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Information in proteins flows from sequence to structure to function, with each step causally 

driven by the preceding one. Protein design is founded on inverting this process: specify a 

desired function, design a structure executing this function, and find a sequence that folds 

into this structure. This ‘central dogma’ underlies nearly all de novo protein-design efforts. 

Our ability to accomplish these tasks depends on our understanding of protein folding and 

function and our ability to capture this understanding in computational methods. In recent 

years, deep learning-derived approaches for efficient and accurate structure modeling and 

enrichment of successful designs have enabled progression beyond the design of protein 

structures and towards the design of functional proteins. We examine these advances in the 

broader context of classical de novo protein design and consider implications for future 

challenges to come, including fundamental capabilities such as sequence and structure 

co-design and conformational control considering flexibility, and functional objectives such 

as antibody and enzyme design.

De novo protein design was born out of a desire to reduce the complexity of protein folding 

down to basic physical principles. It was hypothesized that, with sufficient understanding 

of the rules governing protein folding, it might be possible to create new proteins from 

scratch1,2. In time, this hypothesis has proven true. The guiding physical principles of 

protein design are simple, but the process of applying these principles leads to vastly 

diverse structural outcomes, unlocking a new era of functional protein design3. For many 

problems in protein design, de novo design has become more effective than computationally 

manipulating or adapting native protein structures to achieve a desired function4.
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Traditionally, protein structure and its interaction with sequence are understood in an 

energetic and biophysical sense: what are the three-dimensional interactions that amino 

acid residues make with each other? How do they stabilize a particular conformation of the 

protein chain or an interaction with a ligand or substrate? The ability to capture the diverse 

behaviors of proteins with a set of atomic-level physical equations is attractive, providing an 

interpretable view of the forces that sustain a structure. Indeed, the earliest protein-design 

methods used this approach successfully to define structures of new proteins and resample 

side chains for new sequences5–10.

However, the space of all possible protein conformations and sequences is far greater than 

can be explored exhaustively in the timescales of protein folding or evolution or any kind 

of computational or experimental sampling scheme11,12. Yet somehow, through billions of 

years of evolution, nature has managed to produce a small set of proteins. For scientists 

who wish to solve problems on shorter timescales, drawing on data from nature’s ‘answer 

key’ has been a highly effective strategy. Since the first design of a new protein fold 

by assembling fragments of natural proteins13, protein data available in the Protein Data 

Bank (PDB) have grown rapidly. This has enabled an increasing role for incorporating 

data in protein design through tools such as structural fragment libraries, scoring functions 

regressed to data, sequence and rotamer statistics14–17, eventually leading to the design of 

protein structures with atomic accuracy3.

As methods for de novo design matured, it became relevant to also consider protein 

function. Could protein structures and sequences not only be designed from scratch but 

also accomplish desired functions? In contrast to redesign of natural proteins, de novo 

approaches offer complete control over the structure and sequence, whereas natural proteins 

are often marginally stable and marginally functional. It can be hard to predict when an 

engineering change will result in an unfoldable protein. In recent years, our ability to design 

functional proteins has seen a step change, as fast, performant structure-design models 

combined with precise validation of designed sequences with AlphaFold have led to a 

new age of functional design in which proteins are designed from scratch to conform to 

functional motifs, rather than altered from existing proteins (whether de novo or natural) 

to support these motifs. This has unlocked several applications, including supra-molecular 

assemblies, transmembrane pores and protein, ligand and metal binders18–21.

In this Review, we examine each of the three pillars of the ‘central dogma’ of de novo 

protein design: (1) how functional goals can be mapped to structural motifs accomplishing 

these goals, (2) how we can control and design protein structure, especially in response to 

these motifs, and (3) how sequence is sampled so that the designed structure is attained and 

functional roles are fulfilled by side chains (Fig. 1). For each pillar, we discuss the insights 

and strategies that have arisen to enable more accurate protein design and survey the key 

methods that have demonstrated our improved capacity to generate functional proteins. We 

explore the potential of new approaches that expand beyond the current paradigm, including 

alternate ways to model structure and sequence and modeling of conformational dynamics 

and heterogeneity. We conclude by discussing remaining challenges for functional design 

and give an outlook for the field. Methods are summarized in Supplementary Table 1; in 

addition to works cited below, see refs. 22–51 therein.
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Deriving structure from function

