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Abstract

Gene editing technologies have the potential to correct genetic disorders by modifying, inserting, 

or deleting specific DNA sequences or genes, paving the way for a new class of genetic therapies. 

While gene editing tools continue to be improved to increase their precision and efficiency, the 
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limited efficacy of in vivo delivery remains a major hurdle for clinical use. An ideal delivery 

vehicle should be able to target a sufficient number of diseased cells in a transient time window to 

maximize on-target editing and mitigate off-target events and immunogenicity.

Here, we review major advances in novel delivery platforms based on cell-derived vesicles - 

extracellular vesicles and virus-like particles - for transient delivery of gene editing payloads. 

We discuss major findings regarding packaging, in vivo biodistribution, therapeutic efficacy, and 

safety concerns of cell-derived vesicles delivery of gene-editing cargos and their potential for 

clinical translation.
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1. Introduction

The development of gene editing tools has enabled targeted editing of DNA sequences 

in human cells, increasing the repertoire of DNA targeting therapeutics to address genetic 

disorders [1]. Gene editing expands the current ability of gene augmentation and gene 

silencing therapies by allowing to address the root cause of genetic disorders, correct point 

mutations, target gene insertion or gene knock out. Several leading technologies including 

zinc-finger nucleases (ZFNs), endonucleases, transcription activator-like effector nucleases 

(TALENs), and particularly the clustered regularly interspaced short palindromic repeat 

(CRISPR)–Cas-associated nucleases have promoted tremendous progress in gene editing 

from basic research to applied biomedical and biotechnological research [2]. Although the 

potential of therapeutic gene editing has prompted widespread efforts to pursue clinical 

applications, one major issue has been in vivo delivery [3]. The concerns regarding safety 

related to off-target mutagenesis and the potential for gene editors to trigger immune 

responses have led to the development of progressively more precise gene editing tools 

[4], [5] and delivery methods that restrict long-term exposure to editing agents [6], [7], [8]. 

Tackling the challenge of in vivo delivery and tissue targeting will require the transportation 

of highly efficient gene editing agents to edit a significant population of cells to allow 

optimal therapeutic efficacy [9].

So far, these efforts have mainly focused on the use of viral vectors as delivery agents, 

using adeno-associated viral vectors (AAV) and lentiviral vectors (LVs), which allow 

long-term expression of gene editing tools in target tissue and have shown therapeutic 

efficacy in multiple disease models [10]. Nonetheless, the persistent expression of genome 

editing technologies encoded from these vectors increases the likelihood of off-target effects 

and may induce immune responses [11], [12], [13]. Transient delivery modalities offer 

an advantage through short-term expression of gene editing tools. Lipid based delivery 

platforms, such as lipid nanoparticles (LNPs) underwent tremendous recent development, 

even though they are better suited for nucleic acid encapsulation rather than protein and 

ribonucleoprotein (RNP) delivery [9]. In the last years, cell-derived vesicles emerged as an 
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alternative platform to transiently deliver gene editing agents in the form of RNA and/or 

protein.

In this review, we shed light on a unique approach to deliver gene editing applications, 

focusing on cell-derived vesicles as promising delivery vehicles. While the spotlight remains 

in viral vectors and LNPs as primary delivery strategies, our focus diverges towards the 

promising realm of extracellular vesicles (EVs) and virus-like particles (VLPs). Notably, 

there has been a surge in publications throughout the last years harnessing the potential 

of cell-derived vesicles as a delivery strategy for genome editing tools. Herein we address 

the critical aspects for transient and efficient delivery of CRISPR RNAs and proteins in 
vivo, highlighting the intrinsic advantages of cell-derived vesicles compared to viral vectors 

and synthetic lipid-based systems. We focus on the loading methods of RNA and protein 

therapeutic gene editing tools, particularly CRISPR-Cas technologies in EVs and VLPs.

2. Genome editing technologies

Genome editing technologies enable the precise modifications of specific DNA sequences. 

Over the past three decades, various platforms of programmable endonucleases have been 

meticulously developed to facilitate targeted genome editing, including meganucleases [14], 

zinc-finger nucleases (ZFNs) [15], transcription activator-like effector nucleases (TALENs) 

[16], [17] and CRISPR endonucleases [18], [19], [20].

The initial stage of genome editing started with the use of meganucleases as restriction 

enzymes for editing the genome at specific sites, followed by ZFNs and TALENs. ZFNs and 

TALENs are chimeric proteins that combine characteristics from a specific DNA-binding 

domain with customizable specificity and a nuclease domain derived from the bacterial class 

Flavobacterium okeanokoites (FokI) [15], [21], [22], [23], [24]. Both ZFNs and TALENs 

required the tailored design of DNA-binding modules, with a zinc finger module (~ 30 

amino acids) recognizing a 3 bp DNA sequence and a TALEN module (34 amino acids) 

recognizing a single nucleotide in the DNA [15], [17], [25]. FokI operates as a dimer 

making the design of these nucleases a complex and laborious task since it requires a pair 

of these nucleases to bind opposite DNA strands in close proximity for efficient cleavage 

of the target DNA site [26]. However, since both DNA-binding and cleavage domains 

work in an independent manner [27], the generation of nucleases with new DNA-binding 

specificities was simplified in comparison with meganucleases. Nevertheless, TALENs were 

advantageous in terms of specificity but their requirement of reengineering for each target 

locus, large protein size and repetitive regions make them challenging and less efficient for 

delivery purposes [16], [17].

Then emerged the revolutionary CRISPR-Cas nucleases. For more than a decade, CRISPR-

Cas enzymes have been transforming genome editing research by facilitating genetic 

alterations at the DNA level [2], [28]. CRISPR's ease of use, adaptability, and potential 

for clinical translation reshaped the landscape of genome engineering, eliminating the need 

for laborious protein engineering efforts associated with the previous methods. CRISPR and 

their associated proteins (Cas) were found to be key components of a bacterial adaptive 

immune system [29], [30]. The most used CRISPR system for targeted genome editing in 
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human cells employs the class II Cas9 endonuclease from Streptococcus pyogenes (SpCas9) 

that is directed to a specific genomic locus via a programmable guide RNA (gRNA) 

molecule, mediated by complementary DNA–RNA base pairing. Once bound to its target 

sequence, the HNH and RuvC SpCas9 catalytic domains mediate nicking of each DNA 

strand to induce double-strand breaks (DSBs) [18], [20], [31], [32]. For SpCas9, the DSBs 

typically occur three base pairs upstream of an ‘NGG’ protospacer adjacent motif (PAM), 

where the PAM is located directly adjacent to the target site protospacer that pairs with the 

gRNA spacer. The requirement for Cas enzymes to recognize a PAM defines the targeting 

scope of that enzyme, since it is a critical requirement for initial target DNA recognition 

prior to subsequent cleavage. Over 200 new CRISPR associated functional systems have 

been identified [33], [34], offering a variety of targeting options to modify a wide range of 

genetic sequences within the human genome. To further broaden the targeting scope of Cas 

enzymes, various Cas9 endonucleases have been engineered to alter their PAM compatibility 

to alternative [35], [36] or broader and more flexible [37], [38] targeting sequences.

CRISPR-Cas9 nucleases are typically deployed to introduce DNA DSBs, which are 

generally resolved via DNA repair pathways including non-homologous end joining 

(NHEJ), microhomology-mediated end joining (MMEJ), or homology-directed repair 

(HDR) (from the sister chromosome) [39]. The repair of DNA DSBs via NHEJ or MMEJ 

typically results in nucleotide insertions or deletions (indels) that can disrupt noncoding 

sequences or lead to gene silencing if a particular coding sequence is targeted and its 

frameshift generates a premature stop codon [40], [41], [42], [43], [44]. Alternatively, HDR 

can be exploited in the presence of an exogenous DNA template to incorporate user-defined 

sequences at the cleaved DNA site. While HDR has been widely used to achieve precise 

genetic modifications, its application is generally restricted to dividing cells given the 

restriction of HDR factors to certain phases of the cell cycle. Additionally, NHEJ-related 

proteins are typically more abundant than HDR factors in cells, which often leads to indels 

being introduced more efficiently than precise HDR-mediated edits [45], [46].

To overcome challenges related to genome editing precision when using nucleases, modified 

CRISPR tools have been developed by altering the DNA cleavage activity of SpCas9. 

Inactivation of the HNH or RuvC catalytic domains switches the enzymatic activity to 

a nickase Cas9 (nCas9), which avoids DSBs by cleaving only one of the DNA strands. 

Mutation of both catalytic domains produces a dead or deactivated Cas9 (dCas9) that retains 

DNA targeting ability but does not cleave either DNA strand [19], [31]. Next-generation 

CRISPR enzymes that leverage nCas9 or dCas9 have been developed by combining 

their DNA targeting precision with fusions to enzymatic effector domains, resulting 

in a versatile CRISPR toolbox capable of executing a broad spectrum of (epi)genetic 

modifications that are largely independent of DSBs. Development of dCas9-based artificial 

transcription factors allow precise control over gene expression without requiring genetic 

modifications, having utility to decipher the function of genes, to understand noncoding 

regulatory sequences, and offering potential therapeutic avenues for genetic disorders [47]. 

For example, dCas9 fusions to transcriptional activation domains promote gene expression, 

artificially elevating expression of genes targeted by gRNAs [48], [49]. Alternatively, dCas9 

enzymes can be fused to transcriptional repression domains that silence gene expression 
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[50], [51], [52]. Beyond up-or-down regulation of gene expression via transcriptional 

perturbation, several other epigenetic modifying enzymes have been developed [53].

