enables CAR-T cells to 
accurately target and destroy specific cancer cells. Clini-
cal trials have demonstrated promising outcomes with 
CAR-T-cell therapy, providing new treatment options for 
cancer patients. These CAR structures consist of single-
chain antibody extracellular domains, extracellular hinge 
domains, transmembrane domains, and intracellular 
domains, which facilitate their recognition and binding of 
specific antigens. CAR-T-cell therapy involves transfect-
ing CAR-T cells with mRNAs encoding target proteins 
to produce the mRNA‒target-CAR-T complex, which 
is subsequently administered to the body. This thera-
peutic strategy has been investigated in cancer patients, 
and promising results have been reported. For instance, 

a study by Tchou et  al. [202] demonstrated that T cells 
transfected with CAR mRNA targeting c-Met exhibited 
good tolerance within the breast tumor tissues and were 
capable of triggering an inflammatory response. This 
finding suggested that the combination of CAR-T-cell 
therapy and mRNA vaccines could be a viable treatment 
approach, enabling more comprehensive and precise 
targeting of tumors for greater tumor killing efficacy. In 
another study, Beatty et al. [203]evaluated T cells trans-
fected with mRNA encoding mesothelin-directed CAR 
as a potential treatment for pancreatic tumors. Interest-
ingly, in a phase 1 study, these cells did not cause CRS 
or trigger neurological symptoms. Previous studies have 
indicated that IVT mRNAs encoding TAMs can be 
directly delivered into tumors via CAR-T nanoparticle 
technology to induce local regulation of tumor-associ-
ated dendritic cells (TADCs) [204].

mRNA vaccines combined with Immune Checkpoint Inhibitor 
(ICI)
Immune checkpoints play crucial protective roles in 
regulating the human immune system, acting as brakes 
to prevent excessive T-cell activation and other unde-
sirable effects. However, tumor cells frequently exploit 
this regulatory mechanism by overexpressing immune 
checkpoint molecules, which effectively dampen immune 
system responses, evade immunosurveillance, and pro-
mote tumor development. The most widely researched 
and applied ICIs include CTLA4, PD-1, and PD-L1. ICI 
therapy works by blocking immune checkpoint activity 
and activating T cells to attack tumors, leading to anti-
tumor effects. Furthermore, ICIs can maintain induced 
immunological responses while inhibiting the induction 
of T-cell depletion indicators, making them useful part-
ners for mRNA vaccines [205]. Ugur Sahin et  al. [206] 
demonstrated that combining the melanoma mRNA 
vaccine FixVac with PD-1 inhibitors can result in a syn-
ergistic effect. Surprisingly, drug sensitivity can even 
be restored in patients who have previously developed 
resistance to ICI treatment using this combination treat-
ment. This trial involved 89 advanced melanoma patients 
(phase IV) who were treated with at least one vaccine 
targeting a TAA and who had received one or more ICI 
therapies. All patients received 8 FixVac vaccinations. 
Interestingly, among them, 47 out of 89 patients (52.81%) 
displayed positive responses, with 42 exhibiting the best 
objective response and 5 exhibiting partial reactions. In 
addition, 3 patients achieved partial remission, 7 patients 
remained stable, and 1 patient achieved complete remis-
sion of the metastatic lesion among the 25 patients who 
received FixVac monotherapy. Moreover, among the 17 
patients treated with FixVac and PD-1 inhibitors, 6 expe-
rienced partial reactions and target lesion regression at 
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all doses. During the two-year follow-up, the majority 
of patients who achieved partial remission or remained 
stable had longer disease control. Furthermore, in 
another important clinical trial, researchers used the 
mRNA-4157/V940 vaccine in combination with pem-
brolizumab. The results revealed a significant decrease 
in the risk of disease relapse among patients who were 
administered combination therapy compared with those 
who were solely treated with PD-1 inhibitors [207]. In 
another study, Lina Liu et al. [208] reported that MUC1-
based mRNA vaccination can successfully activate CTL 
responses against triple-negative breast cancer (TNBC). 
Furthermore, combining an mRNA vaccine with an anti-
CTLA-4 monoclonal antibody can markedly enhance 
the T-cell immune response, and the effect was substan-
tially superior to that of treatment with an mRNA vac-
cine alone or anti-CTLA-4 monoclonal antibody therapy 
alone. Although research on these technologies is still 
relatively limited, their prospects are highly promising. 
Furthermore, small interfering RNA (siRNA) has shown 
great potential in ICIs [209], which can be encapsulated 
in the same vector as mRNAs to prevent repeated deliv-
ery, have shown great potential in the treatment of ICIs. 
Although there are several limitations associated with its 
small molecular weight and low encapsulation efficiency, 
the encapsulation concentration of this therapy is still 
within acceptable limits.