De novo design of a functional protein begins with identifying the features needed to 

accomplish the intended function. Examples of common objectives include designing 

proteins to engage immune cells, creating binders for drugs, nucleic acids or other proteins, 

stabilizing the transition state of a reaction for new enzymes and developing ion-specific 

transmembrane channels. Regardless of the application, the approaches are built on the 

principles of energetic stabilization and shape complementarity1,52. In earlier de novo design 

efforts, the design of any foldable protein was already considered a major achievement, and 

efforts to attain function centered on introducing changes to these scaffolds to accommodate 

a functional motif (in a minimal way)2,53. With the rise of increasingly powerful design 

methods, specifying the functional motif first and then searching for protein scaffolds that 

are consistent with this motif has become the more common path.

In many cases, the relevant functional motifs can be extracted directly from natural proteins 

and scaffolded as part of a de novo protein structure. This strategy has been deployed 

to scaffold antigen epitopes on the surface of designed immunogens54. Other successes 

with this approach include scaffolding peptide-binding motifs, metal-binding sites and 

ligand-binding motifs to accomplish the relevant functional task55,56. These motifs can 

also be extracted from nature to support a designed function, such as the placement of 

positively charged residues near the membrane–solvent interface in the case of designing 

transmembrane channels19,57,58.

This approach requires known solutions from already functional proteins for the problem of 

interest. More general approaches to devise yet unknown functional motifs require breaking 

down the interaction to basic chemical elements and handling the possible combinations 

and arrangements of these elements accurately. One class of methods solves this problem 

by considering the chemical properties of the target and enumerating the interactions that 

a protein might use to bind to the target (Fig. 2)59,60. They can also be culled directly 

from the PDB, relying on statistical enrichment to capture the most effective interactions 

and perhaps average out noisier information such as side chain flexibility61,62. For these 

side chain-focused methods, choosing small, fine-grained chemical groups (such as amides 

or carbonyls) increases the number of unique examples and enables generalization to 

more complex motifs. This interaction field approach is generalizable to arbitrary binding 

interactions and has been successfully applied to design de novo binders against conformer-

specific small-molecule ligands59,61, miniprotein binders and ultra-high-affinity de novo 

binders to receptors60, monobody binders to nerve toxins62 and binding to nucleic acids63.

Other approaches seek a higher level of abstraction by capturing features of functional 

interfaces with machine learning. For protein–protein interfaces, machine-learned 

representations of a surface can be used to propose the binding counterpart. Embeddings of 

protein surfaces can be learned that capture general biophysical and biochemical properties 

of an interface region as well as additional information that may be encoded in subtle 

variations in the sequence but is difficult to explain with energy functions or visual 

inspection. The patch embeddings from a target protein can then be inverted and mapped to 
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sets of favorably interacting motifs for scaffolding into a designed protein; this approach has 

been shown to yield high-affinity protein binders to diverse targets (Fig. 2)64,65.

For some binding interactions, extracting interface features can be bypassed entirely if a 

model can be trained on relevant data, which allows generalizing to new, unseen examples. 

This zero-shot transfer learning approach allows the model to reuse learning from data-rich 

regimes on problems that are data poor. For example, there are far fewer protein complexes 

than monomers in the PDB, but models that are trained on monomers can still learn about 

protein complexes through the features shared by both types of data: the fundamental forces 

governing interactions between amino acids. Even if the models are not explicitly trained to 

capture the physics, similar underlying patterns appear in both monomers and complexes, 

allowing for improved performance on the latter. In practice, models can be further finetuned 

on scarcer task-specific data beyond relying solely on model generalization. This concept 

has been implemented to generate high-affinity binders for multiple targets20,66 and has also 

been extended to small-molecule ligands21.

Designing structure from scratch

With a functional motif defined, devising a protein structure to satisfy the constraints posed 

by it is one of the most challenging aspects of protein design. We previously reviewed 

conventional backbone-design methods3 and suggested that the space of designable 

sequences might remain largely unexplored. De novo protein design enables this exploration 

by breaking down structure design into the hierarchical components of topology, which 

defines the sequence and arrangement of secondary-structure elements, and syntax, which 

defines the lengths of these elements67,68. In conventional protein design, these definitions 

are captured in a blueprint, which can be implemented by fragment-assembly routines14,69.