Another variation, base editors (BEs), were created to facilitate the installation of targeted 

point mutations without requiring DSB or exogenous DNA templates [54]. BEs are 

comprised of a nCas9 fused to nucleotide deaminases to achieve transition base substitutions 

[55], [56]. Recently, more efficient versions of BEs have been engineered that overcome 

certain limitations to enable higher levels of target base editing [57], [58], [59], [60], [61], 

[62]. These revolutionary tools have been at the cutting edge of efforts to treat a wide 

range of genetic disorders by offering the potential to modify and correct single DNA bases, 

addressing the root cause of many diseases [63], [64], [65], [66]. Current BEs, however, are 

largely limited to transition mutations and some transversions, and remain prone to editing 

unwanted bases near the target bases (leading to so-called “bystander editing”).

Prime editors (PEs) were developed to enable a wider diversity of small genetic edits, 

marking another milestone in the advancement of genetic modification technologies. PEs 

are comprised of nCas9 fused to a reverse transcriptase (RT) domain. They are co-delivered 

along with a prime editing guide RNA (pegRNA) that serves the typical function of a gRNA 

to guide the enzyme to specific genomic sites, while also acting as a template to encode 

genetic alterations of interest. The pegRNA can anneal to the nicked non-target DNA strand, 

creating an RNA:DNA substrate for the RT domain to extend via reverse-transcription 

[67]. PE technologies overcomes certain limitations of BEs by employing a unique 

molecular strategy that enables the full spectrum of nucleotide transitions, transversions, 

and controlled insertions or deletions of short or large-sized DNA sequences [68], [69], 

[70], [71]. Recently, DNA-dependent DNA polymerases (DDPs)-based editing has emerged 

as a complementary system to prime editing expanding the ability of writing into the 

genome [72], [73]. The DDPs Phi29 and EcKlenow were shown to be able of writing at 

a Cas9-nicked site from a single strand DNA template. For instance, click editors (CEs) 

associate EcKlenow polymerase with nCas9 tethered to an HUH endonuclease domain that 

covalently binds a single stranded DNA template (clkDNA) [72] to install the edit when 

directed to the target site by a gRNA [72].

Together, the extensive development of the CRISPR toolbox offers new technologies to 

treat genetic disorders whose genome-targeting precision can be maximized by using 

CRISPR-Cas9 variants capable of targeting nearly any DNA base in the genome [37], 

[74]. For clinical translation, there is a need for delivering genome editing tools in vivo 
in an efficient and safe manner [75]. Unfortunately, there are limited options to transiently 

deliver CRISPR technologies due to size of the requisite genetic payload (especially for 

viral vectors such as those derived from AAVs where the genome size is limited) and also 

delivery vector targeting limitations. Exploration of novel Cas9 orthologs [76] and CRISPR 

ancestral nucleases [77] with smaller sizes can help to overcome the limitation of larger 

enzyme coding sequences. Beyond viral vectors, recent engineering possibilities to deliver 

CRISPR enzymes through cell-derived vesicles in a transient manner became a promising 

approach for therapeutics less susceptible to strict size constraints of the delivered enzymes.
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3. Challenges for in vivo delivery of genome editing technologies

Gene editing tools can be delivered in the form of DNA or messenger RNA (mRNA) 

molecules that encode the necessary enzymes or gRNAs, or they can be delivered directly 

as active RNP enzymes. Delivery of genetic material (resulting in DNA expression) 

guarantees long-term or even permanent expression in post-mitotic cells and is mostly 

achieved through viral vectors, namely LVs, AAVs [78] or adenoviral vectors [79]. However, 

long-term expression of gene editing tools through DNA delivery is undesirable as it 

increases the chances of off-target gene editing [6], [80] and immunogenicity [81], [82]. 

In contrast, short-term expression of gene editing tools has been found to reduce the 

occurrence of non-specific cleavage at undesirable sites [6], [80]. Development of more 

active nucleases with increased activity, often comes with the cost of more off-target 

editing when permanently expressed in the cell. For this reason, transient expression of 

a highly active DNA endonuclease is desirable to minimize potential genotoxicity caused 

by off-target events [83]. While viral-vector mediated long-term expression of gene editing 

tools has generally been more effective in living organisms [3], advances in the use of 

cell-derived vesicles have increased the effectiveness of temporary delivery of these systems 

[6], [80]. Transient expression of CRISPR editing enzymes is generally attained through 

mRNA or RNP delivery, which are degraded over time. Transient delivery of mRNA ensures 

the production of multiple CRISPR enzymes for each delivered molecule, increasing the 

likelihood of gene editing. Lastly, delivery of gene editing proteins or RNPs in their active 

form allows immediate and potent on-target edition followed by rapid cell clearance, without 

the requirement of the cellular machinery to express the active genome editing effectors 

[7]. This approach, particularly the delivery of CRISPR RNPs, has emerged as a promising 

therapeutic strategy for genetic disorders in animal models, offering precise and efficient 

corrections to the underlying genetic mutations [7], [84]. Underneath we review transient 

delivery approaches of gene editing tools for gene therapy.

To achieve in vivo therapeutic efficacy, delivery vehicles must incorporate their cargo in a 

highly efficient manner and overcome several biological barriers to deliver these agents to 

the intracellular compartment of target cells. Delivery vehicles must 1) protect their cargo 

from degradation or immune recognition, 2) bind to target cells, 3) readily internalize cell 

membranes, 4) escape intracellular degradation and release their cargo, and 5) reach the 

suitable intracellular compartment (Figure 1).

Protection of gene editing cargo can be achieved by encapsulation in biological or synthetic 

nanoparticles, which prevents their direct degradation and immune recognition, enabling 

circulation within body compartments until internalized by the target cell [9]. For that, 

it needs to avoid recognition by the immune system which can identify delivery vehicles 

as foreign entities and promote their degradation, either by the mononuclear phagocytic 

system or by antibody-mediated recognition [9]. Some EV-subtypes (e.g. exosomes and 

microvesicles) [85] and some VLPs that do not rely on the outer surface expression of 

viral scaffolds may remain undetected since their surface composition resembles the one 

found in cell membranes and naturally occurring in the body. Cell-derived vesicles evasion 

of the immune system is highly dependent on the progenitor cell type (autologous or 

heterologous) and the expression of surface modifications that might be recognized as 
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exogenous entities. Additionally, apoptotic bodies or vesicles expressing exogenous epitopes 

can be more readily cleared [86]. To overcome body clearance, EVs and VLPs can be 

modified to express CD47 on their surface to elude macrophage phagocytosis [87]. The 

short intracellular lifespan of CRISPR-based systems is crucial, as a prolonged expression of 

these elements in cells can elicit their cell-targeted destruction by the immune system [81], 

[88], [89]. A possible strategy to circumvent this issue is protein engineering of nucleases to 

reduce their epitope immunoreactivity [90].

The ability of cell-derived vesicles to achieve efficient internalization strongly depends 

on their half-life within the target tissue and their interaction with the intended cells, 

representing one of the major challenges in therapeutic delivery. In the case of LNPs, this 

can be achieved by fine-tuning the lipid composition, molar ratios, and particle charge [91], 

or by modifying the surface composition with small molecules, aptamers, peptides, and 

antibodies that interact with target cell receptors [92]. Other factors influencing efficient 

target engagement and internalization include the presence of biological barriers.

For example, cell-derived vesicles delivery to the central nervous system (CNS) is highly 

challenging due to biological barriers such as the blood brain barrier (BBB) [93] and the 

short half-life of the vesicles [94]. Direct CNS administrations could be achieved with 

injections into the parenchyma or cerebrospinal fluid (CSF). However, these can pose a 

risk of safety at the injection site due to their invasiveness, potentially causing damage 

to the brain tissue and making them unsuitable for multiple administrations. Alternatively, 

intranasal and intravenous routes are less invasive approaches which have been explored for 

brain delivery [95], [96], [97].

Delivery to CNS requires active permeation through the BBB and targeting of specific 

neural cells [98]. One solution is expressing rabies virus glycoprotein (RVG) peptide on the 

surface of EVs to facilitate the crossing of the BBB by binding to acetylcholine receptors 

in neural and endothelial cells [99]. Alternatively, targeting the transferrin receptor (TfR) 

in brain capillary endothelial cells is highly explored due to its high expression in these 

cell types and can result in 20-30 times increase in brain concentrations [100], [101], [102]. 

Recently, CD98hc has also been shown to be an alternative target for brain delivery with 

slower and prolonged kinetics [103].

Additionally, cell engagement typically depends on the interaction of surface moieties 

with receptors on the surface of target cells to promote their internalization [104]. Native 

EVs’ targeting ability depends on their origin since they carry specific signatures from 

their progenitor cells [105], such as integrins and proteoglycans [106], [107], although the 

efficiency and the mechanisms by which EVs are internalized are still poorly understood 

[108]. VLPs’ targeting is typically dependent on the viral scaffolds expressed on their 

surface and their progenitor origin for enveloped VLPs. In either case, these carriers can be 

engineered to express surface targeting moieties to promote their interaction with cells in a 

specific tissue [99], [109], such as RVG for neuron-specific targeting [97], [110].

Following cell engagement, cellular internalization of cell-derived vesicles is usually 

mediated through endocytosis of the delivery vehicles into endosomes [108]. To release 
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their content in cytoplasm and reach the target compartment, delivery vehicles must escape 

endosomal degradation and the acidic environment of endosome compartments [111]. 

Viruses and VLPs are equipped with viral moieties that take advantage of endosomal 

acidification to trigger structural modifications that promote endosomal escape and cargo 

release [112]. On the other hand, EVs’ mechanism for cytosolic delivery still requires 

further understanding [108]. A study suggests that around 30% of internalized EVs release 

their cargo to the cytosol [113]. For gene editing tools to be effective after escaping the 

endosomal compartment, they must be directed to the nucleus to access and modify the 

DNA which is generally attained by fusing these with nuclear localization signal (NLS) 

peptides.