Combination application of mRNA vaccines and oncogene 
therapy
Oncogene therapy often involves introducing wild-type 
copies of tumor suppressor genes or exploiting tumor-
specific phenotypic changes to selectively target can-
cer cells. Tumor suppressor genes (TSGs) are essential 
for maintaining genomic integrity and regulating cell 
growth, differentiation, and apoptosis [210]. The loss of 
TSG function is commonly associated with the occur-
rence, progression, and treatment resistance of can-
cer [211]. Furthermore, numerous cancer driver genes, 
mostly TSGs, have been identified through human can-
cer exon sequencing studies [212]. The majority of TSGs 
experience functional loss, leading to overactivation of 
cancer phenotypes through the aforementioned path-
ways. In such scenarios, a potential therapeutic approach 
involves suppressing downstream pathways via supple-
mentation with TSGs. However, difficulties in delivery, 
genomic integration, and mutation risks pose signifi-
cant obstacles to gene therapy when functional copies 
are restored via DNA transfection. mRNA vaccines have 
been demonstrated to effectively address these issues. In 
a study from 2018, a PTEN-mRNA vaccine was encapsu-
lated in polyethylene glycol (PEG)-coated polymer‒lipid 
hybrid nanoparticles (LNPs), successfully introducing 

PTEN-deficient prostate cancer cells. The therapeutic 
efficacy of inhibiting the PI3K/Akt signalling pathway and 
promoting cancer cell apoptosis has been validated [213]. 
In a study conducted in 2021, PTEN mRNA-NPs were 
shown to restore the protein expression and autophagy 
of PTEN-deficient cancer cells, demonstrating therapeu-
tic effects against melanoma and PD-1-resistant prostate 
cancer [214]. While the utilization of TSG-mRNA vac-
cines remains largely uncharted territory, their efficacy 
has been demonstrated in various mouse cancer models, 
underscoring their considerable practical promise.

