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Abstract

Malignant tumors remain a primary cause of human mortality. Among the various treatment modalities for neo-
plasms, tumor vaccines have consistently shown efficacy and promising potential. These vaccines offer advantages
such as specificity, safety, and tolerability, with mRNA vaccines representing promising platforms. By introducing
exogenous mMRNAs encoding antigens into somatic cells and subsequently synthesizing antigens through gene
expression systems, mMRNA vaccines can effectively induce immune responses. Katalin Kariké and Drew Weissman
were awarded the 2023 Nobel Prize in Physiology or Medicine for their great contributions to mRNA vaccine research.
Compared with traditional tumor vaccines, mRNA vaccines have several advantages, including rapid preparation,
reduced contamination, nonintegrability, and high biodegradability. Tumor-targeted therapy is an innovative treat-
ment modality that enables precise targeting of tumor cells, minimizes damage to normal tissues, is safe at high
doses, and demonstrates great efficacy. Currently, targeted therapy has become an important treatment option

for malignant tumors. The application of mMRNA vaccines in tumor-targeted therapy is expanding, with numerous clini-
cal trials underway. We systematically outline the targeted delivery mechanism of mRNA vaccines and the mechanism
by which mRNA vaccines induce anti-tumor immune responses, describe the current research and clinical applica-
tions of MRNA vaccines in tumor-targeted therapy, and forecast the future development trends of mMRNA vaccine
application in tumor-targeted therapy.
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Background

Although there have been considerable advancements
in cancer treatment, malignant tumors still remain a
primary cause of human mortality [1]. Conventional
modalities such as surgery, chemotherapy, and radio-
therapy remain widely utilized. Additionally, immune
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represent a novel technology at the intersection of
molecular biology and immunology and is at the fore-
front of gene therapy (Table 1). In these vaccines,
exogenous antigens encoded by mRNA are introduced
into somatic cells, promoting the synthesis of antigenic
proteins. This concurrent activation of the body’s
principal immune mechanisms, namely, cellular and
humoral immunity [4, 5], underscores the pivotal role
of mRNA vaccines in tumor-targeted therapy. In recent
decades, great strides in experimental techniques have
catalysed the widespread utilization of mRNA vaccines
across diverse domains, with an emphasis on tumor-
targeted therapy. Currently, mRNA vaccines are used
for the treatment of various diseases, yielding favour-
able outcomes [6-10]. (Fig. 1). This review compre-
hensively discusses the targeted delivery mechanisms
of mRNA vaccines and their pivotal role in tumor-
targeted therapy. It explores in detail the processes by
which mRNA vaccines activate the immune system to
recognize and attack tumor cells. Furthermore, this
review explores the role of mRNA vaccines in modu-
lating the tumor microenvironment, emphasizing their
potential to enhance anti-tumor efficacy by optimizing
the working conditions of immune cells. A thorough
assessment of the research and application progress
of mRNA vaccines in tumor-targeted therapy is pre-
sented, including numerous clinical trials that dem-
onstrate their actual effectiveness and potential across
multiple cancer types. Finally, this review anticipates
future trends in this field, which are expected to fur-
ther advance the development of mRNA vaccines in
cancer treatment. Through this review, we aim to pro-
vide readers with a comprehensive and in-depth per-
spective that aids in understanding the central role of
mRNA vaccines in cancer therapy and their promising
future prospects.

Table 1 Breakthroughs of mRNA vaccines in research
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Overview of mRNA vaccines: principle,
classification, synthesis and biomarkers

mRNA vaccines are based on the "central dogma" of
molecular biology and involve the optimization, chemi-
cal modification, and purification of mRNAs with spe-
cific antigens [34]. There are two main types of mRNA
vaccines: self-amplifying (SAM) and nonreplicating
vaccines [35]. SAM vaccines alter a virus’s genome to
include mRNAs encoding antigens, allowing self-replica-
tion without viral protein synthesis and increasing safety
and efficiency. Nonreplicating vaccines contain only
full-length mRNAs encoding the antigen, with a 5’ cap
structure and 3’ poly(A) tail. Despite their simple struc-
ture and direct antigen focus, they have the drawbacks of
a short half-life and low in vivo antigen expression [36],
necessitating higher doses for effectiveness. The genera-
tion of designed DNA templates into an RNA strand is
guided by the principle of base complementarity [37].
This process is accomplished through in vitro transcrip-
tion (IVT), which involves sequence construction, IVT,
capping, and tailing, is the primary method for synthe-
sizing mRNA vaccines [38]. DNA templates for IVT
must have an open reading frame (ORF), a 5 UTR and
3" UTR, and for self-amplification, a long ORF. The ORF
contains start and stop codons [39], allowing splicing for
mature mRNA production. The 5 UTR and 3’ UTR regu-
late mRNA stability and translation [40]. The primary
challenge facing IVT mRNAs is their immunogenicity.
To address this issue, modifications using nucleotides
can increase RNA stability and minimize immunogenic-
ity. Among various nucleotide modification methods,
chemical alterations, poly(A) tail addition, and sequence
optimization are commonly employed [15]. Furthermore,
mRNA purification is crucial for eliminating immuno-
genic properties [41]. Purification techniques mainly
include different chromatographic methods (e.g., high-
performance liquid chromatography (HPLC) [42], ion

Year Breakthrough in mRNA vaccine research References
1990 Concept proposal of MRNA vaccines [11]
1995 MRNA tested as cancer vaccine (in mice) [12]
2000 Exploration of mMRNA as a novel vaccine approach [13]
2002 The first clinical trial with ex vivo DCs transfected with mRNA against cancer [14]
2006-2008 mMRNA modifications to enhance stability and efficacy, leading to improved performance and lon-  [15-18]
gevity in vaccine applications and therapeutic interventions

2010 Significant Progress of MRNA technology in infectious disease vaccines [19]
2012 Intranodal delivery of mRNA transfects DCs and elicits anti-tumor immunity [20]
2013 Debate on type | IFN in efficacy and safety of mRNA vaccines [21]
2020-2022 FDA approval of two mRNA vaccines of COVID-19 [22,23]
2022 to present Research and clinical trials on personalized mRNA cancer vaccines [24-26]
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Fig. 1 Application field of mRNA vaccines. Legend: The mRNA vaccine delivery systems primarily encompass three categories: 1) Carrier-based
delivery systems, including lipid nanoparticles (LNPs), cationic nanoemulsions (CNEs), cationic peptides (e.g., protamine), viral replicating particles
(VRPs), and polymers. 2) Dendritic cell mRNA delivery systems (DCs mRNA). 3) Naked mRNA. Presently, mRNA vaccines are predominantly
employed in the treatment of various diseases, such as: 1) Cardiovascular diseases, including myocardial infarction and heart failure [6]. 2) Metabolic
diseases, such as muscular dystrophy [7] and porphyria [8]. 3) Genetic disorders, including glycogen storage disease [9]. 4) Allergic diseases, such

as food allergies [27]. 5) Infectious diseases, including human papillomavirus (HPV) [28], Corona Virus Disease 2019 (COVID-19) [29], and human
immunodeficiency virus (HIV) [30], among others. 6) Tumors, such as prostate cancer [10] and glioma [31], among others. Naked mRNA vaccines
are primarily utilized in the treatment of tumors [32] and infectious diseases [33]. DC-loaded mRNA vaccines are mainly applied in the treatment

of tumors [10]

exchange [43], size exclusion [44], affinity [45], and Fast
protein liquid chromatography (FPLC) [46]), adsorption
[47], and membrane technology [41]. The cap structure
shields mRNA from exonuclease degradation, ensur-
ing mRNA stability and enhancing translation efficiency
[48]. Methylation can be utilized to cap mRNAs in three
primary forms: Cap0, Capl, and Cap2. Traditional enzy-
matic capping is achieved by enzymatic capping [49],
which involves RNA 5’-triphosphatase (RTPase) hydro-
lysing the 5 end of RNA, which transfers guanosine
monophosphate (GMP) via guanylyltransferase (GTase)
to form a cap structure (m7GpppNp), which can be fur-
ther modified to capl (m7GpppN1mp) or cap2 through
2’-O-methyltransferase. Cotranscriptional capping with

a Cap analogue (m7GpppG) is also a common method
[50] used during mRNA transcription [51]. However,
studies have indicated that capping analogues may dis-
rupt mRNA binding, affecting translation efficiency by
hindering ribosome recognition and proper 5" end deter-
mination [52, 53]. Adding a poly(A) tail is essential for
ensuring the stability of mRNA after transcription [54].
There are two main methods used for adding poly(A)
tails to mRNAs. The first involves traditional enzymatic
polyadenylation, in which the poly(A) tail is added to the
3" end of the mRNA without changing the length of the
tail [55]. The other method involves obtaining a poly(A)
tail of controllable length by formatting a fixed-length
poly(A) sequence on the basis of a DNA template and
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transcribing it [56]. The ideal length of the poly(A) tail
falls within the range of 120 to 150 nucleotides [57-59].
Research on biomarkers for mRNA vaccines remains
limited, encompassing two primary areas: 1) Immu-
nophenotyping. Studies have indicated that immunophe-
notyping can reflect the expression levels of immune
checkpoint (ICP) and immunogenic cell death (ICD)
regulators, suggesting its potential as a therapeutic bio-
marker for mRNA vaccines [60]. 2) Tumor antigens. Lin
et al. identified six genes that may serve as vaccine targets
and stimulate antigen-presenting cell (APC) activation
in glioblastoma (GBM), suggesting that these genes are
potential biomarkers for mRNA vaccines [61]. Another
study demonstrated that patients with malignant meso-
thelioma (MESO) characterized by high expression of the
oncogene fibronectin 1 (FN1) may develop resistance to
mRNA vaccination. Consequently, the authors suggest
that FN1 could serve as a potential biomarker for mRNA
vaccines [62]. However, these studies are primarily bio-
informatics analyses, and further exploration through
in vitro and in vivo studies is necessary to elucidate the
biomarkers associated with mRNA vaccines.