In conclusion, the development of effective delivery vehicles that can efficiently transport 

and safeguard their cargo while evading the numerous biological barriers represents a crucial 

frontier in advancing targeted therapies and holds promise for transformative advancements 

in the field of genome editing.

4. Cell-derived vesicles

Cell-derived vesicles are an heterogenous population of naturally occurring membrane 

vesicles originated and secreted by cells [114], [115]. Here, we define cell-derived vesicles 

as an umbrella term for two groups of particles: EVs and VLPs, both cell-derived vesicles 

which can be harnessed as promising delivery vehicles.

4.1 Extracellular Vesicles

EVs are lipid-bilayer membrane vesicles secreted by all cells which are responsible for 

intercellular communication and mediate the exchange of molecular information in the form 

of nucleic acids, proteins and lipids [108], [116]. EVs are further divided into subtypes, 

some of the most well-reported include exosomes (30-150nm), microvesicles (100-1000nm) 

and apoptotic bodies (100-5000nm) [116]. Each subtype of EVs is defined based on 

characteristics including size, density, composition, and biogenesis process, although the 

overlap of these features among EV-subtypes hampers their characterization [117]. Given 

their complexity and heterogeneity, the International Society for Extracellular Vesicles 

released the Minimal Information for Studies of Extracellular vesicles (MISEV) guidelines 

to develop and implement best practices and scientific considerations for the study of EVs 

[117], [118]. For example, EVs’ size is commonly reported within the nanometer range, 

although such a large umbrella terminology can comprehend particles ranging from 30 

to 1000nm, up to 5000nm in some cases. The size of EVs, among other properties, are 

influenced by isolation methods, biogenesis process, cell type and cellular state, buffer 

storing conditions and ultimately by the equipment of analysis. These aspects should 

be carefully considered and streamlined to obtain homogenous and reproducible EVs’ 

preparations.

Vesicle properties such as size and surface composition affect EVs’ biodistribution, altering 

their ability to cross tissues, biological barriers, and cell membranes [104]. While small 

EVs (<100nm) were shown to be mostly retained in the liver and kidney within the first 

hour of intravenous administration, peaking in the lungs and spleen between 2-12h, large 
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EVs (>200nm) were shown to be most abundant in lungs within the first hour, shifting 

towards the liver as the levels in the lungs decreased [119], suggesting that EVs’ size alters 

their biodistribution. Moreover, understanding the biogenesis’ processes that promote and 

ultimately lead to secretion of a specific subtype of EVs allows the precise loading of 

therapeutic agents into their lumen and modification and functionalization of their surface 

[104]. The versatility to modify EVs’ properties has motivated intense efforts to engineer 

them as delivery vehicles, making EVs promising candidates for transient in vivo delivery of 

gene editing agents with reduced immunogenicity due to their membrane biocompatibility. 

Engineering EVs’ surface and composition allows a better understanding of their in vivo 
behavior, harnessing their potential to deliver therapeutic payloads to human cells.

4.2 Virus-like particles

Beyond the native release of EVs from parental cells, several viral pathogens can hijack the 

cell machinery and take advantage of EVs’ biogenesis mechanisms to promote their survival 

and further spread virions to the extracellular space [112]. The study of viral biogenesis 

and assembly allowed the engineering of viral scaffold architectures to generate VLPs, 

virus-derived particles composed of one or more viral scaffolds, possessing the ability to 

self-assemble, but lacking viral genetic material [120], [121]. Budding of enveloped viruses 

is primarily driven by either a viral envelope protein, a viral capsid protein or a combination 

of both. Expression of these components alone in eukaryotic cells is sufficient to promote 

the assembly of VLPs. Given the large diversity of viruses, VLPs comprise a large group 

of particles with virus-like characteristics, from cell membrane derived vesicles coated with 

virus-derived proteins to more complex architectures largely resembling viruses but lacking 

a viral genome.

VLPs exploit several native features of viruses to generate effective delivery vehicles, such 

as the ability to target specific cell types, efficiently internalize cells and escape endosome 

degradation, making them ideal to transiently deliver gene editing agents [111], [112]. In 

this review, we categorized VLPs’ based on the subunits required for their self-assembly: 

viral envelope proteins or viral capsid proteins for VLP generation. Other approaches 

engineer self-assembling structures resembling viruses, such as enveloped protein nanocages 

(EPNs) [122]. Cells expressing viral scaffolds secrete a heterogenous population of cell-

derived vesicles, from native EVs to VLPs, both groups sharing overlapping features (Figure 

2) leading to their co-isolation through different isolation methods [123].

Overall, EVs and VLPs can transiently deliver gene editing tools in the form of mRNA or 

protein, allowing potent on-target efficiency in recipient cells, while being rapidly degraded 

to improve their safety profile [7], [124]. The loading of therapeutic gene editing agents into 

cell-derived vesicles can be achieved exogenously through sonication and freeze-thaw cycles 

[125], electroporation [126], and others, or endogenously by genetically modifying parental 

cells to load and secrete therapeutic particles [127], [128], [129], [130], [131].
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5. Cre-lox system as a gene editing model to study cell-derived vesicles 

delivery

To investigate the intercellular signaling of EVs, the Cre-lox recombinase system has been 

employed to study communication and delivery across different tissues [132], [133]. Cre is 

a bacteriophage tyrosine-type site-specific recombinase that mediates DNA recombination 

of sequences flanked by 34 bp sites named Lox [134], [135]. Depending on the location 

and orientation of these Lox sites, Cre can promote the insertion, deletion, inversion or 

translocation of target DNA sequences, making this system a primary tool to modify DNA 

[134], [135]. For these reasons, Cre recombinase is often used as a primary proof of concept 

for DNA targeting, either to study EVs’ communication in vivo or the functional delivery of 

particles [132], [133], [136].

The ability of Cre recombinase to induce permanent changes in DNA is often used 

to activate reporter genes, facilitating the differentiation of cells that uptake EVs, as 

demonstrated in Cre reporter mouse models. When applied in an in vivo reporter model, 

this strategy can be used to study the role of EVs in: a) the transport of cancer associated 

RNAs, such as microRNAs (miRNAs) and mRNAs, that trigger immunosuppression and 

lead to tumor progression [132], [133], b) cell senescence due to the transport of interferon-

induced transmembrane protein 3 (IFITM3) molecules [137]; c) brain inflammation by 

studying the distinct miRNA profile transferred by hematopoietic-derived EVs [138]; d) 

brain communication between specific type of cells [139] and different brain regions [136]. 

Using Cre tools in a in vivo setting is an advantage to study transfer of low amounts of EVs, 

however their used is limited to reporter models.

5.1 Cell-derived vesicles delivery in vivo using Cre-lox systems

The capacity of EVs to load and transport genome editing molecules to specific tissues can 

be explored using Cre recombinase as a primary proof of concept for DNA targeting (Figure 

3). Many strategies for incorporation of biomolecules in EVs rely mainly on packaging of 

plasmid DNA and small nucleic acids, such as miRNAs and small mRNAs, which were 

found to be naturally contained in EVs, with a peak size of 200 nucleotides but stretching 

up to 5kb or beyond [140], [141], [142]. There are still only a few packaging strategies for 

proteins [143].

5.1.1 Extracellular Vesicles—One approach took advantage of the interaction between 

the WW tag domains from the neuronally expressed developmentally downregulated 4 

(Nedd4) ubiquitin ligases family with the late-domain (L-domain) present in Ndfip1 protein 

(Nedd4 Family Interacting Protein 1), a ubiquitin ligase adaptor protein which participates 

in the budding of EVs. The fusion of the WW domains with Cre protein leads to interaction 

with Ndfip1, driving Cre protein inside of vesicles. After showing functional deliver to 

reporter cells in vitro, the engineered EVs containing Cre protein were administered 

through intranasal route to Ai14 reporter mice, which activates tdTomato expression 

upon Cre activity. Interestingly, tdTomato expression was found within the brain mainly 

associated with neurons and microglia in the olfactory bulb, cortex, striatum, hippocampus, 
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and cerebellum, indicating functional delivery on WW-Cre containing EVs in vivo upon 

intranasal administration [96].

Light-dependent optogenetic dimerization has also been demonstrated to improve the 

loading of proteins of interest inside EVs. One particular tool named EXPLORs (exosomes 

for protein loading via optically reversible protein–protein interactions) was developed 

[144] to attain this purpose by assembling three major components: 1) the photoreceptor 

cryptochrome 2 (CRY2) which binds the cargo protein; 2) a truncated version of CRY-

interacting basic-helix-loop- helix 1 (CIBN) fused to the EV-specific tetraspanin CD9, and 

3) the 488nm blue light that triggers protein-protein interaction. Exposure to blue light 

during EVs biogenesis promotes the dimerization between CRY and CIBN, allowing the 

protein cargo to be efficiently packaged into CD9-positive EVs. One advantage of this 

system is that dimerization is transient as protein-protein interaction is interrupted following 

removal of blue light emission, resulting in the release of the cargo to the intraluminal 

space of EVs. Moreover, EVs containing Cre molecules (derived from HEK293T cells) 

were functionally internalized to neurosphere-derived reporter cells allowing 95% of Cre 

mediated recombination measured by GFP expression. The same system was then delivered 

to the brain of a transgenic reporter mouse by intracranial injection into the striatum, 

being mainly internalized by neurons [144]. EXPLOR-derived EVs carrying Cre protein 

isolated from HEK293T cells were also found to cross the placental barrier in mice 

upon intraperitoneal injection in the maternal side. These EVs switched tdTomato to GFP 

expression in fetal reporter cells, suggesting a role for EVs signaling during pregnancy 

[145].