Designing protein structures in this conventional fashion still offers the most interpretable 

way to model protein structures. For example, designs incorporating key structural insights 

have refined our ability to control β-barrel-forming structures, which are important in 

enzymes and membrane protein applications19,59,70. Since the principles for building 

triosephosphate isomerase (TIM) barrels were first established71, altering the central β-

barrel to have an ovoid (rather than circular) shape has been a major goal, because it is 

more suitable for incorporating small-molecule-binding sites. This proved to be difficult 

by conventional protein engineering, but revisiting the basic topology revealed that an oval-

shaped TIM barrel is the result of sliding two half-circular barrels along the tilted β-strands 

(Fig. 3a)68. In developing de novo β-barrel proteins into membrane proteins, Vorobieva 

et al. came to the important insight that destabilizing elements of a designed structure 

allow the peptide chain to be inserted into the membrane. The same guiding principles 

for building β-barrels also yielded a proof-of-principle stereoselective retro-aldolase72. Few 

other approaches can reveal the inner workings of proteins to this depth. However, despite 

having complete control over the construction of a structure to the individual residue level, 

adapting these designs for function can be difficult due to the stringent conformity to 

idealized building blocks. Natural proteins tolerate, even require, non-ideal structures to 

achieve complex function, and this inspired efforts to find more sophisticated processes to 

accomplish de novo protein design.
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Our ability to manipulate protein structure in response to functional constraints has seen 

enormous change with the application of deep learning73. In an approach similar in 

spirit to the original energy landscape-based perspective on de novo design, learned and 

statistical potentials can be used in place of physics-based potentials to guide structure 

search, enabling a similar ability to produce new-to-nature structures and topologies74. 

The advent of highly accurate protein structure prediction using the AlphaFold system 

and the subsequent development of trRosetta and RoseTTAFold75–79 opened new ways 

to generate proteins. By learning to map the distribution of protein sequences to the 

distribution of structures, these methods appeared to encode information about both within 

a single differentiable network. Efforts to tease out what these predictive models learned 

about structure gave rise to the class of hallucination-based approaches, which explored 

various ways to invert structure-prediction networks by optimizing and resampling the 

sequence inputs until they produced realistic output structures56,80. A similar approach 

found that a masking objective applied during RoseTTAFold training could be extended 

to do ‘inpainting’, that is, completing missing regions of a partially masked structure55,81. 

These approaches yield de novo proteins in a mostly automated way, without requiring 

the intense structural scrutiny and large-scale sampling devoted to previous design efforts. 

This enabled searching protein structure space broadly and quickly for solutions to design 

constraints, leading to successful scaffolding of various functional motifs and inputs in new 

de novo proteins.

In a parallel approach, deep generative modeling emerged as a powerful strategy for efficient 

sampling from high-dimensional distributions for which we have plentiful data, such as 

images and text82–86. These models learn to approximate a mapping from a distribution 

that is easy to sample from, such as a Gaussian distribution, to a data distribution of 

interest. This method can also be applied to protein design and provides a more natural way 

to generate protein structures by construction62,87 without having to hack the inputs to a 

structure-prediction network. An important advance in generative protein design occurred 

with the rise of diffusion-based generative models, which attain high sample quality 

while providing more stable training and better diversity than other types of generative 

models88–93. These models benefit from an iterative generation mechanism that begins 

with white noise and denoises coarse features first before filling in fine details, rather 

than attempting to synthesize the full atomic structure in one shot. This inductive bias, or 

learning architecture, aligns well with the hierarchical nature of protein structure, breaking 

the structure-generation problem down into problems of high-level tertiary organization first, 

followed by local secondary structure and finally chemical detail (Fig. 4). These models 

exhibit the capability to implicitly model topology and syntax, choosing to allocate protein 

residues to different types of secondary structures during this process. With improved 

generation quality came the ability to outpace physics- and hallucination-based methods 

for rapid structure search under conditioning20,94,95. RFdiffusion has been used to solve 

diverse protein-design problems with success rates orders of magnitude higher than those 

of previous methods, including scaffolding motifs, generating symmetric oligomers and 

designing metal and protein binders20. This success and the success of related models 

exhibit the strengths of deep learning-based structure design: faster and more efficient 
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sampling, a high degree of automation and reproducibility and new solutions of high realism 

and quality.