Targeted delivery mechanism of mRNA vaccines

A reliable and secure targeted delivery mechanism is
highly important for the progress of mRNA vaccine tech-
nology [63]. Currently, several mRNA delivery systems
are known, including, Carrier based delivery system,
naked mRNA and the dendritic cell-mRNA delivery sys-
tem (DCs-mRNA) [64](Table 2).

Carrier based delivery system

Two major types of carrier molecules have been uti-
lized in nucleotide delivery systems: viral carriers and
non-viral carriers [98]. However, owing to associated
limitations such as potential immunogenicity, tumo-
rigenicity, and low drug loading, the use of viral carriers
has been limited. Conversely, nonviral carriers, includ-
ing liposomes and their derivatives [65], polymers [70],
virus-like replicon particles [73], cationic nanoemulsion
(CNE) [77], and cationic cell-penetrating peptides (CPP)
[84, 85], have garnered significant attention. Among
these carriers, liposomes and their derivatives, particu-
larly lipid nanoparticles (LNPs) [99, 100], stand out as
widely employed delivery systems. LNPs typically have
four key components: ionizable amino lipids, cholesterol,
polyethylene glycol lipids, and auxiliary lipids such as
double stearyl phosphatidylcholine (DSPC) [101-103].
LNPs, which are approximately 100 nm in diameter, are
strikingly similar in both size and composition to vari-
ous viral entities, mirroring the dimensions of infectious
agents such as the SARS-CoV-2 virus (approximately 100
nm), influenza A virus (ranging from 80 to 120 nm), and
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mature HIV particles (approximately 100 nm in diameter)
[104]. Post-administration, LNPs are dynamically trans-
ported to cells expressing lipid or scavenger receptors
akin to natural apolipoprotein conveyance. LNPs offer
notable advantages, including high delivery efficacy [105]
and commendable biocompatibility. Polymer materials
primarily feature cationic liposome polymers (LPPs) with
a positive charge that are proficient in mRNA encapsu-
lation to enable protein expression while mitigating deg-
radation risks. However, these methods have limitations
such as polydispersity and macromolecule elimination
[106]. Lipid nanoparticles (LNPs) exhibit high mRNA
encapsulation efficiency and effective cellular transfec-
tion, coupled with robust tissue penetration, low cytotox-
icity and immunogenicity, and potent adjuvant properties
[66—68]. However, LNPs are prone to degradation and
exhibit relatively poor stability during storage, tending
to aggregate and fuse [69]. Nevertheless, numerous pre-
clinical and clinical trials have confirmed that LNPs hold
promising potential as mRNA vaccine carriers, capable
of effectively activating immune responses. Continuous
technological advancements have led to LNPs with more
complex structures and enhanced physical stability [107],
yielding substantial achievements in the innovation of
vaccine delivery systems [71]. LPPs encompass diverse
materials like polyethyleneimine (PEI) [108], polyam-
ide amine (PAMAM) dendritic polymer [109], dendritic
macromolecular polypropylene imine [pol (propylene
imine), PPI], polyurethane [poly (aminoester), PAE], and
polysaccharides [110]. Polyethylenimine (PEI) has been
shown to enhance endosomal escape, protect mRNAs
from degradation, and facilitate safe release into the cyto-
plasm [111]. However, the low purity and high molecular
weight of polymer-based delivery vectors, coupled with
their high charge density, can result in significant cyto-
toxicity [72]. Cationic peptides, characterized by cations
or amphiphilic amino groups (e.g., arginine) in the main
and side chains, facilitate mRNA delivery. Notably, pro-
tamine, a renowned cationic peptide for mRNA trans-
port [86], forms nanosized complexes with mRNAs to
safeguard against RNA enzyme degradation and stabi-
lize immunogenicity across temperatures while preserv-
ing the efficacy of antigen-encoded mRNA vaccines [87].
Protamine can spontaneously condense mRNA through
electrostatic interactions, thereby protecting the encap-
sulated mRNA from degradation by extracellular RNases
[88, 89]. Additionally, protamine-mRNA complexes can
function as adjuvants, activating TLR7/8 to elicit innate
immune responses [90]. The combination ratio and bind-
ing strength between protamine and mRNA can have
implications for the translation process, potentially lim-
iting vaccine protein expression efficiency and overall
vaccine effectiveness [91]. Viral replicon particles (VRPs)
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have the capacity to encapsulate self-amplifying RNA
(saRNA)-encoded antigens and facilitate their transpor-
tation to the cytosol. In vitro synthesis of viral structural
proteins allows for their encapsulation as saRNAs encod-
ing specific antigens. Numerous studies have highlighted
the therapeutic potential of mRNA vaccines delivered
via VRPs against a spectrum of viral diseases, bacterial
diseases, and cancer [74]. It enhances RNA replication,
triggers innate immune responses, and promotes the
maturation of dendritic cells. However, it also has the
drawback of inducing neutralizing antibody responses
against the viral surface [75, 76]. CNE can enhance the
efficacy of mRNA vaccines by binding to saRNA in a
pH-dependent manner, comprising nanoemulsions and
cationic lipids. Nanoemulsions can be generated via tech-
niques such as ultrasound, microfluidics, and vigorous
stirring [78]. Notably, among the CNE components, the
cationic lipid 1.2-diol sn glycerol-3-phosphate choline
(DOTAP) stands out for its positive charge, being emulsi-
fied with MF59, the identical adjuvant component of the
lotion [79]. Additionally, a preclinical study conducted
by Brito et al. on the ability of CNE saRNA delivery in
rabbits, mice, and nonhuman primates revealed promis-
ing therapeutic effects of CNE and indicated that lower
doses of adjuvant subunits in CNE complexes could
elicit substantial immune responses [80]. Numerous
studies have been conducted to investigate the stabil-
ity, toxicity, and biodistribution of CNE, with findings
confirming its stability [81]. However, the conclusions
regarding its toxicity vary across different models. One
study demonstrated that the toxicity of nanoemulsions
on human foetal lung cells (MRC-5) is dose-dependent
[82]. In contrast, another investigation revealed that the
rabies animal model exhibited suitable tolerance to CNE-
delivered self-amplifying mRNA (SAM) vaccines [83].
Biomimetic carriers represent an innovative drug deliv-
ery concept employing endogenous substances, biologi-
cal structures, and processes. Exosomes, a type of lipid
bilayer microvesicle characterized by small size and low
immunogenicity, are a particularly auspicious biomimetic
carrier. Exosomes can prolong the duration of drugs in
circulation by evading mononuclear phagocytic system
clearance, thereby increasing drug delivery efficiency
[112]. In addition, promising new materials for mRNA
vaccine delivery research, such as inorganic nanomate-
rials and hydrogels, are also being explored. Compared
with traditional materials, these new materials have
great advantages in terms of improving the efficiency and
intensity of vaccine mRNA translation [113].

Naked mRNA
Naked mRNA delivery refers to the direct administration
of mRNA. This technology has been successfully used
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in vivo for immune responses, specifically targeting anti-
gen-presenting cells through intradermal [92, 114] and
intranodular injections [115, 116]. There are many advan-
tages associated with this delivery method [92, 93]. First,
the mRNA cannot be integrated into the genome, reduc-
ing the risk of genetic mutations. Second, ribosomes can
bind directly to the mRNA in the cytoplasm, causing the
mRNA to be translated immediately and rapidly initiat-
ing an immune response after vaccination. Third, the
final position of the mRNA determines the site of pro-
tein expression, allowing for precise control of protein
expression. Despite its advantages, naked mRNA delivery
also has some major drawbacks [94]. The lack of a carrier
during the delivery process can lead to unstable protein
translation and expression. However, this can be miti-
gated by altering the administration method and proper
chemical modifications. However, research in this area is
relatively limited at present.