5.1.2 Virus-like particles—A robust cytosolic delivery in vitro and in vivo was 

demonstrated upon expression of VSV-G on the surface of two delivery systems: VSV-G 

plus EV-sorting Domain-Intein-Cargo (VEDIC) and VSV-G-Foldon-Intein-Cargo (VFIC) 

[146]. These systems combined a fusogenic protein (VSV-G) and a small intein protein with 

self-cleavage activity to link cargo to an EV-sorting domain (CD63) and release it from 

the membrane. Remarkably, these cell-derived vesicles containing Cre protein were able 

to mediate nearly 100% of Cre recombination when compared to non-VSV-G vesicles in 
vitro. Alongside the robust Cre protein delivery in vitro, this strategy achieved successful in 
vivo Cre delivery through intratumoral, intracerebroventricular and intraperitoneal delivery. 

Remarkably, this platform was then used to deliver Cas9:gRNA RNPs in cell-derived 

vesicles achieving nearly 80% genome editing efficiency compared to non VSV-G particles 

in vitro [146], paving the way to deliver more advanced genome editing tools such as BEs 

and PEs.

5.2 Limitations in studying Cre transfer and functional delivery through cell-derived 
vesicles

The use of Cre-lox reporter systems to study EVs transfer is growing in the field, 

although some considerations about the use of this tool should be highlighted. The use 

of Cre recombinase allows to study the in vivo role of EVs produced in physiological 

amounts [132], [133], [136] due to the capacity to distinguish recombined cells in an entire 

population. Also, Cre mRNA and protein can be used as a tool to study loading properties of 
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EVs, in vivo biodistribution and targetability. However, the use of Cre recombinase to study 

EVs is limited to reporter models and is lacking translation in disease or clinical settings. 

For that reason, Cre should be seen as a tool to study EVs and their ability to deliver 

functional cargo to the intended cells. It is relevant to characterize the EVs population and 

evaluate which type of Cre molecules are associated with each subpopulation. For instance, 

Cre plasmid, mRNA or protein can be found associated with EVs depending on the isolation 

methodology.

When small and large EVs were differentially isolated to evaluate which type of Cre 

molecules are present in each EV subpopulation, it was found that Cre plasmid is 

preferentially packaged in large EVs and it is the main active form in target cells. Large EVs 

showed functional delivery of cargo to luciferase reporter in vitro and in vivo models that 

start expressing bioluminescence upon functional Cre delivery [147]. This study warns for 

the presence of plasmid DNA in a specific type of EVs that may impact the understanding 

of the functional effects of the loaded Cre mRNA in EVs. A different study warned to 

the difficulty of detecting mRNAs inside of endothelial-derived EVs, including Cre mRNA 

[148]. Caution should be made in terms of amount of starting material to isolate EVs, 

methods of isolation and characterization of Cre-derived EVs to particularly understand 

which type of Cre molecules are driving the recombination.

Despite these concerns, the use of Cre derived EVs is becoming a more widespread tool to 

study communication and functional delivery of EVs. Overall, the simplicity and precision 

of Cre-lox systems to target DNA at loxP sites makes it a useful tool to advance our 

comprehension of intercellular communication mediated by EVs and its impact in health and 

disease (Figure 3).

The study of EVs and VLPs functional delivery with Cre-lox reporter systems can support 

the development of CRISPR editing tools by informing where these are delivered, and 

therefore guide the engineering of cell-targeted EVs and VLPs that minimize the likelihood 

of off-target delivery with consequent toxicity, a major bottleneck in the translation of 

CRISPR therapeutics. While the limitation of Cre-lox recombinase system to specific Lox 

sequences of the DNA restricts its versatility and broad applicability, it has undoubtedly 

demonstrated its worth in investigating paracrine communication of EVs in vivo.

6. Extracellular Vesicles delivery of genome editing technologies

EVs are an attractive option to deliver genome editing technologies given their suitable 

characteristics for in vivo therapeutic delivery such as nanoscale size, natural low 

immunogenic composition, and ability to assemble proteins for enhancing packaging or 

targeting efficacy. EVs offer the possibility to deliver genome editing tools in a transient 

manner in the form of RNA or protein, facilitating the temporary introduction of gene 

editing enzymes that undergo rapid turnover. This helps mitigate potential geno- and 

immunotoxicity associated with long-term exposure, as observed with viral vector-based 

delivery methods [6], [81][124]. Transient delivery of CRISPR tools in EVs can be achieved 

by loading Cas RNPs (Cas protein and gRNAs) or Cas9 mRNA and synthetic gRNAs. The 

encapsulation of molecules of interest in EVs falls into two major categories: endogenous or 
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exogenous loading. Table 1 and Table 3 summarize the main findings of studies using EVs 

as a delivery vehicle for CRISPR-Cas systems in vivo and in vitro, respectively.

6.1 Endogenous loading

Endogenous loading occurs in the parental cell through cellular packaging mechanisms 

during EVs’ biogenesis or release, resulting in incorporation of the molecules of interest in 

EVs. This can be achieved by passive loading of molecules of interest in EV-donor cells 

(relying on stochastic loading) or by overexpressing the payload in producer cells. Direct 

incubation of molecules of interest in EV-donor cells is generally performed when these 

were produced synthetically and cannot otherwise be expressed in cells, for example for 

loading drugs [149]. In the case of mRNA and protein, endogenous loading usually relies on 

overexpression in EV-donor cells of plasmid DNA or viral vector transgenes that encode the 

mRNA and/or protein to be incorporated in EVs.

To encapsulate CRISPR-based machinery in EVs, most studies rely on plasmid DNA 

transfection in EV-donor cells. Overexpression of CRISPR-encoding systems results in the 

detection of CRISPR machinery within secreted EVs [129], [143]. EVs passively loaded 

with Cas9 nuclease or dCas9-VPR were shown to mediate gene editing and gene activation, 

respectively, both in vitro and in vivo [144], [145]. Although overexpression of plasmid 

DNA in EV-donor cells results in the detection of CRISPR elements in EVs, this process 

relies on the stochastic packaging of CRISPR machinery in vesicles being formed within the 

cell, resulting in limited loading efficiencies [115], [131]. Endogenous cargo loading is more 

efficient by fusing molecules of interest to EV-sorting motifs that are selectively enriched 

into EVs (Figure 4). For example, SpCas9 was more efficiently loaded in EVs when fused 

with a packaging system based on CD63 tetraspanin [131].

Another important aspect to take into consideration when developing methods to incorporate 

cargo in EVs is the engagement of these molecules to the correct subcellular compartment 

target. Fusion of EV-sorting motifs to gene editing enzymes can compromise their nuclear 

localization in target cells potentially leading to a re-secretion in a newly formed EV. 

Regarding the association of gene editing tools with EVs, they can be: 1) covalently tethered 

to EV-sorting motifs, being difficult to dissociate both proteins in the target cell; 2) tethered 

to EV-sorting motifs through reversible linkers, to optimize loading in EV-donor cells and 

functional delivery in target cells.

6.1.1 Fusion to EV-sorting motifs—Endogenous loading of genome editing proteins 

or RNAs can be achieved by tethering EV-sorting motifs. For proteins, this happens when 

genome editing enzymes are connected to EV-enriched proteins or motifs that undergo post-

translational modifications, recruiting them into EVs or tethering them to the cell membrane. 

Examples include tetraspanins CD63, CD9, and CD81 [146], [147], or motifs that undergo 

palmitoylation and/or myristoylation that attach proteins to the cell membrane (Figure 4). 

Fusion of GFP to CD63 (C-terminus) and anti-GFP nanobody to SpCas9 (C-terminus) 

loaded more efficiently SpCas9 in EVs than without the use of CD63 as EV-packaging 

system [131]. gRNAs were also co-enriched in EVs, through their interaction with SpCas9, 

resulting in Cas9:gRNA RNP loading in EVs. SpCas9 RNP loaded EVs were shown to 
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switch on DsRed expression by deleting a sequence encoding an in-frame stop codon in 
vitro [131]. Their biodistribution in TdTomato reporter mice remained limited after five 

intravenous injections with dim tdTomato signal observed only in the liver. No signal was 

detected in other organs such as heart, lung, kidney and spleen [155].

In another study, Cas9 was attached to arrestin domain containing protein 1 (ARRDC1) 

[124]. ARRDC1 was used to package Cas9 RNPs in EVs [124] through its interaction with 

the cytoplasmic side of the plasma membrane. ARRDC1 recruits the endosomal sorting 

complexes required for transport (ESCRT)-I machinery to initiate membrane budding 

of ARRDC1-mediated microvesicles (ARMMs). Since ARRDC1 specifically interacts 

with WW-domain containing proteins, WW-domains were fused to Cas9 to promote its 

enrichment into ARMMs. Incubating ARMMs loaded with Cas9 RNPs targeting GFP in 

GFP-expressing cells significantly increased the number of GFP-negative cells, rising from 

4.8% in the control condition to as high as 13.4% in Cas9 RNP ARMMs [124]. The authors 

hypothesized that ARMMs might avoid the lysosomal degradation machinery by directly 

fusing to the plasma membrane.

Other EV-enriched proteins have been engineered to load CRISPR-Cas9 in EVs, namely 

members of immunoglobulin superfamily EWI and MARCKS protein families [149]. It 

was demonstrated that MARCKSL1, BASP1, MARCKS, and PTGFRN could load higher 

levels of GFP molecules in EVs compared to commonly used tetraspanins CD9, CD63 

and CD81, suggesting that the same might work for other macromolecules such as Cas9 

[149]. Truncated forms of Basp1 loaded on average 4 to 5 molecules of Cas9 protein per 

EV, measured through densitometry quantification of western blot experiments with various 

amounts of recombinant Cas9 [150].