Despite being trained on the natural distribution of protein structure, many design models 

sample from a distribution more aligned with design objectives that produce more globular 

proteins with clean topologies, syntaxes and fewer loop residues than natural proteins 

(Fig. 3c). It is unclear what gives rise to this latent distribution, but possibilities include 

regularization in neural networks and low-temperature sampling. Regularization comes in 

many forms, such as dropout layers, noising data augmentations and restricted model 

architectures, and are intended to reduce overfitting to irregularities and outliers, such 

as loop regions. Temperature-adjusted sampling, inspired by the role of temperature in 

statistical mechanics, trades off sample quality with diversity and is implemented with 

the temperature parameter in Chroma, the noise scale in RFdiffusion, the step scale in 

Protpardelle and various other strategies. Reducing the sampling temperature redistributes 

density from the tails of the data distribution to concentrate it at the modes, effectively 

exploring fewer states and focusing on high-probability ones. This is likely applied because 

the learned distributions fail to exactly recapitulate the natural distributions, especially in 

the tails, and enriching for high-quality samples is best attained by sampling at the modes. 

Whatever the underlying cause, it is observed empirically that these generative models 

sample from sharpened, centralized distributions that filter out the structural ‘noise’ present 

in natural proteins and yield the idealized backbones typical of de novo design, which are 

simpler to understand and easier to fold (Fig. 3c).

Designing sequence to specify structure and function

In the end, only a sequence is needed to describe a protein in full, but a simple string of 

amino acids, and the process of deducing the correct one, carries more complexity than 

meets the eye. When examining the sequence directly, features such as patterns of polar and 

hydrophobic residues as well as strategic use of glycines and prolines can be analyzed to 

offer a simplistic picture of protein properties, for example, its secondary-structure content 

or whether it can be a membrane protein. When viewed together with the structure, however, 

every facet of the sequence including length, pattern and amino acid identities defines an 

exquisite agreement with its three-dimensional structure. It may even be fair to say that, 

although the sequence is the ultimate expression of a protein, it is made to serve the 

functional purpose of the protein structure. In defining the sequence of a de novo protein, the 

searchable sequence space can be more extensive than that for native proteins, as structure 

becomes the only constraint, unbound by evolutionary requirements59,70,96,97. This is also 

true for exploration of local nearby sequences, for example, to improve the function of an 

enzyme98.

Thoughtful sequence design can illuminate new insights into the interaction between protein 

sequence and structure. For example, the specificity of side chain packing is typically 

considered crucial for driving a polypeptide chain into a well-defined fold rather than a 

molten globule state. While investigating the influence of side chain mutations on stability, 

Koga et al. uncovered a counterintuitive result on hydrophobic packing specificity, namely 

that, in an idealized topology (in this case, a Rossmann fold), it is possible for a protein to 
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retain structural and thermodynamic properties despite massive mutational perturbations99. 

Specifically, despite the mutation of all buried hydrophobic residues from large to small side 

chains (for example, leucine or isoleucine to valine), the protein was able to not only remain 

folded but also retained high thermostability and an identical folded state structure.

Similar to structure design, fixed-backbone sequence design, also known as inverse folding, 

has also profited from deep learning and data-driven approaches. The combinatorial nature 

of sequence space mirrors that of protein structure, which explodes with the length of 

the protein and can be very difficult to search over. As with structure design, structure-

prediction models provide an effective handle to grapple with this space, and the same 

approaches that can be used to produce protein structures from these networks can also 

be used to design sequences. Earlier work explored the capacity of trRosetta to define 

a sequence profile based on a target structure, guiding conventional methods to better 

conform to the global energy landscape100. Later, hallucination and masked inpainting 

methods were also found to be effective for extracting sequences from structure-prediction 

networks55,56,80,101. However, optimizing under AlphaFold2 directly with hallucination 

often yielded adversarial sequences, meaning sequences that AlphaFold2 predicts with high 

confidence but that fail to express in the wet laboratory18,80. The most effective sequence-

design methods benefit from the strong constraint of a target structure that limits the search 

space: the optimal amino acid for a position is mostly determined by its local environment. 