Dendritic Cell-mRNA Delivery System (DCs-mRNA)

DCs are the orchestrators of the immune response,
showing unparalleled efficiency in capturing and pre-
senting antigens through a meticulously regulated
process of internalization and proteolytic degrada-
tion. Subsequently, DCs present antigens to CD8+T or
CD4+T cells through major histocompatibility com-
plexes (MHCs), specifically MHCI or MHCII, thereby
initiating an adaptive immune response [95]. This
highlights DCs as prime targets for vaccination. Typi-
cally, specific mRNAs encoding antigens are delivered
into DCs via electroporation, lipid transfection, nuclear
transfection, or in vitro acoustic evaporation. Among
these techniques, electroporation is preferred [24]due
to its high transfection efficacy and independence from
carrier molecules. Challenges primarily include the fol-
lowing two aspects: Firstly, serum protein aggregation
and mRNA degradation upon systemic administration.
Experts suggest addressing this issue by supplementing
DCs with granulocyte—macrophage colony-stimulating
factor (GMCSF) and IL-4 [96]. The second challenge lies
in the systematic dissemination of mRNA vaccines [97].

Mechanism of mRNA Vaccine-Induced anti- tumor
immune response

The mechanisms by which mRNA vaccines induce an
anti-tumor immune response involve two primary mech-
anisms. First, they directly induce tumor-specific T-cell
responses, including both innate and adaptive immune
responses. During this process, mRNA vaccines deliver
tumor-associated antigens or tumor-specific antigens
generated by intratumoral mutations to the immune
system, activating antigen-presenting cells (APCs)
and T cells and thereby initiating a specific antitumor
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immune response. Second, they achieve induction of an
antitumor immune response by modulating the tumor
microenvironment.

Key factors in the induction of anti- tumor immune
response by mRNA vaccines

The key factors in the mRNA vaccine-induced antitumor
immune response include the following aspects. First,
the design of the vaccine is crucial [117]. By precisely
selecting tumor-associated antigens, a vaccine can ensure
high specificity and effectiveness. Second, efficient anti-
gen presentation is a key step in inducing an anti-tumor
immune response [118]. mRNA vaccines express tumor-
associated antigens, making them targets antigen-pre-
senting cells (APCs) in vivo and thereby enhancing
antigen presentation efficiency [119]. Third, a refined
immune regulatory mechanism contributes to achieving
immune balance [120]. mRNA vaccines can induce the
generation of immunosuppressive cells and inflamma-
tory factors to balance the immune response, preventing
excessive immune damage [121].

Molecular mechanisms underlying the activation of anti-
tumor immune response by mRNA vaccines

The molecular mechanisms underlying mRNA vaccine-
induced activation of anti-tumor immune responses
involve multiple factors, including antigen presentation,
immune cell activation, immune regulation, and antigen
stimulation of B cells [122].

Inducing innate immunity

Congenital immune stimulation is driven primarily by
the response mechanism of immune cells in defence
against pathogens. The Golgi apparatus and endoplas-
mic reticulum cooperate to translate protein fragments
via the MHC [123]. Following DC activation, the MHC
can identify corresponding T cells and initiate cytotoxic
lymphocyte immunity [124]. MHC complexes and TCRs
found on the surface of T cells are the first signals that
trigger cellular immune responses. Several components
of mRNA vaccines can interact with pattern recognition
receptors (PRRs) in endosomes, including TLR3/7/8,
which can detect pathogen-associated molecular patterns
(PAMPs) in mRNAs. TLR7/8 recognizes single-stranded
RNA (ssRNA), whereas TLR3 detects double-stranded
RNA (dsRNA). APCs can identify mRNAs and activate
TLRs [125]. The activated TLR detects PAMPs and trig-
gers the second signal. The activated second messenger
translocates to the nucleus and functions as a potential
transcription factor. It can recruit various transactivat-
ing factors to promote the expression of proinflammatory
cytokines and chemokines such as interleukin-6(IL-6),
interleukin-2(IL-2), and tumor necrosis factor-a (TNF-a),
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thereby activating naive T cells via dual signalling path-
ways. However, there may be insufficient T lympho-
cytes to initiate cellular immune responses. Therefore,
when these stored cells are exposed to the same antigen
again, they are quickly activated. The proper absorption
of APCs is a prerequisite for the activation of an immune
response, with DCs being primarily responsible. A pre-
vious study [126] showed that mRNA vaccines have the
ability to stimulate DC cell maturation. In non-immune
cells, RIG/MDADS5 recognize exogenous mRNA, activating
cytokine and chemokine production [127]. Subsequently,
they are able to recruit innate immune cells (Fig. 2).

Inducing adaptive immunity

After translation, APCs, such as DCs, take up the protein
encoded by mRNA by a variety of mechanisms includ-
ing micropinocytosis, endocytosis, or phagocytosis [128].
Antigens can be transiently expressed and accumulate in
the cytoplasm, allowing for rapid processing into peptides
that can be recognized by MHC I. Ribosomal transla-
tion generates various antigenic proteins, which are then
degraded into fragments in proteasomes and presented as
CD8+T-cell epitopes by MHC-I. Alternatively, antigens
can also be transported directly from the cytoplasm to
lysosomes, or lysosomal-targeting sequence antigen pro-
teins can be incorporated into mRNA structural design,
followed by lysosomal disintegration and presentation
as CD4+ T-cell epitopes by MHC-IL. In summary, APCs
can present exogenous antigens to CD4+T cells through
MHC-II while also cross-presenting exogenous antigens
to CD8+T cells via MHC-], resulting in the activation of
cytotoxic T cells. This stimulation method is termed cross-
stimulation. CD4+T cells can provide support to other
immune cells, including B cells and CD8+ T cells, through
their helper functions. Ultimately, the cloning amplifica-
tion of alloantigen-specific T and B cells can result in the
elimination of target cells. Furthermore, all nucleated cells
possess the ability to process mRNA and present vari-
ous translated proteins as well as peptides in the MHC-I
pathway. Among them, only APCs can present on both
MHC-I and MHC-II, triggering immunological responses
from CD4+T or B cells. However, prior to activating adap-
tive immunity, understanding how cells recognize non-
self mRNAs and activate signaling cascades through the
interplay of mRNAs, PRRs, and PAMPs is critical. PRRs
that can perceive these PAMPs are mainly categorized into
two distinct types: extracellular and intracellular [129].
PRRs that recognize RNA contribute to the production of
IEN-I. Furthermore, IEN-y can stimulate the activation of
Protein Kinase R (PKR) and elF2a phosphorylation, lead-
ing to cellular and humoral immune responses. As a result,
IFN-y is expected to provide immunological protection to
the body. However, mRNA vaccines can overstimulate the
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Fig. 2 mRNA vaccine induces innate immune mechanism. Legend: Upon stimulation of DC cells, the T cells undergo identification, whereby

the MHC complex and TCR receptor on their surface serve as the initial signals for cellular immune response. Antigen-presenting cells (APCs)
recognize the mRNA, activating TLR and prompting the detection of PAMP, thereby initiating the second signal. The activated second signal
translocates to the nucleus as a transcription factor, recruiting various Trans-acting factors to facilitate the expression of proinflammatory cytokines
and chemokines. This dual signal pathway effectively activates the initial T cells. In non-immune cells, RIG-l and MDAS5 are involved in sensing
exogenous MRNA and inducing cytokines/chemokines to recruit innate immune cells

immune response, causing excited cells to generate a sig-
nificant amount of IFN-I, which inhibits mRNA transla-
tion and promotes mRNA degradation. Consequently, this
downregulates the expression of the target protein, causing
a negative reaction on the immune response. Therefore, an
effective mRNA vaccine should completely activate innate
immunity before initiating adaptive immunity (Fig. 3).

Modulation of the tumor microenvironment by mRNA
vaccines

Based on definition provided in a previous report [130],
the tumor microenvironment can be described as a

local inner environment composed of tumor-infiltrat-
ing immune cells, interstitial cells, and active media-
tors released by these cells along with tumor cells. This
microenvironment is critical for tumor growth and
progression because it provides important nutrients
and energy while also assisting tumor cells in evad-
ing immune system responses. Furthermore, the tumor
microenvironment has been shown to increase the pro-
pensity of tumors to metastasize to other parts of the
body. mRNA vaccines, as novel strategies for cancer
immunotherapy, also greatly affect the tumor microen-
vironment [131].
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Fig. 3 mRNA vaccine induces adaptive immune mechanism. Legend. After translation, the proteins encoded by mRNA are taken

up by antigen-presenting cells (APCs) via mechanisms such as micropinocytosis, endocytosis, or phagocytosis. These antigens are subsequently
processed into peptides and loaded onto the MHC class | pathway. The translation conducted by ribosomes produces immunogenic proteins,
which are degraded into fragments within the proteasome and presented to CD8+T cells via MHC-I. An alternative pathway allows for the direct
transport of antigens from the cytoplasm to lysosomes, or the incorporation of a lysosome-targeting sequence within the mRNA structure

for lysosomal degradation. The resulting MHC-II peptide complexes are then recognized by the T cell receptor (TCR) on CD4+T cells