6.1.2 Fusion to EV-sorting motifs through reversible linkers—Fusing proteins 

that drive CRISPR systems from the cytosol into EVs in producer cells might negatively 

affect their routing to the nucleus in target cells [128], [151]. For this reason, several 

studies engineered dimerization systems that allow transient interactions between proteins 

of interest, such as Cas proteins, and EV-packaging proteins [122], [127], [128], [129], 

[152]. Using CD9 and Myristoylation-Palmitoylation-Palmitoylation (MysPalm) signals, 

four dimerization systems were compared: CRY2 to CIBN; truncated Phytochrome B 

(PHYB) to phytochrome-interacting factor 6 (PIF6); vivid-based Magnet positively charged 

(pMags) to vivid-based Magnet negatively charged (nMags) and FK506-binding protein 

(FKBP) to FKBP-rapamycin-binding domain (FRB) [130]. From the four systems tested, 

CRY2-CIBN proved to be superior in Cas9 enrichment, achieving over 20 molecules of 

Cas9 loaded per EV [130]. In a reporter system where CRISPR-Cas9 editing leads to 

RFP expression, the authors demonstrated that EVs loaded with CRISPR-Cas9 via the 

MysPalm-CRY2-CIBN system resulted in approximately 42% RFP-positive cells in vitro 
[130] Additionally, CRISPR-Cas9 EVs targeting the PCSK9 gene mediated up to 4.4% gene 

editing in vitro [130].

Overall, engineering reversible linkers and EV-sorting motifs to promote the endogenous 

loading of genome editing tools in EVs seems to improve editing efficiency in target cells, 

possibly by favouring routing of genome editing enzymes towards the nucleus.
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6.2 Exogenous loading

Exogenous loading, which involves loading cargos of interest into EVs after their 

isolation, predominantly relies on physical or chemical-based methods such as sonication, 

electroporation, freeze and thaw cycles, transfection reagents, saponin treatment, and 

incubation [160], [161] [162]. These methods are particularly suitable for molecules with 

low endogenous loading capacity or those that are synthetically produced, like drugs [126], 

[163], [164]. Exogenous loading methods also improve the scalability of production and 

eliminate the risk of horizontal gene transfer. Red blood cells (RBC)-derived EVs [126] 

were used to electroporate Cas9 mRNA and gRNAs. RBC-derived EVs loaded with Cas9 

mRNA and gRNA targeting the human mir-125b-2 locus resulted in approximately 98% 

reduction of mir-125b expression and 90% reduction of mir-125a expression after 2 days 

of treatment in MOLM13 cells [126]. However, the degree of luminal loading of RNAs 

in EVs through electroporation might be difficult to assess and result in RNA aggregation 

and membrane disruption [165]. For example, electroporation of small interfering RNAs 

(siRNA) in EVs was shown to result in high siRNA aggregation and retention in EVs’ pellet, 

leading to the overestimation of loading efficiency and urging the necessity for alternative 

loading methods [165].

In addition to electroporation, sonication and freeze-thaw cycles were also employed to 

load Cas9 RNPs into EVs. Tumor-targeting EVs loaded with Cas9 RNPs via sonication 

or freeze-thaw cycles were able to downregulate GFP expression in vitro by 43% [125]. 

Furthermore, these EVs, when loaded with Cas9 RNPs, successfully knocked out WNT10B 
expression, leading to a significant decrease in WNT10B protein expression and subsequent 

reduction in tumor growth both in vitro and in xenograft tumor models [125]. Another study 

loaded serum EVs with SpCas9 RNPs through protein transfection using CRISPRMAX 

[166]. Serum EVs loaded with SpCas9 RNPs targeting introns 22 and 24 of the Dmd gene 

were administered into the tibialis anterior muscle of Rag/mdx mice, resulting in 18.6% 

restoration of dystrophin expression in fibers and up to a 19% deletion of exons 23 and 24 in 

cDNA transcripts [166].

Another promising exogenous loading technique utilizes positively supercharged proteins to 

load cargoes of interest in EVs. These supercharged proteins possess the ability to cross 

through negatively charged membranes, facilitating the internalization in EVs [167]. Nucleic 

acids can also be loaded through conjugation with supercharged proteins while proteins of 

interest can potentially be directly reprogrammed to express positively charged amino acids, 

without losing their function [167].

Taken together, exogenous loading methods are promising strategies to load genome 

editing tools in EVs, potentially improving the scalability of production and pharmaceutical 

formulation compared to endogenous loading which relies on genetic engineering of EV-

donor cells. However, several aspects still require further development, including variability 

in loading efficiencies and the risk of membrane disruption, which could compromise EVs’ 

integrity [165].

Overall, there is compelling in vitro and in vivo data demonstrating EVs can be harnessed 

as vehicles to deliver functional therapeutic cargo. Nevertheless, most studies using EVs as 
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delivery agents for CRISPR-based systems [124], [125], [126], [130], [131], [151], [152], 

[155], [166], zinc finger epigenetic repressors [168] and activators [169], and TALE-based 

transcription regulators [170] were performed in vitro, limiting our understanding of their 

biodistribution and delivery effectiveness in vivo. Moreover, there is still considerable room 

for improvement in editing efficiencies. Numerous limitations significantly impact CRISPR 

editing efficiency, including lack of tissue and cell-specific tropism and sub-optimal 

cytoplasmic delivery, probably due to endosomal degradation.

7. Virus-like particles delivery of genome editing technologies

VLPs are a promising method for delivering protein or genetic material such as CRISPR 

components. They combine the advantages of cell-derived lipid membrane nanovesicles with 

the efficient cargo-packaging capabilities of viral scaffolds. In the following discussion, 

we summarize key findings from studies using VLPs to deliver CRISPR-Cas systems both 

in in vitro (Table 3) and in vivo (Table 1). So far, VLPs for therapeutic delivery of gene 

editing technologies have been created by engineering particles in two main ways: 1) 

incorporating viral envelope glycoproteins, primarily utilizing VSV-G; 2) engineering viral 

capsid proteins, including gag proteins (Figure 4).

7.1 Viral envelope proteins for VLP generation

Viral envelope proteins play a crucial role in localizing, attaching and entering host cells, as 

well as improving intracellular delivery of macromolecules [120]. The main viral envelope 

protein used to generate VLPs for macromolecules’ delivery is VSV-G, also known from 

its use in lentiviral vector packaging systems. VSV-G is a coating protein with glycosylated 

moieties derived from the vesicular stomatitis virus with high fusogenic characteristics that 

plays an important role in cell engagement, internalization and endosomal escape. VSV-G 

mediates cell internalization through recognition of ubiquitously expressed receptors from 

the LDL family [171], [172]. In acidic environments, VSV-G mediates fusion between viral 

and endosomal membranes inducing the release of viral cargo in the cytosol [173]. VSV-G-

engineered vesicles were reported to deliver functional exogenous proteins to recipient cells 

[121]. Delivery of gene editing enzymes by VSV-G fusogenic vesicles was first reported 

by passive loading of Cas9 RNPs in VSV-G VLPs by overexpressing these components 

in producer cells [174]. VSV-G VLPs were shown to deliver SpCas9:gRNA to HEK 293T 

cells, resulting in over 50% reduction in eGFP fluorescence. Additionally, they successfully 

delivered nCas9:gRNAs targeting the GFP coding sequence, leading to gene ablation and 

50% decrease in GFP fluorescence [174]. In vivo data showed intra-cardiac injection 

of VLPs in 5-day-old newborn GFP transgenic mice resulted in 30% eGFP-negative 

cardiomyocytes [174].

To increase packaging of therapeutic agents in VLPs, molecules of interest can be 

actively attached to elements enriched in these particles instead of loaded in a stochastic 

fashion (Figure 4). To that end, protein myristoylation was used to anchor Cas9 protein 

to the cell membrane [175]. An octapeptide derived from Src kinase was tethered to 

Cas9 to promote subsequent myristoylation (mCas9) and enrichment [175]. VSV-G was 

co-expressed to enhance internalization efficiency [175]. VSV-G particles loaded with 
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mCas9:gRNA resulted in 42% eGFP loss with high rates of indels in HEK 293T eGFP 

cells [175].

As described in the previous section, release of genome editing tools from packaging 

motifs can be achieved by engineering linkers, such as through non-covalent binding [159] 

or inducible/cleavable tethering approaches [7], [129], [176], [177] (Figure 4). To this 

end, a heterodimer system containing two different binding motifs, DmrC and DmrA, 

was fused to CRISPR-Cas9 and a membrane associated protein [178]. Cas9 was fused 

with the DmrC domain which physically associates with the DmrA domain present on the 

membrane-associated protein CherryPicker Red, when promoted by the A/C heterodimerizer 

[176]. VSV-G VLPs loaded with Cas9 RNPs were able to edit the HIV LTR region in a 

microglial cell line, achieving of 8% indels by Tracking of Indels by Decomposition (TIDE) 

[176].

VSV-G has also been used to directly load Cas9 RNPs in VLPs [159]. Engineered VSV-G 

and Cas9 were tethered to one another via a split GFP system [159], [179]. In this system, 

GFP is split into 2 fragments between the tenth and eleventh β-strand, resulting in a 16 

amino acid fragment (GFP11) and the remaining protein fragment (GFP10), which bind 

to one another to reestablish a full-length fluorescent protein [179]. VSV-G VLPs loaded 

with SaCas9 RNP targeting the PINK1 gene, a kinase that recruits Parkin ubiquitin ligase 

to mitochondria, presented a 40% reduction in Venus-Parkin mitochondrial recruitment 

[159]. Intravenous injection of VSV-G VLPs loaded with SaCas9 RNP targeting proprotein 

convertase subtilisin/kexin type 9 (PCSK9), predominantly expressed in the liver, led to a 

reduction in total cholesterol levels for at least 14 days after the initial injection [159].