This inductive bias is exploited to great effect by various types of sequence-design methods, 

including Gibbs and Metropolis sampling algorithms guided by physics-based or learned 

potentials15,102 and masked language and autoregressive models103,104. These methods 

enable a high level of automation, generating high-quality sequences quickly with little 

or no manual intervention and even rescuing unfoldable sequences designed by conventional 

methods such as Rosetta in the case of ProteinMPNN103.

Perhaps the most important result in protein design in the last few years is the ability to 

evaluate designs with the self-consistency or designability metric. Previously, computational 

designs were validated by ab initio structure prediction, essentially simulations of protein 

folding guided by an energy function, which probed the ability of a designed sequence to 

find the correct structure. These simulations were highly informative, offering statistical and 

structural insights on the impact of pathological amino acids in the sequence. However, 

they required large-scale computation for limited accuracy and exhibited poor correlation 

with experimental success. With the advent of accurate structure-prediction methods such 

as AlphaFold, it became possible to compare the predicted fold of a designed sequence and 

the original designed structure. Relatively quick computation enables predicting the folded 

state of a designed sequence together with a confidence metric (such as pLDDT or pAE). 

One might expect a sequence that is predicted to fold back to the designed structure with 

high confidence (‘self-consistent’ or ‘designable’) to be more consistent with the designed 

structure and thus potentially more likely to fold in the wet laboratory (Fig. 5)55,60,105. In 

general, these findings have substantially increased the speed and the efficiency of method 

development because models and designed sequences can be more faithfully evaluated in 

silico without requiring slower and more laborious feedback from wet laboratory validation. 

We also note that further work remains to improve these in silico metrics. Precision can 

be improved, as AlphaFold2 is susceptible to adversarial inputs, although filtering designs 
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through an orthogonal metric (for example, using AlphaFold2 pLDDT when sequences are 

hallucinated from RoseTTAFold)55 or using structure-prediction networks that contain a 

language model106 seems to mitigate this effect. The true recall is unknown because it is 

possible that AlphaFold2 may be ‘overfit’ to natural protein sequences and it is hard to 

estimate how often it rejects de novo sequences that would be valid, and, even within known 

sequence space, many natural, functional proteins cannot be predicted free of multiple 

sequence alignment (MSA) and would fail the self-consistency test103.

More broadly, the structure-prediction task has proven to be very useful for protein 

modeling and design, with models shown to capture much more information than simply 

a mapping from MSAs to structures. Investigation into AlphaFold2’s ability to discriminate 

between successful decoys in structure prediction suggests that the structure module learns 

a form of implicit ‘energy landscape’ that allows it to evaluate the plausibility of a given 

structure and may explain its ability to generalize to diverse tasks107. In addition to other 

applications for structure and sequence design previously discussed, AlphaFold2 has been 

found to be effective for predicting protein–protein interactions105, predicting and designing 

cyclic peptides108 and predicting small-molecule-binding sites109, despite not being trained 

specifically for these tasks.

Finally, in a phenomenon analogous to the idealized distributions observed in structure 

modeling, it appears that learned sequence models also produce more ‘modal’ samples, 

perhaps due to similar effects of regularization and temperature-tuned sampling schemes. 

One symptom of this is that model likelihoods are typically higher on de novo-designed 

sequences than on natural protein sequences102,103. Thus, while they may have been trained 

to try to reproduce the natural protein distribution, a hidden de novo distribution can 

be extracted from within the learned natural distribution with low-temperature sampling 

and other strategies. To complete the cycle, this distribution of de novo proteins interacts 

favorably with AlphaFold2. Single-sequence (MSA-free) prediction with AlphaFold2 

seemed to perform poorly with natural sequences but much better with de novo-designed 

protein sequences, with high self-consistency for these, enriching specifically for successful 

designs103. Why this occurs remains unknown; perhaps these de novo sequences contain 

more ‘folding signal’ (ref. 110). We observe that the highest AlphaFold2 self-consistency 

values and the highest rates of experimental success are achieved when sampling from 

sharpened (for example, idealized) structure and sequence distributions, compared to 

samples closer to natural distributions.