The role of tumor microenvironment during tumor
progression

The tumor microenvironment is a complex and dynamic
ecosystem within tumor tissue that consists of a diverse
array of components, such as tumor cells, immune cells,
fibroblasts, extracellular matrix proteins, and an intri-
cate network of cytokines and chemokines. These ele-
ments interact in a highly regulated manner, playing
crucial roles in tumor growth, invasion, immune evasion,

and response to therapy. Understanding the interac-
tions within the tumor microenvironment is essential for
developing effective strategies for cancer treatment and
improving patient outcomes [132]. For example, cancer-
associated fibroblasts (CAFs) and other immune cells
have been reported to contribute to this process [133].
The tumor microenvironment provides a favorable habi-
tat in which the tumor cells can rapidly proliferate, evade
immune surveillance, and metastasize [134]. Tumor
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cells adapt and evade the immune system by modulat-
ing immune suppression signals in response to antitumor
immunological pressure [135]. Ultimately, tumor cells
create an immunosuppressive microenvironment, which
can enhance anti-tumor immunity and promote tumor
survival. Thus, an ideal mRNA vaccine may alter the
composition of local immune cells while restoring tumor
immune surveillance.

mRNA vaccines can alter the distribution of cytokines

in the tumor microenvironment

First, mRNA vaccines can alter the levels of cytokines
in the tumor microenvironment by expressing tumor-
associated antigens, thereby influencing the activation
of immune cells and inflammatory responses [136].
The expression of tumor-associated antigens activates
immune cells, particularly CD4+T cells and CD8+T
cells, prompting them to release more cytokines [137].
An increase in these cytokines can disrupt the balance
between immunosuppressive cells and inflammatory
factors in the TME, making it easier for immune cells to
penetrate into tumor tissues and eliminate tumor cells
[138]. mRNA vaccines can promote DC maturation
through TLR signaling. mRNA vaccines activate the tran-
scription factor NF-«xB via the MyD88 and TRIF path-
way, thus promoting the generation of cytokines such
as interleukins(ILs), tumor necrosis factors(TNFs), and
interferon(IFNs), as well as the maturation of cytotoxic T
lymphocytes (CTLs), resulting in the elimination of solid
tumors during tumor targeted therapy [139]. Further-
more, mRNA vaccines can promote cytokine release by
helper T cells, thereby increasing the level of antibodies
of the humoral dependent immunity [140]. Furthermore,
mRNA vaccines can enhance the recruitment and activa-
tion of antigen-presenting cells (APCs) in the TME [141].
APCs, like dendritic cells, macrophages, and B cells, ini-
tiate immune responses by presenting tumor antigens to
T cells through mRNA vaccines, activating specific anti-
tumor immunity [142]. This process helps to establish a
bridge between innate and adaptive immune responses
in the TME, thereby enhancing anti-tumor immune
activity. In addition, mRNA vaccines can also regulate
the expression of immune checkpoint molecules in the
TME [143]. Immune checkpoints are a type of immune
inhibitory molecules that play a key role in regulating
immune responses and maintaining self-tolerance [144].
mRNA vaccines can influence the expression of immune
checkpoint molecules on immune cells and tumor cells,
potentially overcoming the immune evasion mechanisms
employed by tumors [28]. By intervening in immune
checkpoints, mRNA vaccines can enhance anti-tumor
immune responses and improve the efficacy of tumor
immune therapy [119].
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mRNA vaccines can modulate tumor immune
microenvironment (TIME)

mRNA vaccines have the potential to reshape the tumor
immune microenvironment (TIME) via two primary
mechanisms: 1) regulating the balance between M1 and
M2 macrophages and 2) stimulating cytokine release
by different types of T cells (Fig. 4). The interaction of
malignant cells and immunological components in the
tumor microenvironment (TME) has a great effect on
tumor growth and maturation. Tumor cells frequently
exploit immunosuppressive mechanisms, such as the
production of immunosuppressive proteins, to evade
immune surveillance. However, studies have shown that
mRNA vaccines can restore tumor immunosurveillance
by increasing MHC-I expression [145]. mRNA vaccines
can also inhibit tumor growth by regulating the ratio of
M1 to M2 macrophages to control tumor progression.
Macrophages carry out their functions through two sub-
types: M1 and M2. M1 macrophages promote inflamma-
tion, whereas M2 macrophages suppress it. In the tumor
microenvironment, macrophages mostly exhibit the M2
phenotype. However, studies have shown that mRNA
vaccines can increase the ratio of M1 macrophages to
M2 macrophages by promoting the transformation of
M2 macrophages into M1 macrophages. This is particu-
larly useful for suppressing tumor growth and mitigating
tumor immune escape [146].

Research and current applications of mRNA
vaccines in tumor targeted therapy

In the realm of tumor-targeted therapy, mRNA vaccines
are utilized in two main ways: mRNA tumor vaccines
directly target tumor cells, and increasing treatment
effectiveness by combining mRNA vaccines with other
tumor-targeted therapies, such as immune checkpoint
inhibitors. The continual evolution of these strategies has
revolutionized tumor-targeted therapy, presenting novel
avenues to enhance treatment outcomes among cancer
patients and illustrating the promising role of mRNA
vaccines in combating cancer.

mRNA tumor vaccines

Currently, mRNA tumor vaccines produced using IVT
mainly target four distinct types of molecules: (1) encod-
ing tumor-associated antigens (TAA), (2) encoding
tumor-specific antigens (TSA), (3) encoding tumor-Asso-
ciated Viruses.

mRNA vaccines encoding TAAs
TAAs are expressed in normal cells as well, but at rela-
tively higher levels in tumor cells [147]. These antigens
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Fig. 4 mRNA vaccines reshape tumor immune microenvironment (TIME). Legend.mRNAvaccine possesses the potential to reshape the tumor
immune microenvironment via two primary mechanisms. Firstly, it requlates the equilibrium between M1 and M2 macrophages, thus transforming
M2 macrophages into M1 macrophages. Secondly, it induces the secretion of cytokines by various T cells (For example T helper cell). Additionally,
the vaccine promotes the maturation of dendritic cells (DC) through Toll-like receptor (TLR) receptors, activates the transcription factor NF kB

to stimulate the maturation of cytotoxic T lymphocytes (CTL), and prompts T helper cells to secrete cytokines

typically arise from abnormal differentiation or dys-
function of tumor cells, such as carcinoembryonic
antigen (CEA), PRAME, NY-ESO-1, etc. [148-150].
Although TAAs are expressed to some extent in normal
tissues, the significant upregulation of their expression
in tumor cells allows the immune system to generate
targeted immune responses [151]. The utilization of
TAAs as targets for mRNA vaccines has already initi-
ated clinical investigations in various solid tumors and
haematologic malignancies. mRNA vaccines have the
potential to be designed for TAAs that are selectively
expressed in cancer cells. CA125 is a TAA in ovarian
epithelial carcinoma, whereas AFP is a TAA in liver
cancer. Several clinical trials have used mRNA vac-
cines targeting similar TAAs for therapy, including

NCT00831467, NCT03164772, and NCT01995708

[24]. (Table 3).

mRNA vaccines encoding TSAs

During the carcinogenesis process, malignant cells
develop somatic mutations, resulting in the expres-
sion of protein sequences that are not expressed in nor-
mal cells. Proteasomes can convert these proteins into
peptides. Thereafter, the peptides produced can bind to
MHC-I receptors and be recognized as new antigens by
T-cell receptors. These novel antigens are distinct to each
patient, representing tumor specificity and providing
opportunities for tumor-targeted therapies [25, 155]. The
specific process procedure involves removing a single
tumor and identifying specific novel antigens via next-
generation sequencing. The new antigens encoded by
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mRNAs are subsequently injected into the same patient,
eliciting an immune response that can attack the tumor
[156]. mRNA can encode several antigens, resulting in the
presentation of many epitopes. mRNA can express multi-
ple neoantigens, either as individual molecular forms or
concatenated forms of multiple coding sequences. Some
tumor types can produce a large number of novel anti-
gens, and expressing multiple epitopes may stimulate T
cell responses from a perspective of inducing a broad
immune response. The most critical aspect of this ther-
apy is verifying the precise immunogenic non-synony-
mous somatic mutation found in the patients’ tumors
and discovering new gene expression epitopes. Interest-
ingly, in a clinical trial (NCT03394937), 20 postoperative
(Ilc, III, and IV) melanoma patients received an intra-
nasal injection of non-formulated mRNA vaccine (ECI-
006) [32]. The results indicated that patients tolerated the
low-dose mRNA vaccination (600 pg) well and experi-
enced a significant immunological response. No adverse
reactions of level 3 or higher were noted [32]. In a second
study cohort (NCT03394937), patients with metastatic
melanoma in stable condition following conventional
treatment for 3—12 months were given ECI-006 vaccina-
tion and standard anti-PD-1 treatment, but the results
have yet to be announced [32]. Some clinical trials have
reported persistent objective reactions in cancer patients
following treatment without unmanageable toxic effects
(NCT03323398, NCT03480152, etc.) [24, 26] (Table 4).