While the packaging of genome editing enzymes allows the co-enrichment of different 

gRNAs, specific packaging of gRNA through aptamer binding proteins allows the co-

enrichment of different genome editors. For example, RNA aptamer (termed com) fusion to 

gRNAs and aptamer binding protein (ABP) fusion to both termini of CD63 was developed to 

enrich Cas9 RNPs in EVs [180]. VSV-G was co-expressed, generating VLPs. This strategy 

allowed vesicles’ enrichment with SaCas9 or SpCas9 nucleases, and Cas9 adenine base 

editors (ABE) RNPs, relying on the interaction of CD63-ABP to com-gRNA and gRNA to 

Cas9. Additionally, multiplex gene targeting was attained by co-packaging different gRNAs 

or both SpCas9 and SaCas9 RNPs with different targeting sites. A single preparation of 

particles loaded with RNPs targeting two different genes showed higher editing efficiency 

than particles individually packaging RNPs with a single targeting gRNA [180]. To test 

in vivo efficacy, particles loaded with Cas9 RNPs targeting Duchenne muscular dystrophy 

(DMD) exon-53 were injected in mouse tibialis anterior muscle of del52hDMD/mdx mice, 

achieving up to 0.2% indels rates and dystrophin expression as observed by immunostaining 

[180].

Overall, VSV-G engineered VLPs improve the intracellular delivery of genome editing tools, 

achieving considerable levels of editing in vitro and in vivo. Nevertheless, expanding the 

current library of viral envelopes and engineering scaffolds with increasing cell-type specific 

tropism is still an unmet need.

Leandro et al. Page 17

Adv Drug Deliv Rev. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7.2 Viral capsid proteins for VLP generation

Viral capsid proteins are also able to promote the self-assembly of VLPs. Retroviral gag 

proteins are one of the most utilized viral capsid proteins to generate VLPs for the delivery 

of macromolecules. Gag is a structural protein from human immunodeficiency virus (HIV) 

and other retroviruses which is essential for the assembly, budding and maturation of viral 

particles [181]. Gag protein multimerizes at the cell membrane and induces budding and 

release of VLPs in the extracellular environment [181]. So far, most studies developing 

VLPs for the delivery of genome editing tools used a combination of capsid gag proteins and 

envelope proteins, mainly VSV-G, resembling the architecture of lentiviral vector packaging 

systems.

Gag-engineered VLPs, were first described to load CRISPR-Cas9 RNPs upon fusion of 

SpCas9 to Gag from Murine Leukemia Virus (MLV) [177]. Expression of Gag-SpCas9 with 

MLV structural and accessory proteins Gag-Pol, along with a gene-targeting gRNA, VSV-G 

and Baboon Endogenous retrovirus Rless glycoprotein (BaEVRless) resulted in SpCas9 

RNP-enriched nanovesicles [177]. The generated VLPs achieved high levels of editing, 

exhibiting a dose dependent effect ranging from 35% to 77% editing of EMX1 gene (by 

TIDE analysis) [177]. VLPs were also optimized for insertion of genetic material through 

HDR, achieving over 50% knock in efficiency in HEK293T cells. Their effectiveness 

was also demonstrated in vivo, in which retro-orbitally injected VLPs resulted in 7% to 

13% editing of xyphenylpyruvate dioxygenase (Hpd) gene, measured by T7 endonuclease 

1 mismatch detection assay (T7E1). A similar packaging system was developed by 

engineering a chemically induced dimerization system to incorporate Cas9 protein and 

gRNAs into VLPs [129]. Gag fused to FKBP12 and Cas9 to FRB were tethered together 

by chemical induction with rapamycin analog AP21967, working as an inducible packaging 

system by promoting the FKBP12:FRB dimerization [129]. GRNA was actively enriched 

into VLPs by fusion with the ψ packaging signal, a domain that specifically binds to the 

nucleocapsid of Gag. Self-cleaving ribozymes flanking gRNA allowed its release inside 

particles. VLPs loaded with Cas9 RNPs achieved up to 48% of indels at CCR5 gene in 

Jurkat T-lymphocyte cells (by T7E1). These VLPs were also able to induce exon skipping in 

human induced pluripotent stem cells (iPSCs), achieving 22% and 29% exon 45 deletion 

by targeting the splice acceptor (SA) and splice donor (SD) sites of the DMD gene, 

respectively [129]. Multiplexed VLPs targeting the SA and SD sites of DMD gene, achieved 

up to 92% of exon skipping in iPSC-derived skeletal muscle cells, restoring dystrophin 

protein expression [129]. To validate this system in vivo, an animal model was employed in 

which disruption of SA and SD sites restores luciferase expression. VLPs injected into the 

gastrocnemius muscle led to sustained luciferase expression up to 160 days after injection, 

indicating stable genomic editing over this period [129].

Beyond the delivery of CRISPR-Cas RNPs, VLPs were shown to delivery CRISPR-Cas 

encoding RNAs by engineering a system in which the MS2 protein binds to the MS2 target 

site RNA hairpin structure [128], [182]. To generate retroviral-based particles pseudotyped 

with VSV-G and loaded with CRISPR-Cas9 RNA transcripts, the MS2 coat protein was 

incorporated into the MLV-Gag precursor and the MS2 target site RNA hairpin structures 

were introduced within the sequence of SpCas9 and gRNAs expression plasmids [128], 
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[182]. The resulting VLPs achieved up to 44.1-55.6% RFP647 knockout in reporter cells and 

an average of 43% CXCR4 knockout in human Jurkat cells [182]. The Gag.MS2.CRISPR-

Cas9 particles were further improved by transferring the system from gammaretroviral to 

an alpharetroviral vector platform [128], achieving a 4- to 26-fold increase in RFP647.Tet2 
knockouts, with an average knockout rate over 70% [128].

Apart from delivering CRISPR nucleases, the utility of VLPs was broadly expanded 

to package and deliver larger genome editing technologies, such as CRISPR BEs and 

PEs [7], [84]. For this purpose, the adenine base editor ABE8e was fused to the Gag 

polyprotein from Friend murine leukemia virus (FMLV) via a cleavable linker, which is 

cleaved by FMLV protease upon particle maturation [7]. Additionally, three nuclear export 

signals (NES) were fused to MLV-Gag immediately before the cleavable linker to promote 

cytoplasmic localization in producer cells, increasing packaging efficiency into VLPs [7]. 

ABE8e was flanked by nuclear localization signals to promote nuclear importation upon 

delivery [7]. These VLPs achieved very high base editing efficiency in vitro, close to 100% 

for several targets in HEK293T cells. BE VLPs were able to reduce the serum levels 

of Pcsk9 by 78%, after 63% of liver editing in mice injected by systemic retro-orbital 

injection [7]. In a mouse model of genetic blindness, BE VLPs improved visual function 

following subretinal injection, leading to up to 12% correction of the R44X mutation with 

no detectable bystander editing, thus far being one of the most effective applications of 

VLPs for the delivery of gene editing tools in vivo. The optimal VLP architecture seems 

to be dependent of the type of editor loaded, since a simple replacement of BEs with PEs 

in the previously described VLP architecture yielded very low functional delivery [84]. 

A systematic engineering of the system was taken to maximize prime editing efficiencies 

through VLPs delivery. The development of PE-VLPs system benefits from the engineering 

of PEmax architecture, epegRNAs and DNA mismatch repair evading mutations and 

additional gRNA recruitment through the MCP-MS2 recruitment mechanism or the COM–

Com protein–RNA aptamer pair [84]. Moreover, a thorough optimization of the protease 

cleaving sites was performed to determine the optimal ratio and positioning between nuclear 

localization signals (NLS) and nuclear export signals (NLS). Alternatively, a system was 

engineered that eliminates the need for covalent binding of the PE to the GAG protein. This 

is achieved by utilizing a coiled-coil peptide-dependent recruitment of the PE. The editing 

levels were 79-fold higher in Neuro-2A cells and 170-fold higher in HEK293T cells when 

compared to the first architecture [84]. Remarkably, efficient in vivo delivery of PE with 

VLPs upon a single subretinal injection was shown for the first time in 2 different mouse 

models. It achieved 15% efficiency in correcting a 4-bp deletion in Mfrp in the rd6 model 

of retinal degeneration and 7.2% efficiency correcting an Rpe65 substitution that partially 

rescue visual function in the rd12 model [84].

Another strategy incorporated a cell type-specific antibody in the delivery vector 

architecture to allow more directed targeting, separating the fusion and targeting functions 

of fusogens, named Delivery to Intended Recipient Cells Through Envelope Design 

(DIRECTED) [183]. A chimeric antibody binding protein or a SNAP-tag was introduced 

between the secretion signal and the transmembrane domain of VSV-G, creating a modular 

system for antibody recruitment [183]. This strategy was used to target Cas9-RNP VLPs 

to Jurkat E6 cells through a αCD5 antibody, with gRNA targeting B2M, which is highly 

Leandro et al. Page 19

Adv Drug Deliv Rev. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expressed in this cell type. After 4 days of delivery, flow cytometry analysis showed that 

αCD5 DIRECTED particles led to approximately 55% loss of B2M protein, whereas the 

absence of antibody resulted in less than 10% B2M loss [183]. The DIRECTED platform 

allows the integration of targeting ligands to improve cell-type specific delivery.

Other genome editing tools have delivered in VLPs, such as [184], [185]. ZFNs and 

TALENs were fused to the N-terminus of Gag to be recruited into the VLPs, using a 

lentiviral packaging system harboring a mutation that renders the integrase incapable of 

mediating vector insertion [185]. VLPs facilitated the delivery of ZFNs proteins to cells, 

promoting gene disruption and homologous recombination in vitro. Notably, ZFNs-VLPs 

exhibited a more favorable on-target/off-target cleavage ratio compared to transfection with 

plasmid-encoded ZFNs [185]. TALEN-VLPs were also able to mediate gene disruption 

in cellular models [185]. VLPs were also able to deliver TALENs as mRNA in vitro, 

abrogating the expression of CCR5 and TCR in multiple cell lines [184], suggesting that 

VLPs can deliver a wide range of genome editing platforms.