Looking beyond the central dogma

There is an old parable about a group of blind people who encounter an elephant. Each 

person interacts with a different part of the elephant by touch. The first handles the trunk and 

describes the elephant as being like a snake. The second touches the ear and decides that the 

elephant is some kind of fan. A third person feels the leg and declares the elephant to be the 

trunk of a tree. While none of them are incorrect in their observations, they all have unique 

perspectives that only partially touch upon the complete truth.
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Like elephants, proteins also have many unique attributes and representations, although 

sometimes we may focus on only a single one, such as the modeling of backbone structure. 

The classical hierarchy of function–structure–sequence enabled progress to be made by 

breaking down the grand challenge of protein design into more tractable subproblems. 

Like the blind men in the parable, solutions to these subproblems, while effective, only 

consider a single facet of the many-sided nature of proteins. These approaches are more 

restrictive than the true nature of protein function: in real proteins, sequence influences 

structure through side chain interactions, function-guided evolution constrains the sequences 

of proteins with highly similar structures and other harder-to-observe variables such as 

conformational dynamics or cellular context interact with all three.

The influx of new methods coinciding with the rise of deep learning for protein design 

has already begun to bring new perspectives on protein modeling and design. These 

include approaches that directly model sequence, perhaps conditioned on or jointly with 

functional properties111–114. These protein language models have shown the ability to 

capture information from sequence evolution, exploring the sequence space of natural 

protein families and solving some protein-design tasks such as scaffolding. Their capacity to 

explore de novo sequence space increases substantially when they have access to structural 

information. Language models have been shown to learn some understanding of structure by 

way of coevolution, the same mechanism underpinning modern structure prediction115–121, 

and, when equipped with a structure head, they have been used successfully to generate de 

novo proteins119,122.

As modeling capabilities improve, it is natural to consider increasingly integrative 

approaches to protein design, such as all-atom modeling and co-design of protein structure 

and sequence. We distinguish between all-atom modeling, which is the simultaneous 

generation of backbone structure and side chain structure, and structure and sequence co-

design, which is the simultaneous generation of structure and sequence. All-atom modeling 

re-emphasizes the role of side chains in protein design, which might otherwise seem 

like an afterthought in the central dogma but are of course critical in defining protein 

function. Such models enable the design of proteins with side chains considered jointly with 

backbone throughout the generation process, allowing for explicit modeling of chemical 

interactions with a target, for side chains to influence the backbone conformation and even 

for explicit conditioning on side chains without backbone95. Co-design extends this by 

incorporating meaningful prior distributions on sequence and could enable conditioning 

structure design on sequence information and vice versa or conditioning both jointly on 

functional information. Protein structure is degenerate, containing only a small number of 

unique secondary-structure types and a limited set of ways to combine these into tertiary 

motifs123. Sequence is a much richer and more expressive representation, but, as a result, 

its design space has been less exhaustively explored by evolution. A combination of the 

strengths of each approach could enable broader exploration of protein space through 

structure while giving fine resolution through sequence112,113,124–126. Repurposed structure-

prediction networks immediately suggested a natural way to co-design protein structure and 

sequence, as the outputs include both a structure and a sequence that are self-consistent by 

construction55,56,100,101, but these methods can be prone to adversarial outputs18,80,101,103. 

Generative modeling approaches were recently extended to include sequence diffusion with 
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structure guidance127, all-atom structure diffusion with side chain awareness95 and sequence 

and structure co-design with protein language models119,122. However, a true foundational 

model that exhibits generalization through structure and fine control over sequence, with the 

ability to generate and map between either one and infer causal relationships with function, a 

model that ‘sees the whole elephant’, so to speak, remains lacking.

The other ‘elephant in the room’ is the dynamic nature of protein structures. A strong 

assumption throughout de novo protein design as we have presented it here is that the 

folding and function of a protein is largely enthalpic in nature: structures can be designed 

by directly stabilizing the folded state while ignoring competing states, and function is 

mediated entirely through the interface with the target110. Of course, static structure is 

an incomplete model that we work with out of convenience. To date, both large-scale 

and fine-grained dynamic behavior and even intrinsic disorder have been achieved by 

design128–132, and some consideration has been given to multiple states in sequence 

design100,103,127,133, but this area remains underexplored, in part due to the paucity of 

ensemble and dynamics data and the difficulty of in silico evaluation. Much as how the rapid 

growth of the PDB has enabled advances in protein structure modeling, the development 

of large, standardized conformation datasets should unlock further progress in this area134. 