mRNA vaccines targeting tumor-associated viruses

Tumor viruses are a class of viruses capable of induc-
ing and promoting carcinogenesis in host cells [157].
Currently, the main viruses associated with human
tumors include hepatitis B virus (HBV), hepatitis C virus
(HCV), Epstein-Barr virus (EBV), human papillomavirus
(HPV), and human T-lymphotropic virus type 1 (HTLV-
1) [158]. In recent years, significant progress has been
made in mRNA vaccine research targeting HPV. Zhou
et al. developed an mRNA-based vaccine against the
late oncoproteins E6 and E7 of HPV16, which are abun-
dantly expressed in high-grade squamous intraepithelial
lesions (HSIL). In vitro and in vivo studies demonstrated
that the translated mRNA was functional and elicited
antigen-specific adaptive immune responses. Mice with
HPV16 +lesions exhibited tumor growth inhibition,
extended lifespan, and the development of protective
immune memory following vaccination [159]. Hepatitis
B virus (HBV) infection is a major pathogenic factor for
liver cancer [160]. Research has shown that mRNA vac-
cines can activate the innate immune system, inducing
the production of potent immunogenicity, high levels of
virus-specific antibodies, memory B cells, and T cells,
offering prospects for functional cure and prevention of

Page 20 of 40

HBYV recurrence in chronic patients. However, further
in-depth evaluation of mRNA vaccines is needed [161].
HIV infection increases the risk of certain tumors, such
as Kaposi’s sarcoma and non-Hodgkin’s lymphoma [162].
Xie et al. [163] utilized mRNA technology to induce the
generation of broadly neutralizing antibody (bnAb) pre-
cursors essential for multiple HIV subtypes, providing
evidence for the feasibility of germline targeting (GT)
and progressive immunization strategies in HIV vaccine
development. Through animal models, researchers have
successfully elicited specific immune responses to HIV
bnAbs, providing new strategies for the development of
effective HIV vaccines (Table 5).

Adjuvants for mRNA vaccines

Adjuvants are additional immunostimulatory agents in
vaccines that activate the innate immune system and pro-
vide the necessary "help" to increase the magnitude and
quality of adaptive responses, thereby offering maximal
protection against specific pathogens [164]. Different
adjuvants can elicit various immune responses, influenc-
ing overall vaccine outcomes. Currently, the adjuvants
used in mRNA vaccines generally include four catego-
ries: 1) the intrinsic adjuvant effects of mRNA vaccines;
2) mRNAs encoding immunostimulatory molecules; 3)
mRNAs encoding antibodies; and 4) adjuvants for mRNA
vaccines on the basis of delivery carrier components.

The intrinsic adjuvant effect of mRNA vaccines

Exogenous RNA molecules can induce immune
responses in mammalian cells. Unmodified exogenous
nucleotide mRNAs used to express antigens in mRNA
vaccines exhibit intrinsic adjuvant activity by triggering
innate immune signalling pathways. Notably, double-
stranded RNA (dsRNA) can activate TLR3, while sin-
gle-stranded RNA is capable of activating mouse TLR7,
and RNA oligonucleotides containing thio-phospho-
rylated nucleotide linkages serve as ligands for human
TLR8 [165]. Polyuridine (U) and short dsRNA with 5’
triphosphate blunt ends can enhance immune responses
through the TLR3 and retinoic acid-inducible gene
(RIG)-I signaling pathways without compromising anti-
gen expression, thus functioning as adjuvants for mRNA
vaccines [166, 167]. The activation of TLRs and RIG-I
signaling can induce the production of proinflammatory
cytokines such as tumor necrosis factor-alpha (TNF-«),
interleukin-6 (IL-6), IL-12, IL-1p, and interferon-alpha/
beta (IFNa/p) (Fig. 1), which enhances the protective
immunity required by mRNA vaccines while poten-
tially leading to excessive inflammation [168]. Pioneer-
ing work by Kariko et al. demonstrated that unmodified
RNA molecules activate TLR or RIG-I signaling path-
ways, triggering antiviral-like immune responses that
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Table 5 Clinical trials of mRNA vaccines targeting tumors associated viruses
Cancer type NCT number Drug Phase Viruse Status Delivery Result
administration system
Reproductive cervical carci- NCT06273553 RGO02 Injection | Not yet recruit-  Lipid nanopar-  Not published
system tumors  noma (an mRNA ing ticles
Therapeutic
Vaccine)
NCT02116920 mRNA E6/E7 HPV genotypes  Not yet recruit-  Lipid nanopar-  Unknown
ing ticles
NCT05119855 mRNA-1273 % 9-valent human Completed Lipid nanopar-  Not published
Vaccine ticles
(Types 6, 11, 16,
Skin tumor Kaposi's sar- NCT05217641 BG505MD39.3 | Active,not Lipid nanopar-  Not published
coma mRNA, BG505 recruiting ticles
MD39.3 gp151
mRNA or BG505
MD39.3 gp151
CD4KO mRNA
NCT02413645 TriMix 100, | Completed Lipid nanopar-  The vaccine
TriMix 300 ticles was secure
and well toler-
ated. There were
31 grade 1/2
and 1 grade 3

adverse events,
mostly unrelated
to the vaccina-
tion. Patients
who received
the highest dose
showed a moder-
ate increase

in T-cell responses
spanning HTI
sequence at week
8. In addition,
the proportion
of responders
receiving any
dose of HTI
increased

from 31% at w0
to 80% postvac-
cination. The
intervention

had no impact
on caHIV-DNA
levels, however,
caHIV-RNA
expression

and usVL were
transiently
increased

at weeks 5and 6
in the highest
dose of iHIV-
ARNA, and these
changes were
positively cor-
related with HIV-
1-specific-
induced immune
responses.
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Table 5 (continued)
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Cancer type NCT number Drug

administration

Phase Viruse

Status Delivery Result

system

NCT00833781  mRNA-trans- I
fected autolo-
gous dendritic

cells

NCT05144748 EBV mRNA \

vaccine

HBV mRNA |
vaccine

Lymphatic
system tumor

Burkitt's lym-
phoma

Digestive Sys- NCT05738447

tem Cancer

Hepatocellular
carcinoma

There were

no differences

in interferon-
gamma enzyme-
linked immuno-
spot responses
to HIV-1 Gag

or Nef in the vac-
cine or placebo
group. CD4 prolif-
erative responses
to KLH increased
2.4-fold (P=0.026)
and CD8 prolif-
erative responses
to KLH increased
2.5-fold (P=0.053)
after vaccina-
tion. There

were increases

in CD4 prolif-
erative responses
to HIV-1 Gag (2.5-
fold vs. baseline,
3.4-fold vs. pla-
cebo, P=0.054)
and HIV-1 Nef
(2.3-fold vs. base-
line, 6.3-fold vs.
placebo, P=0.009)
among vac-

cine recipients,
but these
responses were
short-lived.

HIV Completed DC

EBV Recruiting Lipid nanopar-  Unknown

ticles

HBV Recruiting Lipid nanopar-  Unknown

ticles

may impair RNA translation and promote RNA degrada-
tion [15]. Nucleoside-modified mRNA can circumvent
this immune activation, such as pseudouridine, which
has been widely applied in mRNA vaccines [145, 165].
Recent studies indicate that the modified mRNA in the
Pfizer-BioNTech BNT162b2 mRNA vaccine may be rec-
ognized by melanoma differentiation-associated protein
5 (MDA-5), triggering IFNa production and contributing
to the magnitude of antigen-specific T cell and antibody
responses [169].

mRNA vaccines encoding immune modulators

Immune modulators typically include cytokines, co-
stimulatory molecules, and PRR agonists [170]. Immune
modulators such as interferons, interleukins, lym-
phokines, and tumor necrosis factors play different
roles in the immune system. Some trigger inflammation,