Overall, VLPs have been shown to deliver genome editing technologies with high editing 

efficiency in vitro, and increasing evidence shows their therapeutic potential in vivo. So 

far, transient delivery of CRISPR systems through cell-derived vesicles has been shown to 

reduce off-target editing relative to viral vector-based delivery.

8. Synthetic lipid-based nanoparticles and cell-derived vesicles for the 

delivery of genome editing tools

Besides EVs and VLPs, other non-viral methods including synthetic LNPs have emerged 

for the delivery of CRISPR machinery [187], [188]. In Table 2, we compare the main 

nanoparticle properties between EVs, VLPs and LNPs. LNPs have facilitated the delivery 

of RNA in vivo [187], thus increasing interest in expanding their applicability domain with 

delivery of CRISPR components, such as mRNA encoding Cas9 and synthetic gRNAs to 

target cells [187]. LNPs contain controllable lipid moieties in their formulations, mainly 

constituted of four primary lipid components: ionizable cationic lipids, polyethylene glycol 

(PEG) lipids, zwitterionic phospholipids, and cholesterol [9], [189]. These components work 

synergistically to enable payload encapsulation, transport, and cargo delivery following 

LNPs cellular uptake by endocytosis [190].

LNPs have been demonstrated to deliver various CRISPR-Cas9 components to cells: 

plasmid DNA (pDNA) that encodes both Cas9 protein and gRNA, pDNA encoding Cas9 

protein in combination with synthetic gRNAs, Cas9 mRNA and synthetic gRNAs, and 

Cas9:gRNA (protein/RNA) RNP complex [187], [188], [191], [192], [193]. Ionizable 

cationic lipids have been demonstrated to be particularly useful for Cas9 RNP delivery, 

due to the negative charge of Cas9 RNP in association with the gRNA which leads to 

a spontaneous assembly due to electrostatic interactions with cationic lipids [13], [187]. 

There are advantages and limitations to each CRISPR-Cas9 modality, so each delivery 

approach might require an LNP-specific formulation to ensure optimal cargo/delivery 

platform compatibility.
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LNPs provide a protective environment for CRISPR cargo, shielding it from degradation by 

nucleases and other cellular components, thereby increasing its stability and bioavailability. 

However, LNPs have limited cargo capacity [194], limiting the absolute amounts of genome 

editing components that can be loaded, which may hinder the packaging of larger genome 

editing technologies. LNPs can be engineered to have low immunogenicity, reducing the risk 

of triggering an immune response upon delivery into the body. LNP formulations have been 

optimized to improve particle stability, increase circulation time, reduce toxicity, and lower 

immunogenicity [195], [196], [197], thanks to the PEG lipids added to the LNPs formulation 

[9]. A persistent bottleneck of LNPs application is the intrinsic ability to be un-specifically 

uptaken by different cell types and accumulate mostly in liver and spleen. To overcome this, 

tissue- and cell-specific targeting has been achieved by modifying LNP surface charge [198] 

and composition, the last with lipids associated with moieties for targeting specific organs 

and de-targeting the liver and spleen [198], [199], [200], [201]. Unspecific uptake of LNPs 

can lead to CRISPR off-targets and raise potential safety concerns that should be carefully 

evaluated in preclinical studies. While LNPs have been explored to deliver gene therapy and 

gene editing cargos to various organs, a big challenge yet to overcome is their limited ability 

to cross biological barriers such as BBB. Studies have demonstrated that LNPs properties 

can be fine-tuned to enable targeting LNPs to cross the BBB [202]. In conclusion, the 

homogenous formulation and the easy scalability of LNPs make them a promising delivery 

platform for CRISPR-Cas9 modalities. However there remain challenges that need to be 

overcome to untap their full potential and translate their application to the bedside.

In contrast to LNPs, EVs and VLPs have intrinsic tissue-specific tropism depending on the 

cellular source and are natural carriers of DNA, RNA and proteins, properties that make 

them suitable for delivering multiplex payloads necessary for genome editing therapeutics. 

In addition, as natural mediators of cell-cell communications, EVs and VLPs have innate 

abilities to cross barriers such as BBB. Depending on the cell source (and whether they 

are from autologous or heterologous origin), EVs can be immunologically silent. This 

property is being leveraged to mask genome editing cargos from recognition of immune 

cells. Furthermore, EVs can carry large protein payloads, whereas LNPs are more suitable to 

deliver nucleic acids. However, a major drawback of EVs is that these are less homogenous 

than LNPs (e.g. package cytosolic cellular components) and their production has limited 

scalability due to the necessity of keeping large batches of cells in culture, scalable isolation 

protocols and need for quality control in each step which make the production streamline 

longer [203], [204], [205], [206]. EVs require large cultures of producing cells, posing 

challenges in terms of production costs and regulatory aspects regarding their biological 

origin [206]. While there is a gap in data directly comparing EVs, VLPs or synthetic 

LNPs as delivery agents for CRISPR modalities, we believe there is need for case-specific 

evaluations of the most appropriate vehicle platform depending on target tissue, biological 

barriers and cargo payloads.

9. Concluding Remarks

Gene editing tools are revolutionizing the way we pursue treatments for genetic disorders by 

enabling DNA targeting and precise corrections of genetic mutations. In recent years, there 

has been continuous improvement of CRISPR-Cas9 technologies, with research focusing on 
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multiple expanding targeting capabilities through the engineering of Cas9 variants [35], [36], 

[37], [38] increasing specificity and reducing off-target activity [4], [226], [227], [228] and 

improving their characteristics for optimal delivery [7], [127], [229].

One of the remaining challenges for more widely applicable in vivo gene editing is 

to overcome the barriers for efficient delivery to specific target tissues. Thus far, most 

applications to deliver gene editing agents in vivo outside of the liver have relied on 

viral vectors, particularly AAVs, which have serotype-dependent tissue tropism and can 

lead to long-term expression of transgenes [230], [231], [232]. However, they have a 

limited packaging capacity of approximately 4.7 kilobases, which greatly restricts the ability 

to encode and deliver large CRISPR-based enzymes along with gRNAs and regulatory 

elements [233]. While viral vector-based delivery of genome editing technologies can result 

in overall higher editing efficiencies, it also increases the length of time genomes are 

exposed to editing enzymes, which can result in increased levels of off-target mutagenesis 

[6], [80], immunogenicity [81], [82] and integration of the AAV into CRISPR-induced 

or stochastic DNA DSBs [234]. Addressing these drawbacks would ensure the continued 

development of safe CRISPR-based therapies. The initial identification of off-target events 

has led to concerns about adverse consequences, ranging from point mutations, insertions, 

deletions, inversions, that can lead to loss or gain of function of genes [235], [236]. This 

has prompted researchers to develop AAV vectors with controllable expression [237], [238], 

[239] or to directly limit their expression through cell specific promotors or tissue specific 

capsids [230], [240], [241], [242]. Even though controllable transgene expression can result 

in a safer profile, these systems can be prone to a certain degree of expression leakiness 

[243]. Because DNA edits are durable, most genome editing tools can elicit a permanent 

genomic change from transient expression. Persistent expression from viral vectors in vivo 
is therefore not necessary for most genetic perturbations and often carries the potential for 

undesirable consequences. To overcome these obstacles, vehicles that allow the delivery of 

gene-free, short-lived mRNA, protein or RNP coding gene editing agents may be preferable.

Novel delivery vehicles that transiently deliver editing agents without long-term expression 

in target tissues offer several advantages. Ultimately, transient delivery of mRNA and 

especially protein and RNPs offers a more favorable safety profile. Transient expression 

of genome editing tools would allow potent on-target editing and low off-target activity 

by being rapidly degraded within the cell. Synthetic nanoparticles such as LNPs and cell-

derived vesicles such as EVs and VLPs, can protect therapeutic cargo and facilitate entry 

into cells without resulting in long-term gene expression as observed with viral vectors 

[244]. However, cell-derived vesicles’ cellular origin carries challenges in manufacturing 

and large-scale production when compared to LNPs that allow a precise control of their 

composition, easy scalability, and manufacturing [245], [246]. Despite having an edge in 

these aspects, LNPs still present dose-limiting toxicity, and their efficient delivery is mainly 

confined to the liver, with their efficiency relying on prolonged circulation and passive 

cellular uptake [219], [247]. In this regard, cell-derived vesicles present specific surface 

and luminal signatures derived from producer cells, such as proteins, glycoproteins and 

other surface interactors that ultimately improve cellular uptake and biocompatibility. When 

comparing the drug delivery efficiency of EVs and LNPs, EVs were shown to deliver RNAs 

several orders of magnitude more efficiently than LNPs [224], which can be decisive for 
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safe delivery of gene editing agents. Additionally, EVs have a low immunogenic profile [85], 

with several clinical studies in human subjects administered with autologous EVs showing 

good safety outcomes [206]. However, as delivery vehicles, EVs should be derived from 

clinical safe grade human cells and each formulation evaluated for its immunogenicity and 

biocompatibility [248].

VLPs, on the other side, have the potential to induce antibody and cell-mediated adaptive 

immune responses in vivo resulting from the viral scaffolds used in their production [249]. 

For this reason, VLPs might rely on a single administration or in developing strategies to 

either reduce their immunogenicity or eliminate neutralizing antibodies form circulation. 