Reincorporating physics-based inductive biases into existing deep learning models may also 

allow for generalizing to conformations while leaning only on static structure data.

Examining specific applications of protein-design methods (examples shown in Fig. 6), 

two areas of interest are the design of antibodies and enzymes. Both applications present 

unique challenges for current design methods. Antibodies are ubiquitous as a therapeutic 

modality, and the ability to design them relatively quickly and cheaply compared to 

animal immunization would be of substantial impact135. In comparison to de novo protein 

binders, antibodies typically affect binding through loop-rich complementarity-determining 

regions, which are difficult to model compared to helices and sheets for both design and 

evaluation methods such as AlphaFold2 (refs. 1,136). It is of similar importance to control 

the developability properties of antibody sequences to avoid oligomerization and other 

behaviors that interfere with their ability to function as therapeutics137.

Enzymes are frequently sought after in applications in which catalysts that can unlock 

new chemical transformations or function efficiently in mild conditions would contribute 

to sustainability, new materials and synthesis pathways. These molecules also present a 

difficult challenge for structure-based de novo design, as the sub-angstrom scale of the 

physical process, bond breaking and forming, requires a degree of accuracy that is not 

always attainable in structural datasets or with protein-design methods. Recent advances 

include scaffold recombination and hallucination to generate diverse solutions for placing 

catalytic motifs138,139. In some cases, manual intervention with information from evolution 

has been required98. Accurate modeling of multiple conformational states would likely be 

beneficial to both antibody and enzyme design, for example, the effects of complementarity-

determining region flexibility on antibody binding affinity and modeling changes in active 

site geometry given proximal or distal mutations and their effect on catalytic activity. 

Recent methods for conformational sampling such as EigenFold, Distributional Graphormer, 

Chu et al. Page 10

Nat Biotechnol. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PepFlow and MSA subsampling and clustering with AlphaFold can build toward methods in 

this direction140–144.

Finally, a remaining broad challenge is the complexity of affecting phenotypes in cells 

and organisms with protein design. While our capacity to design functional proteins has 

increased rapidly in recent years, solving the molecular recognition component remains 

only a small part of this challenge. For example, affecting chromatin organization or gene 

expression may involve deeper insights than simply nucleic acid or histone binding. To 

direct the behavior of cells, receptor binding is often only the first challenge to be solved. 

Of direct interest and impact to society is the potential of designed proteins to function as 

therapeutics. For de novo proteins to be useful as drugs, they will need to exhibit serum 

stability, minimal immunogenicity and other developability traits.

Conclusion

New end-to-end pipelines reduce the labor needed to design proteins, democratizing protein 

design, lowering the barrier to entry and enriching the space of experiments that can be 

tried. We expect capabilities and performance to continue to grow as modeling techniques 

continue to improve and the field generates more data, making headway toward functional 

de novo design (Fig. 6). At the same time, it is hard to understate the need for continued 

biophysical learning in this new age of automated protein design. Nature remains full of 

complex biological systems that we are only beginning to understand, and, in the absence 

of perfect data, the only way to generalize to all cases is with a causal model. As is often 

true in science and in protein design, the first forays into uncharted directions of research are 

opened by careful observation and reasoning from first principles, and we expect it to remain 

so moving forward.
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Fig. 1 |. The central dogma of de novo protein design.
Protein design generally follows this workflow: specify a desired function, design a structure 

that can structurally host this function, and find a sequence that folds into this structure. This 

central dogma underlies nearly all de novo protein-design efforts.
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Fig. 2 |. Defining functional motifs in protein design.
A spectrum of approaches for extracting functional motifs from physics-inspired or data-

driven models. a, Rotamer interacting fields (RIFgen and RIFdock) enumerate the space of 

favorable chemical interactions, scored using an explicit energy function, and use inverse 

rotamers to successively generate each torsion angle of the side chain up to the backbone. 