whereas others support cell growth and differentiation,
whereas others enhance lymphocyte functions [171].
It is crucial to restore the anti-tumor immune response
by inhibiting immune suppression through the modula-
tion of immune modulators [172]. The use of cytokines in
cancer therapy has emerged as a viable treatment option
in clinical settings for patients battling cancer [173]. One
of the challenges associated with current immunomodu-
latory treatments is the occurrence of dose-related toxic-
ity resulting from the short half-life of the administered
agents, necessitating frequent dosing and systemic dis-
tribution, as exemplified by IL-12 therapy [174]. There-
fore, intratumoral (IT) and intradermal (ID) injections
are often used to induce local immune responses. The
transient protein expression and prominent advantages
of local delivery make mRNA vaccines complementary
to immune modulators, making immune modulators
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important targets for mRNA vaccines. IL-12, an essential
cytokine, can activate CTL and NK cells. In 2018, IL-12
mRNA-LNPs were shown to be effective in hepatocellu-
lar carcinoma (HCC) treatment [175]. Due to the unique
functions of each cytokine, the efficacy of single cytokine
therapy in tumor treatment is limited. Therefore, a com-
bination of multiple cytokines with different functions is
often used to improve therapeutic outcomes. Research
indicates that mRNA vaccines encoding IL-12 and IL-27
can induce NK and CD8+T cells within the melanoma
tumor microenvironment (TME), demonstrating opti-
mal efficacy [176]. Another study found that a mixture
of IL-12, GM-CSE, IL-15, and IFN-a mRNA increased
the number of CD4+T cells and CD8+T cells in the
TME, and adding anti-PD-1 antibody improved mouse
survival rates [136]. In 2019, Haabeth et al. [177] pio-
neered a novel approach to initiate anti-cancer immunity
by combining cytokines with co-stimulatory molecules
using mRNA. They used a specialized mRNA delivery
system to locally express cytokines (CD70, IL-12, and
IFN-y) and co-stimulatory molecules (OX40L, CD80,
and CD86) in two tumor models (B-cell lymphoma and
colorectal cancer.). Their findings showed that mice
given mRNA vaccines containing both cytokines and co-
stimulatory molecules achieved complete elimination of
tumors, unlike those given other mRNA vaccines that
only had partial effects. Combining OX40L with CD80
or CD86, or OX40L with IL-12, notably improved sur-
vival rates and delayed tumor growth. These preclinical
results indicate that specific cytokines and co-stimula-
tory molecules could effectively enhance T cell responses
against cancer. Currently, most clinical trials on mRNA
vaccines encoding immune modulators are in phase I/II
to evaluate tolerability. One of the pioneers in this field
is eTheRNA, which has developed an adjuvant based on
TriMix mRNA consisting of three naked mRNA mol-
ecules. Both naked TriMix mRNA evaluated in multiple
clinical trials and TriMix mRNA loaded onto DCs ex vivo
have shown good tolerability and immunogenicity. Mod-
erna, a leading biotech firm, has created two mRNA ther-
apies enclosed in LNP frameworks to trigger immune
responses within tumors. These therapies are undergoing
phase I clinical trials to assess the safety and tolerance of
repeated administration. One of the products, mRNA-
2416, contains mRNA encoding OX40L. It is being tested
alone or combined with the intravenous PD-L1 inhibitor
durvalumab for treating lymphoma and metastatic ovar-
ian cancer (NCTO03323398) [154]. Another candidate,
mRNA-2752, comprises OX40L/IL-23/IL-36ymRNA for
the treatment of lymphoma (NCT03739931) [178]. Here,
OX40L generates secondary signals, enhancing T-cell
effector functions and promoting T-cell proliferation
and survival. Moderna and AstraZeneca have teamed up
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to work on the development of MED 11191, which is an
IL-12 mRNA product designed for intratumoral admin-
istration as part of cancer treatment. Preliminary results
from the initial clinical trial revealed that sequential or
combination therapy of MED 11191 with durvalumab in
patients with advanced solid tumors and skin or subcu-
taneous lesions is safe and feasible. No treatment-related
adverse events leading to treatment discontinuation from
MEDI1191 or durvalumab were reported. The combina-
tion of MEDI1191 and durvalumab has demonstrated
preliminary clinical efficacy; 29.0% of patients achieve
either a partial response (PR) or stable disease (SD) for
a minimum duration of 12 weeks (NCT03946800) [179]
(Table 6).

mRNA vaccines encoding antibodies

Since the development of monoclonal antibodies (mAb)
using hybridoma technology in 1975, antibodies have
risen to prominence as a rapidly expanding category of
pharmaceuticals that specifically target cancer cells [180].
These antibodies have anti-tumor effects through mecha-
nisms such as antibody-dependent cell-mediated cytotox-
icity (ADCC), antibody-dependent cellular phagocytosis
(ADCP), complement-dependent cytotoxicity (CDC),
and blockade of immunosuppressive signals. Conven-
tional antibodies consist of Fab and Fc fragments, with
Fab binding to tumor antigens and the Fc region inter-
acting with FcyR on NK cells and macrophages to facili-
tate cancer cell lysis. In addition to traditional antibodies,
single-chain variable fragments (scFvs), single-domain
antibodies (sdAbs), and bispecific antibodies (bsAbs)
have demonstrated potential in immunotherapy. BsAbs
can form T-cell-bsAb—tumor cell complexes, mediating
immune cell-mediated killing [181]. Researchers at Cure-
Vac studied mRNA vaccines targeting antibodies. After 9
years, they were able to develop mRNA vaccines target-
ing antibodies that effectively reduced tumor growth in
a mouse lymphoma model, supporting the use of mAb-
targeting mRNA vaccines in cancer immunotherapy
[182]. Leiba-Kasper and colleagues conducted a study to
explore the intricate relationship between the absorption,
distribution, metabolism, and excretion of the mRNA-
encoded anti-HER2 antibody trastuzumab, elucidating
its impact on the body and its ability to combat cancer.
Through their research, they confirmed the potent anti-
cancer properties of this novel therapeutic approach,
shedding light on the mechanisms underlying its efficacy
in targeting HER2-positive tumors. The findings from
this investigation serve to validate the promising thera-
peutic potential of mRNA-encoded antibodies in the
fight against cancer, opening new avenues for optimized
treatment strategies and improved patient outcomes
[183]. In addition to monoclonal antibodies, a range of
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mRNA-encoded bispecific antibodies (bsAbs) have been
developed. CCL2 and CCL5 play critical roles in tumor-
associated macrophage (TAM) accumulation and HCC
immunosuppression. The Wang group developed the
bispecific antibody BisCCL2/5i, which targets CCL2 and
CCL5, promoting TAM polarization towards the anti-
tumor M1 phenotype and reversing immune suppression
in the tumor microenvironment (TME). BisCCL2/5i sen-
sitizes HCC to PD-L1 blockade and prolongs survival in
a murine model of liver malignancy [184].Bi-specific T
cell engagers (BiTEs) are a class of bispecific antibodies
lacking an Fc region, consisting of two scFv domains—
one recognizing CD3 and the other binding to the can-
cer cell target antigen—facilitating T cell-mediated
tumor killing [185]. The Staid team has developed the
RiboMab platform, which includes BiTE mRNA targeting
three tumor-associated antigens (TAA)—CD3x CLDNG6,
CLDN18.2xCD3, and EpCAMXCD3. The mRNA
encoding CD3 x CLDN6 BiTE exhibits a longer half-life
in serum compared to the protein counterpart, leading
to complete tumor regression in a mouse model without
eliciting systemic immune reactions [186]. CD3 x CLDN6
mRNA (BNT142) is currently undergoing Phase I/II
clinical trials (NCT05262530) [179]. While research on
mRNA vaccine-encoded antibodies remains limited,
monoclonal antibodies (mAbs) and bispecific antibodies
(bsAbs) have already shown efficacy. By encoding anti-
cancer antigens, blocking immune checkpoint molecules,
and mediating T-cell anti-tumor responses through
mRNA vaccine-encoded antibodies, the potential of
mRNA antibody immunotherapy is vast. (Table 7).

Adjuvants for mRNA vaccines based on delivery carrier
components

Cationic lipids may play a critical role in the adjuvant
activity of lipid nanoparticles (LNPs). LNPs based on the
ionizable cationic lipid DLinDMA exhibit immunostimu-
latory properties and serve as adjuvants for nucleoside-
modified mRNA vaccines, effectively eliciting follicular
helper T (TFH) cell responses and germinal centre B-cell

Table 7 Clinical trials of mRNA vaccines encoding Ab
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responses that produce neutralizing antibodies [187].
The cationic lipid-like substance C1 facilitates the deliv-
ery of mRNA into cells, promoting the release of inflam-
matory cytokines such as IL-1p, IL-6, and IL-12P70 and
upregulating the expression of costimulatory molecules
via the TLR4 signalling pathway [141]. Lipid C12-TLRa,
containing a TLR7/8 agonist, enhances mRNA vaccine
delivery and TLR responses, collectively inducing high
levels of neutralizing antibodies [188]. Another ioniz-
able lipid-like substance, A2-1so5-2DC18 (A2), activates
STING signaling and releases cytokines such as CXCL10,
thereby enhancing the immune response [68]. The non-
nucleotide STING agonist-derived amino lipid SAL12,
formulated into LNPs, induces the production of IFN,
triggering potent neutralizing antibodies against SARS-
Cov-2 [189]. Additionally, the direct incorporation of
all-trans retinoic acid (ATRA) during LNP self-assem-
bly results in ATRA-LNPs that effectively activate den-
dritic cells, eliciting robust systemic T-cell responses and
increasing the infiltration of antigen-specific cytotoxic
T cells in colorectal tumors [190]. However, the intrin-
sic immunostimulatory properties of lipid materials are
not always beneficial for vaccines. A study reported that
lipid components (DOTMA and DOPE) in mRNA vac-
cines promote mitochondrial ROS production in mono-
cytes, activating the NLRP3 inflammasome and releasing
IL-1B, leading to inflammatory side effects [191]. These
findings underscore the importance of selecting lipid
components with appropriate immunostimulatory effects
for the rational design and development of future mRNA
vaccines.

Combined application of mRNA vaccines with other tumor
targeted therapies

Currently, many patients have developed resistance to
tumor-targeted monotherapies, substantially impacting
the effectiveness of tumor-targeted therapy. Therefore,
the combined application of mRNA vaccines with other
tumor-targeted therapies holds tremendous potential
in enhancing treatment outcomes. By harnessing the

Cancer type NCT number Drug administration Phase Status Delivery Result
system
Solid Tumor NCT05262530 BNT142 (mRNA Recruiting  LNP Ongoing
encoding antibod-
ies targetingCD3 x
CLDN®6)
Reproductive system tumors (mainly ovarian ovarian cancer NCT04683939 BNT141 (MRNA /11 Recruiting  LNP Ongoing

cancer)

encodinganti-Clau-
din18.2 monoclonal
antibody)
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synergistic effects of different therapeutic approaches,
this combination strategy offers a promising avenue for
overcoming resistance and improving the overall efficacy
of tumor-targeted therapy.