So far, the use of VLPs for the delivery of gene editing agents relies mostly on retroviral 

Gag and VSV-G, with some studies using RVG and FuG-B2 [7]. One concern regarding the 

use of cell-derived nanoparticles, such as EVs and VLPs, is the carry-over of cell-derived 

cargo such as RNAs and proteins that is dependent on the producer cell state and may alter 

homeostasis of the receptor cell [250], [251]. The carry-over of unwanted cargos into EVs 

and VLPs largely depends on the producer cell and may be overcome using a clinical grade 

cell source compliant with clinical safety [206].

Regarding gene editing efficacy, native EVs were shown to mediate the functional delivery 

of the CRISPR-Cas9 systems in vitro, but available data in vivo is limited. EV-based 

delivery for genome editing is still far from viral-vector based efficacy, with EV-delivered 

gene editing reaching up to 10% editing at the DNA level in vitro [124], [130], [151], with 

one study achieving 30% indels with surface modified EVs [125]. On the other hand, VLPs 

have shown much higher gene editing efficacy, reaching up to 97% gene editing at the DNA 

level in vitro [7], with several independent studies showing more than 50% efficacy [128], 

[129], [174], [177], [180], [182]. Moreover, the use of VLPs in vivo also shows promising 

results, with phenotypical improvements in several disease animal models, such as rescue 

of visual function in a mouse model of Leber congenital amaurosis [7], [84]. Besides the 

advantages of high editing efficiency observed with VLPs, they have also been shown to 

significantly reduce off-target activity when compared to plasmid or viral-vector delivery 

due to expression and rapid clearance of protein/RNPs [7]. While EVs still require further 

improvement to increase their delivery efficiency, VLPs have shown potent on-target editing 

while avoiding off-target mutagenesis. The higher delivery efficacy of VLPs might be 

related to their increased uptake in recipient cells and higher cytoplasmic delivery, possibly 

due to the viral scaffolds’ properties to escape endosomal degradation. Nevertheless, the 

fusogenic nature of these proteins might compromise their biodistribution and targetability. 

Further biodistribution and immunogenicity studies need to be carried out to prove the safety 

of VLPs administered through non-invasive routes for therapeutic delivery.

10. Future Perspectives

In recent years, both EVs and VLPs have motivated great efforts as delivery vehicles 

for gene editing tools. Most strategies have relied on endogenous loading in EVs with 

transmembrane (such CD63 and CD9) and membrane-bound (such as Basp1) proteins 

while VLPs have mostly relied on retroviral gag or VSV-G proteins. Despite the use of 

several packaging strategies, the field would still profit from screening additional packaging 
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proteins that would further increase the number of packaged cargos per particle and the 

refinement of the optimal affinity to allow cargo release in target cells. To this end, 

introducing cleavable linkers that allows cargo release from packaging motifs in recipient 

cells seems to be a critical step towards increasing efficiency of delivery. Another loading 

strategy which so far has been less investigated is exogenous loading of gene editing 

agents. Exogenous loading would significantly improve the scalability and manufacturability 

of cell-derived vesicles loaded with gene editors without relying on complex to establish 

packaging cell lines and endogenous loading mechanisms that show limitations in cargo 

release in receptor cells. So far, the critical steps which need to be addressed to efficiently 

load cargos exogenously in cell-derived vesicles are finding a mechanism to cross the 

membrane without disrupting nanoparticle integrity and cargo functional stability and 

avoiding the precipitation of cargos at particles’ surface.

While most studies focus on delivery of CRISPR-Cas9 nucleases, EVs and VLPs can be 

engineered to deliver more precise CRISPR-based strategies, such as BEs, PEs and CEs 

for which there are additional packaging limitations due to their larger coding sequences. 

Despite their large size, BEs, PEs and CRISPR activators have been shown to be packaged 

in VLPs, suggesting that VLPs do not have strict packaging limitations as the most used 

viral vectors.

So far, the most significant challenges in the field are targetability and endosomal escape. 

Tissue-tropism of both EVs and VLPs largely depend on passive cellular uptake and 

specific internalization mechanisms through surface interactors which are ubiquitously 

expressed. Continued efforts are still required to improve tissue targetability while 

mitigating unintended targeting of typical filtering organs (from instance the liver, if not 

the intended target) and optimize minimally invasive administration routes for single and 

multiple administrations. Upon reaching the target tissue, EVs and VLPs must escape 

endosomal degradation to allow efficient cargo release within cells. On this matter, VLPs 

have the upper hand since viral scaffolds such as VSV-G mediates endosomal escape which 

in the end improves editing efficiency.

Overall, the main challenge of efficient delivery with EVs and VLPs is related to targeting 

to specific tissues and cell types, evade degradation, and reach their intracellular destination. 

With the fast pace of development and enhancement of gene editing tools, novel delivery 

strategies that allow precise targetability while avoiding collateral editing of unwanted 

tissues will help the translation of gene editing therapies to the clinic.
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Figure 1. Challenges for in vivo delivery of genome editing technologies.
a) Several administration routes have been used for in vivo delivery of cell-derived 

vesicles loaded with genome editing agents, such as: intra-CSF, intraparenchymal, 

subretinal, intravitreal, oral, intravenous, intranasal and intramuscular injections. b) Upon 

administration, cell-derived vesicles must: 1) evade degradation and immune recognition 

and 2) cross biological barriers depending on the target tissue. They must then 3) recognize 

target cells in specific tissues and 4) be readily internalized. Upon internalization, the 

functional cargo in cell-derived vesicles must 5) escape intracellular degradation and achieve 

cytoplasmic delivery. Lastly, free therapeutic cargos must 6) reach the target intracellular 

compartment, specifically the nucleus for CRISPR-Cas9 systems.
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Figure 2. Cell-derived vesicles: from native EVs to VLPs.
Native EVs are related with their producer cell since the lipidic membrane resembles the cell 

membrane and carries host proteins and nucleic acids. Upon viral infection, or expression 

of viral components in cells, there is formation of VLPs, which still resemble the host cell 

while carrying viral scaffolds on their surface and/or lumen, being devoid of viral genome 

and infectious properties. On the other extreme, there are viral vectors, which carry a viral 

genome and share structural similarities with virions, without their infectivity properties. 

Studying cell-derived vesicles typically requires different levels of modulation with viral 

components to facilitate the loading, internalization, and release of content in the target cell.
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Figure 3. Cre-lox systems to study cell-derived vesicles delivery in vivo.
The Cre-lox system represents a valuable tool for gaining insights into the in vivo fate 

of cell-derived vesicles. Cell-derived vesicles containing Cre molecules can be produced 

in a living animal (in vivo produced cell-derived vesicles) or isolated from cell culture 

media (exogenously produced cell-derived vesicles containing Cre molecules). Both types 

will benefit from Cre reporter models for studying the endogenous release, organotropism, 

and uptake of vesicles in different tissues of a living animal. Typically, Cre reporter 

mouse models are engineered to express reporter proteins following Cre recombination of 

the reporter DNA. This enables the sensitive detection of functional delivery events that 

permanent modified the reporter DNA.
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Figure 4. Strategies for the endogenous loading of genome editing tools in cell-derived vesicles.
Endogenous packaging of CRISPR-Cas payloads in cell-derived vesicles has been achieved 

by fusing an EV-sorting sequences with genome editing RNPs or to a linker system which 

is then tethered to CRISPR components. EV-sorting proteins and motifs used so far include 

CD63, CD9, CherryPiker Red, ARRDC1, Myristoylation motif, MysPalm motif, Basp1, 

Gag, EPNs and VSV-G. Linker systems used include: CRY2 – CIBN; PIF6 – PHYB; nMag 

– pMag; FRB – FKBP; MS2 – MS2 hairpin; GFP – GFP nanobody; Split GFP; ARRDC1 – 

WW domains; RNA aptamer com – Com ABP; Gag – Gag pol.
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Table 2.
Comparison of nanoparticles’ properties of extracellular vesicles (EVs), virus-like 
particles (VLPs) and lipid nanoparticles (LNPs).

Several properties impact the effectiveness of delivery vehicles: immunogenicity, loading capacity and 

efficiency, protein and nucleic acid delivery, natural ability to cross biological barriers, half-life in circulation, 

potential for engineering targeting moieties, stability, scalability, cost of production, overall engineering 

capacity, clinical safety, heterogeneity, cell uptake, endosomal escape, complexity of regulatory landscape, 

among others. For simplicity, "++" indicates very favorable feature, "+" a favorable feature, and "-" an 

unfavorable feature.

NANOPARTICLE PROPERTIES EXTRACELLULAR
VESICLES (EVS)

VIRUS-LIKE
PARTICLES

(VLPS)

LIPID NANOPARTICLES
(LNPS)

REFERENCES

LOW IMMUNOGENICITY ++ − + [85], [207], [208], [209]

LOADING CAPACITY + + + [84], [125], [210]

LOADING EFFICIENCY + + ++ [211], [212]

PROTEIN PACKAGING ++ ++ − [7], [129], [186]

LARGE NUCLEIC ACIDS 
PACKAGING − − ++ [210], [213]

SMALL NUCLEIC ACIDS 
PACKAGING + + + [97], [159], [214]

NATURAL ABILITY TO CROSS 
BIOLOGICAL BARRIERS + + − [96], [215], [216]

HALF-LIFE − − + [119], [217]

ENGINEERING TARGETING 
MOIETIES + + − [7], [198], [218]

STABILITY − − + [206], [219], [220]

SCALABILITY − − ++ [206], [219]

LOW COST OF PRODUCTION − − ++ [206], [219]

MULTIPLE ENGINEERING 
CAPACITY ++ ++ − [7], [218], [221]

CLINICAL SAFETY + − ++ [206], [222]

HOMOGENEITY − − ++ [118], [223]

NATURAL CELL UPTAKE + ++ − [159], [224]

NATURAL ENDOSOMAL ESCAPE − ++ + [113], [146], [225]

SIMPLICITY OF REGULATORY 
LANDSCAPE − − ++ [206], [219], [222]
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