Future development trends of mRNA vaccines 
in tumor targeted therapy
mRNA vaccines, as an emerging immunotherapeutic 
modality, exhibit a diversified and promising outlook in 
their future development trends [215]. Here, we dis-
cussed the importance and impact of personalized vac-
cine design, multifunctionality, combination therapy 
strategies, mucosal immunity, and nanotechnology on 
the application of mRNA vaccines in targeted tumor 
therapy. Personalized mRNA tumor vaccines design 
stands out as a research hotspot [143]. By elucidating the 
genetic and immune characteristics of patient tumor 
cells, highly personalized mRNA tumor vaccines can be 
tailored for individual patients. These customized vac-
cines can more precisely trigger patient-specific immune 
responses, thereby enhancing treatment efficacy. In the 
future, interdisciplinary studies encompassing genomics, 
immunomics, and bioinformatics will provide a more 
precise theoretical foundation for personalized vaccine 
design, laying solid groundwork for clinical applications. 
The development of personalized vaccines will also bene-
fit from the continuous advancement of high-throughput 
sequencing technologies, which will aid in the rapid and 
accurate detection of genomic information in individual 
tumors. Furthermore, the application of artificial intelli-
gence technology will provide more support. For exam-
ple, optimizing mRNA sequences via artificial intelligence 
technology has greatly reduced the immunogenicity of 
mRNA vaccines [216]. By integrating research findings 
from different interdisciplinary fields, the design of per-
sonalized vaccines will continue to be optimized, provid-
ing more effective treatment strategies for a vast number 
of cancer patients. In addition to directly activating the 
immune system to attack tumors, the future development 
trend of mRNA vaccines also includes achieving vaccine 
multifunctionality. These findings indicate that mRNA 
vaccines can also regulate the immune microenviron-
ment, inhibit tumor growth and spread, and perform 
other functions. By incorporating various active compo-
nents, such as immune modulators and cytokines, 
mRNA-based tumor vaccines will gradually achieve 
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comprehensive intervention against tumors, suggesting 
new possibilities for cancer treatment [153]. Future 
research will focus on deciphering the interaction mech-
anisms of different components in vaccines to achieve 
more precise and efficient therapeutic effects. Simultane-
ously, through techniques such as gene editing, the active 
components in vaccines may undergo more precise regu-
lation, further enhancing the multifunctional effects of 
the vaccines. Research on multifunctional vaccines will 
provide broader insights for the development of person-
alized treatment strategies. In the context of mRNA-
based tumor vaccines, the integration of multiple 
therapeutic modalities is foreseen to emerge as a pivotal 
and compelling avenue for improvement [217]. The com-
bination of mRNA vaccines with other anti-tumor treat-
ment modalities holds the promise of further enhancing 
the therapeutic efficacy of vaccines and achieving syner-
gistic effects via multiple treatment mechanisms. In the 
future, interdisciplinary research teams will conduct 
more basic research and clinical trials to explore the 
mechanisms and application prospects of combined ther-
apeutic strategies in tumor treatment. Interdisciplinary 
collaboration has become a key approach in the study of 
combined therapeutic strategies, involving experts from 
multiple disciplines, including immunology, cell biology, 
pharmacology, and others. Research on combined thera-
peutic strategies not only requires a deep understanding 
of the mechanisms of different treatment modalities but 
also aims to explore how to rationally combine these 
modalities to achieve optimal effects in the treatment of 
tumors at different stages. Mucosal immunology, as a 
new direction in mRNA tumor vaccine research, has gar-
nered significant attention [218]. By guiding immune 
responses in local mucosal tissues and designing specific 
mucosal antigens and adjuvants, prevention and treat-
ment of tumors can be achieved. The introduction of 
mucosal immunization strategies will lead to novel ideas 
and possibilities in the field of tumor prevention and con-
trol, providing broader insights for the research and 
application of future tumor vaccines. In future research 
on mucosal immunology, a deeper exploration of the 
characteristics of mucosal immune tissues and their rele-
vance to tumor-targeted therapy will be carried out. 
Additionally, customized mucosal immune vaccines are 
crucial for enhancing the delivery efficiency and immune 
effects of vaccines in mucosal immune tissues. Further-
more, interdisciplinary collaborations will open new ave-
nues for the application of mucosal immunization in 
tumor vaccines. The application of nanotechnology in 
mRNA tumor vaccines has also attracted considerable 
attention. Nanocarriers can safely and effectively deliver 
mRNA vaccines into the body, increasing their bioavaila-
bility and immunogenicity [219]. Concurrently, the 