Combined application of mRNA Vaccines and Adoptive Cell
Therapy (ACT)

ACT involves extracting immune-active cells from can-
cer patients, culturing and evaluating their function
outside the body, and finally reintroducing them back
into patients to target and destroy tumors directly [192].
Adoptive immune cell therapy mainly includes several
categories such as TCR-T and CAR-T [193]. Currently,
the most commonly used/most effective applications are
CAR-T therapy and TCR-T therapy [194, 195]. TCR-T cell
therapy entails the isolation of T cells from the patient’s
body, genetic engineering to express a specific T-cell
receptor (TCR), and targeting tumor-associated antigens
for recognition and elimination [196]. mRNA vaccines
have the ability to induce a broad immune response,
encompassing humoral and cellular immunity, while
TCR-T therapy allows for direct targeting and destruc-
tion of tumor cells [197]. If these two therapies are uti-
lized in conjunction, it has the potential to enhance
the anti-tumor capabilities of the innate immune sys-
tem and directly target [198] specific tumor antigens,
thereby demonstrating synergistic efficacy. Further-
more, as a relatively safe and repeatable administration
mode, mRNA vaccines could enhance the tolerability of
TCR-T cell therapy [199]. However, the joint application
of mRNA vaccines and TCR-T cell therapy is still in its
early exploratory phase [200].CAR-T is a novel immu-
notherapy approach that employs genetic engineering
technology to modify T cells, allowing them to exert anti-
tumor effects [201]. Specifically, CAR-T cells constitute
a cutting-edge immunocellular therapy that uses genetic
engineering to insert customized chimeric antigen recep-
tors (CARs) into T cells. CARs are generated by combin-
ing exogenous antigen recognition domains with T-cell
receptor domains. This fusion enables CAR-T cells to
accurately target and destroy specific cancer cells. Clini-
cal trials have demonstrated promising outcomes with
CAR-T-cell therapy, providing new treatment options for
cancer patients. These CAR structures consist of single-
chain antibody extracellular domains, extracellular hinge
domains, transmembrane domains, and intracellular
domains, which facilitate their recognition and binding of
specific antigens. CAR-T-cell therapy involves transfect-
ing CAR-T cells with mRNAs encoding target proteins
to produce the mRNA-target-CAR-T complex, which
is subsequently administered to the body. This thera-
peutic strategy has been investigated in cancer patients,
and promising results have been reported. For instance,

Page 31 of 40

a study by Tchou et al. [202] demonstrated that T cells
transfected with CAR mRNA targeting c-Met exhibited
good tolerance within the breast tumor tissues and were
capable of triggering an inflammatory response. This
finding suggested that the combination of CAR-T-cell
therapy and mRNA vaccines could be a viable treatment
approach, enabling more comprehensive and precise
targeting of tumors for greater tumor killing efficacy. In
another study, Beatty et al. [203]evaluated T cells trans-
fected with mRNA encoding mesothelin-directed CAR
as a potential treatment for pancreatic tumors. Interest-
ingly, in a phase 1 study, these cells did not cause CRS
or trigger neurological symptoms. Previous studies have
indicated that IVT mRNAs encoding TAMs can be
directly delivered into tumors via CAR-T nanoparticle
technology to induce local regulation of tumor-associ-
ated dendritic cells (TADCs) [204].

mRNA vaccines combined with Immune Checkpoint Inhibitor
(1ci

Immune checkpoints play crucial protective roles in
regulating the human immune system, acting as brakes
to prevent excessive T-cell activation and other unde-
sirable effects. However, tumor cells frequently exploit
this regulatory mechanism by overexpressing immune
checkpoint molecules, which effectively dampen immune
system responses, evade immunosurveillance, and pro-
mote tumor development. The most widely researched
and applied ICIs include CTLA4, PD-1, and PD-L1. ICI
therapy works by blocking immune checkpoint activity
and activating T cells to attack tumors, leading to anti-
tumor effects. Furthermore, ICIs can maintain induced
immunological responses while inhibiting the induction
of T-cell depletion indicators, making them useful part-
ners for mRNA vaccines [205]. Ugur Sahin et al. [206]
demonstrated that combining the melanoma mRNA
vaccine FixVac with PD-1 inhibitors can result in a syn-
ergistic effect. Surprisingly, drug sensitivity can even
be restored in patients who have previously developed
resistance to ICI treatment using this combination treat-
ment. This trial involved 89 advanced melanoma patients
(phase IV) who were treated with at least one vaccine
targeting a TAA and who had received one or more ICI
therapies. All patients received 8 FixVac vaccinations.
Interestingly, among them, 47 out of 89 patients (52.81%)
displayed positive responses, with 42 exhibiting the best
objective response and 5 exhibiting partial reactions. In
addition, 3 patients achieved partial remission, 7 patients
remained stable, and 1 patient achieved complete remis-
sion of the metastatic lesion among the 25 patients who
received FixVac monotherapy. Moreover, among the 17
patients treated with FixVac and PD-1 inhibitors, 6 expe-
rienced partial reactions and target lesion regression at
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all doses. During the two-year follow-up, the majority
of patients who achieved partial remission or remained
stable had longer disease control. Furthermore, in
another important clinical trial, researchers used the
mRNA-4157/V940 vaccine in combination with pem-
brolizumab. The results revealed a significant decrease
in the risk of disease relapse among patients who were
administered combination therapy compared with those
who were solely treated with PD-1 inhibitors [207]. In
another study, Lina Liu et al. [208] reported that MUC1-
based mRNA vaccination can successfully activate CTL
responses against triple-negative breast cancer (TNBC).
Furthermore, combining an mRNA vaccine with an anti-
CTLA-4 monoclonal antibody can markedly enhance
the T-cell immune response, and the effect was substan-
tially superior to that of treatment with an mRNA vac-
cine alone or anti-CTLA-4 monoclonal antibody therapy
alone. Although research on these technologies is still
relatively limited, their prospects are highly promising.
Furthermore, small interfering RNA (siRNA) has shown
great potential in ICIs [209], which can be encapsulated
in the same vector as mRNAs to prevent repeated deliv-
ery, have shown great potential in the treatment of ICIs.
Although there are several limitations associated with its
small molecular weight and low encapsulation efficiency,
the encapsulation concentration of this therapy is still
within acceptable limits.

Combination application of mRNA vaccines and oncogene
therapy

Oncogene therapy often involves introducing wild-type
copies of tumor suppressor genes or exploiting tumor-
specific phenotypic changes to selectively target can-
cer cells. Tumor suppressor genes (TSGs) are essential
for maintaining genomic integrity and regulating cell
growth, differentiation, and apoptosis [210]. The loss of
TSG function is commonly associated with the occur-
rence, progression, and treatment resistance of can-
cer [211]. Furthermore, numerous cancer driver genes,
mostly TSGs, have been identified through human can-
cer exon sequencing studies [212]. The majority of TSGs
experience functional loss, leading to overactivation of
cancer phenotypes through the aforementioned path-
ways. In such scenarios, a potential therapeutic approach
involves suppressing downstream pathways via supple-
mentation with TSGs. However, difficulties in delivery,
genomic integration, and mutation risks pose signifi-
cant obstacles to gene therapy when functional copies
are restored via DNA transfection. mRNA vaccines have
been demonstrated to effectively address these issues. In
a study from 2018, a PTEN-mRNA vaccine was encapsu-
lated in polyethylene glycol (PEG)-coated polymer-lipid
hybrid nanoparticles (LNPs), successfully introducing
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PTEN-deficient prostate cancer cells. The therapeutic
efficacy of inhibiting the PI3K/Akt signalling pathway and
promoting cancer cell apoptosis has been validated [213].
In a study conducted in 2021, PTEN mRNA-NPs were
shown to restore the protein expression and autophagy
of PTEN-deficient cancer cells, demonstrating therapeu-
tic effects against melanoma and PD-1-resistant prostate
cancer [214]. While the utilization of TSG-mRNA vac-
cines remains largely uncharted territory, their efficacy
has been demonstrated in various mouse cancer models,
underscoring their considerable practical promise.

Future development trends of mRNA vaccines

in tumor targeted therapy

mRNA vaccines, as an emerging immunotherapeutic
modality, exhibit a diversified and promising outlook in
their future development trends [215]. Here, we dis-
cussed the importance and impact of personalized vac-
cine design, multifunctionality, combination therapy
strategies, mucosal immunity, and nanotechnology on
the application of mRNA vaccines in targeted tumor
therapy. Personalized mRNA tumor vaccines design
stands out as a research hotspot [143]. By elucidating the
genetic and immune characteristics of patient tumor
cells, highly personalized mRNA tumor vaccines can be
tailored for individual patients. These customized vac-
cines can more precisely trigger patient-specific immune
responses, thereby enhancing treatment efficacy. In the
future, interdisciplinary studies encompassing genomics,
immunomics, and bioinformatics will provide a more
precise theoretical foundation for personalized vaccine
design, laying solid groundwork for clinical applications.
The development of personalized vaccines will also bene-
fit from the continuous advancement of high-throughput
sequencing technologies, which will aid in the rapid and
accurate detection of genomic information in individual
tumors. Furthermore, the application of artificial intelli-
gence technology will provide more support. For exam-
ple, optimizing mRNA sequences via artificial intelligence
technology has greatly reduced the immunogenicity of
mRNA vaccines [216]. By integrating research findings
from different interdisciplinary fields, the design of per-
sonalized vaccines will continue to be optimized, provid-
ing more effective treatment strategies for a vast number
of cancer patients. In addition to directly activating the
immune system to attack tumors, the future development
trend of mRNA vaccines also includes achieving vaccine
multifunctionality. These findings indicate that mRNA
vaccines can also regulate the immune microenviron-
ment, inhibit tumor growth and spread, and perform
other functions. By incorporating various active compo-
nents, such as immune modulators and cytokines,
mRNA-based tumor vaccines will gradually achieve
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comprehensive intervention against tumors, suggesting
new possibilities for cancer treatment [153]. Future
research will focus on deciphering the interaction mech-
anisms of different components in vaccines to achieve
more precise and efficient therapeutic effects. Simultane-
ously, through techniques such as gene editing, the active
components in vaccines may undergo more precise regu-
lation, further enhancing the multifunctional effects of
the vaccines. Research on multifunctional vaccines will
provide broader insights for the development of person-
alized treatment strategies. In the context of mRNA-
based tumor vaccines, the integration of multiple
therapeutic modalities is foreseen to emerge as a pivotal
and compelling avenue for improvement [217]. The com-
bination of mRNA vaccines with other anti-tumor treat-
ment modalities holds the promise of further enhancing
the therapeutic efficacy of vaccines and achieving syner-
gistic effects via multiple treatment mechanisms. In the
future, interdisciplinary research teams will conduct
more basic research and clinical trials to explore the
mechanisms and application prospects of combined ther-
apeutic strategies in tumor treatment. Interdisciplinary
collaboration has become a key approach in the study of
combined therapeutic strategies, involving experts from
multiple disciplines, including immunology, cell biology,
pharmacology, and others. Research on combined thera-
peutic strategies not only requires a deep understanding
of the mechanisms of different treatment modalities but
also aims to explore how to rationally combine these
modalities to achieve optimal effects in the treatment of
tumors at different stages. Mucosal immunology, as a
new direction in mRNA tumor vaccine research, has gar-
nered significant attention [218]. By guiding immune
responses in local mucosal tissues and designing specific
mucosal antigens and adjuvants, prevention and treat-
ment of tumors can be achieved. The introduction of
mucosal immunization strategies will lead to novel ideas
and possibilities in the field of tumor prevention and con-
trol, providing broader insights for the research and
application of future tumor vaccines. In future research
on mucosal immunology, a deeper exploration of the
characteristics of mucosal immune tissues and their rele-
vance to tumor-targeted therapy will be carried out.
Additionally, customized mucosal immune vaccines are
crucial for enhancing the delivery efficiency and immune
effects of vaccines in mucosal immune tissues. Further-
more, interdisciplinary collaborations will open new ave-
nues for the application of mucosal immunization in
tumor vaccines. The application of nanotechnology in
mRNA tumor vaccines has also attracted considerable
attention. Nanocarriers can safely and effectively deliver
mRNA vaccines into the body, increasing their bioavaila-
bility and immunogenicity [219]. Concurrently, the

Page 33 of 40

targeted drug delivery and reduced side effects of nano-
technology significantly increase the therapeutic efficacy
and safety of tumor vaccines. The combination of nano-
technology and mRNA-based tumor vaccines will lead to
the development of novel therapeutic strategies and pos-
sibilities for cancer treatment. Future developments in
nanotechnology will focus on improving the stability and
targeting of carriers, further reducing their metabolism
and excretion rates in the body, thereby prolonging the
vaccine’s efficacy and impact. Additionally, nanotechnol-
ogy can provide more possibilities for the modification
and functionalization of vaccines to meet the diverse
treatment needs of different tumor types and individual
patients. The application of nanotechnology in mRNA
tumour vaccines will introduce more precise and efficient
therapeutic approaches to the field of cancer treatment.
Despite the significant potential of mRNA vaccines in
targeted cancer therapy, several limitations persist: 1)
Poor stability: the chemical structure and biological
properties of mRNAs render them inherently unstable
and susceptible to degradation, which affects their bio-
logical activity and immunogenicity [220]. Although
chemical modifications can increase stability, their effi-
cacy is limited, with studies indicating that N1-methylp-
seudouridine-modified mRNAs undergo ribosomal
frameshifting during translation [221]. 2) Low in vivo
delivery efficiency: The safe and effective delivery of
mRNA to target cells is crucial for its functionality [222].
Current delivery systems, such as liposomes and lipid
nanoparticles, have improved in stability and intracellu-
lar delivery [67], yet the efficiency of delivery remains
suboptimal [152]. 3) Complex tumor immune evasion
mechanisms: Tumor cells employ multiple strategies to
evade immune surveillance [223], presenting a challenge
in the field of mRNA vaccine-based targeted cancer ther-
apy [24]. 4) High interindividual variability: Differences
in genetic background, immune status, and disease con-
ditions among individuals influence the immunogenicity
and therapeutic efficacy of mRNA vaccines [224]. Based
on the aforementioned limitations, we advocate for the
following enhancements to mRNA vaccines: Firstly, the
essence of mRNA vaccines lies in harnessing the endoge-
nous cellular machinery for antigen protein synthesis to
trigger immune responses. The optimization of mRNA
structure and sequence can significantly enhance its sta-
bility and transcriptional efficiency [216, 225]. Research-
ers have improved mRNA expression levels and duration
within cells by refining the 5’ cap structure, 3’ poly(A)
tail, codon usage, and nucleotide modifications [154, 215,
226]. Secondly, beyond optimizing the mRNA itself, the
adoption of novel delivery systems is pivotal for enhanc-
ing the immunogenic efficacy of mRNA vaccines. Conse-
quently, the development of safer and more effective new
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carriers is imperative. Emerging lipid nanomaterials,
such as biodegradable fatty acid nanoparticles, have dem-
onstrated superior targeting and immunogenicity in ani-
mal models [227]. Similarly, as previously noted,
biomimetic carriers can enhance the efficiency and inten-
sity of vaccine mRNA translation compared to conven-
tional materials [113].Finally, for mRNA to be translated
into antigen proteins, it must successfully traverse into
the cytoplasm of target cells, a process fraught with chal-
lenges such as lysosomal degradation post-endocytosis or
nuclease degradation [228].Therefore, enhancing mRNA
stability and penetrance is crucial [229]. For example,
physical methods like electroporation can temporarily
disrupt the cell membrane, thereby facilitating increased
mRNA transport efficiency [230]. We also discuss key
points to consider in the clinical translation of mRNA
vaccine technology. First, there is a critical need to
strengthen preclinical research to thoroughly investigate
the biological characteristics of the vaccine, including its
stability, immunogenicity, and routes of administration,
to ensure its safety and efficacy. Second, conducting
large-scale randomized controlled trials is essential for
validating the differences between mRNA vaccines and
traditional vaccines, particularly in terms of administra-
tion routes, dosage design, and immunogenicity. Further-
more, addressing immune responses across different
populations can provide scientific evidence for the pre-
cise use of vaccines, ensuring their preventive efficacy
and safety. Third, the assessment of long-term efficacy
and safety is vital. Continuous monitoring of the duration
of immunity and potential adverse reactions postvaccina-
tion, especially rare severe events, is necessary to obtain
long-term immunogenicity, protective efficacy, and safety
data through systematic follow-up analysis, thus provid-
ing a reliable basis for clinical applications. Finally, opti-
mizing the design of clinical trial protocols is essential to
increase the scientific rigor and reliability of trials. The
administration routes and treatment regimens should be
flexibly designed according to the characteristics of the
vaccine, and trial standards and observational indicators
should be optimized on the basis of the immunological
characteristics of different populations, with endpoint
indicators determined in conjunction with epidemiologi-
cal considerations.

Conclusion

mRNA vaccines represent a promising solution to over-
come the limitations encountered in conventional cancer
immunotherapy, offering enhanced and durable treat-
ment alternatives. We posit that the integration of mRNA
vaccine technology into tumor-targeted therapy will yield
expanded applications, serving as an effective tool in the
battle against cancer. The versatility of mRNA vaccines,
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coupled with their ability to elicit immune responses tar-
geting specific tumor antigens, holds great potential for
personalized cancer treatment strategies. As research
continues to advance in this area, it is conceivable that
mRNA vaccines will play a pivotal role in tumor-targeted
therapy.
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