targeted drug delivery and reduced side effects of nano-
technology significantly increase the therapeutic efficacy 
and safety of tumor vaccines. The combination of nano-
technology and mRNA-based tumor vaccines will lead to 
the development of novel therapeutic strategies and pos-
sibilities for cancer treatment. Future developments in 
nanotechnology will focus on improving the stability and 
targeting of carriers, further reducing their metabolism 
and excretion rates in the body, thereby prolonging the 
vaccine’s efficacy and impact. Additionally, nanotechnol-
ogy can provide more possibilities for the modification 
and functionalization of vaccines to meet the diverse 
treatment needs of different tumor types and individual 
patients. The application of nanotechnology in mRNA 
tumour vaccines will introduce more precise and efficient 
therapeutic approaches to the field of cancer treatment. 
Despite the significant potential of mRNA vaccines in 
targeted cancer therapy, several limitations persist: 1) 
Poor stability: the chemical structure and biological 
properties of mRNAs render them inherently unstable 
and susceptible to degradation, which affects their bio-
logical activity and immunogenicity [220]. Although 
chemical modifications can increase stability, their effi-
cacy is limited, with studies indicating that N1-methylp-
seudouridine-modified mRNAs undergo ribosomal 
frameshifting during translation [221]. 2) Low in  vivo 
delivery efficiency: The safe and effective delivery of 
mRNA to target cells is crucial for its functionality [222]. 
Current delivery systems, such as liposomes and lipid 
nanoparticles, have improved in stability and intracellu-
lar delivery [67], yet the efficiency of delivery remains 
suboptimal [152]. 3) Complex tumor immune evasion 
mechanisms: Tumor cells employ multiple strategies to 
evade immune surveillance [223], presenting a challenge 
in the field of mRNA vaccine-based targeted cancer ther-
apy [24]. 4) High interindividual variability: Differences 
in genetic background, immune status, and disease con-
ditions among individuals influence the immunogenicity 
and therapeutic efficacy of mRNA vaccines [224]. Based 
on the aforementioned limitations, we advocate for the 
following enhancements to mRNA vaccines: Firstly, the 
essence of mRNA vaccines lies in harnessing the endoge-
nous cellular machinery for antigen protein synthesis to 
trigger immune responses. The optimization of mRNA 
structure and sequence can significantly enhance its sta-
bility and transcriptional efficiency [216, 225]. Research-
ers have improved mRNA expression levels and duration 
within cells by refining the 5’ cap structure, 3’ poly(A) 
tail, codon usage, and nucleotide modifications [154, 215, 
226]. Secondly, beyond optimizing the mRNA itself, the 
adoption of novel delivery systems is pivotal for enhanc-
ing the immunogenic efficacy of mRNA vaccines. Conse-
quently, the development of safer and more effective new 
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carriers is imperative. Emerging lipid nanomaterials, 
such as biodegradable fatty acid nanoparticles, have dem-
onstrated superior targeting and immunogenicity in ani-
mal models [227]. Similarly, as previously noted, 
biomimetic carriers can enhance the efficiency and inten-
sity of vaccine mRNA translation compared to conven-
tional materials [113].Finally, for mRNA to be translated 
into antigen proteins, it must successfully traverse into 
the cytoplasm of target cells, a process fraught with chal-
lenges such as lysosomal degradation post-endocytosis or 
nuclease degradation [228].Therefore, enhancing mRNA 
stability and penetrance is crucial [229]. For example, 
physical methods like electroporation can temporarily 
disrupt the cell membrane, thereby facilitating increased 
mRNA transport efficiency [230]. We also discuss key 
points to consider in the clinical translation of mRNA 
vaccine technology. First, there is a critical need to 
strengthen preclinical research to thoroughly investigate 
the biological characteristics of the vaccine, including its 
stability, immunogenicity, and routes of administration, 
to ensure its safety and efficacy. Second, conducting 
large-scale randomized controlled trials is essential for 
validating the differences between mRNA vaccines and 
traditional vaccines, particularly in terms of administra-
tion routes, dosage design, and immunogenicity. Further-
more, addressing immune responses across different 
populations can provide scientific evidence for the pre-
cise use of vaccines, ensuring their preventive efficacy 
and safety. Third, the assessment of long-term efficacy 
and safety is vital. Continuous monitoring of the duration 
of immunity and potential adverse reactions postvaccina-
tion, especially rare severe events, is necessary to obtain 
long-term immunogenicity, protective efficacy, and safety 
data through systematic follow-up analysis, thus provid-
ing a reliable basis for clinical applications. Finally, opti-
mizing the design of clinical trial protocols is essential to 
increase the scientific rigor and reliability of trials. The 
administration routes and treatment regimens should be 
flexibly designed according to the characteristics of the 
vaccine, and trial standards and observational indicators 
should be optimized on the basis of the immunological 
characteristics of different populations, with endpoint 
indicators determined in conjunction with epidemiologi-
cal considerations.

Conclusion
mRNA vaccines represent a promising solution to over-
come the limitations encountered in conventional cancer 
immunotherapy, offering enhanced and durable treat-
ment alternatives. We posit that the integration of mRNA 
vaccine technology into tumor-targeted therapy will yield 
expanded applications, serving as an effective tool in the 
battle against cancer. The versatility of mRNA vaccines, 

coupled with their ability to elicit immune responses tar-
geting specific tumor antigens, holds great potential for 
personalized cancer treatment strategies. As research 
continues to advance in this area, it is conceivable that 
mRNA vaccines will play a pivotal role in tumor-targeted 
therapy.
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