b, Extracting observed chemical interactions from the PDB, each termed a van der Mer 

(vdM), and scoring them with a combination of energies and statistical enrichment. COMBS 

applies this approach to identify backbone–ligand interacting chemical groups, and Sculptor 

identifies favorable protein–protein binders. c, Machine learning models such as MaSIF 

can be trained on protein and chemical data to learn high-level embeddings of functional 

surfaces, which can then be used to score structural elements on their complementarity. d1–

d3, dimensions 1–3. d, With the appropriate pretraining task, generative models can directly 

learn the nature of protein–protein and protein–ligand interactions and sample according to 

these patterns. Illustrations adapted from refs. 20,59,60,64, Springer Nature; adapted with 

permission from ref. 61, AAAS; adapted with permission from ref. 21, CC-BY-ND 4.0; and 

adapted from ref. 62.
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Fig. 3 |. Controlling protein structure to scaffold functional elements.
a, The basic approach of de novo structure design. First, a topology, or arrangement of 

secondary-structure elements, is defined. Next, the lengths of these elements, which heavily 

influence the tertiary structure, must be defined (the syntax). Finally, a structure can be 

sampled conditioned on this syntax secondary-structure string using parametric equations, 

Monte Carlo fragment assembly or generative models. Abbreviation: s, shear number. b, 

The tradeoff between design and automation. With fully handcrafted syntaxes, the protein 

designer has full control over the design process and can specify unique and new topologies 

and structures, but this approach requires substantial manual curation and inspection. More 

automated methods that allow more complex parametric models to sample the topology, 

syntax and structure with minimal human intervention may be more accessible, reproducible 

and efficient but afford less control over the design process and are less interpretable. 

In between are methods that integrate some user-specified information and build up the 

remaining structure based on physics and statistics. Abbreviations: 2D, two dimensional; 

3D, three dimensional; SSE, secondary structure element; ρ, probability density; Q, set 

of structural variables. c, Generated structures from RFdiffusion (orange contours) show 

enrichment of secondary-structure content compared to those from the PDB (green), which 

have more regions lacking in secondary structure. Illustrations adapted from refs. 20,74,146, 

Springer Nature, and adapted from ref. 147, CC-BY 4.0.
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Fig. 4 |. Hierarchical nature of diffusion models.
An example diffusion sampling trajectory from backbone-only Protpardelle, which diffuses 

with Gaussian noise directly on the Cartesian coordinates of the protein backbone atoms95. 

The parameter t represents the proportion of noise that has been added; therefore, t = 0
indicates no noise, t = 1 indicates maximum noise, xt represents the inputs to the denoising 

network at timestep t and x̂0 = fθ xt  represents the network predictions of clean or denoised 

data, where θ denotes the parameters of the network f, that is, what the data should look 

like at t = 0, given the inputs xt. Note that the absolute value of t may not correspond 

exactly to the noise variance σ = f t  in general); for example, for this particular 

diffusion process, the standard deviation of noise added σ = 800 when t = 1; therefore, 

we downscale the coordinates to fit in the context of this figure. While to the human 

eye very little structural detail is apparent in the sampling trajectory xt  until late in the 

denoising process, we can see that the model extracts signal x0  in a way that proceeds 

from ‘low-frequency’ information (that is, tertiary organization, which involves many atoms) 

to ‘medium-frequency’ features (for example, secondary structure, which involves fewer 

atoms) and eventually ‘high-frequency’ details (such as bond lengths and angles, which 

involves only a few atoms). For further discussion, see section 5 of ref. 148.
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Fig. 5 |. Designing sequence to specify structure.
To complete the loop, designed sequences can be refolded with structure-prediction 

methods. Previously, ab initio structure prediction allowed for assessing the ‘folding 

landscape’ of a protein sequence and whether the designed structure is the lowest-energy 

conformation and is findable or foldable in this landscape. Now, with deep learning-based 

structure-prediction networks, accuracy and efficiency are much improved. Confidence 

metrics (pLDDT, pAE) and the root-mean-square deviation (RMSD) can be used as a 

scoring function and are predictive of experimental success. The folding funnel is by Ken 

Dill.
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Fig. 6 |. Examples of functional de novo design.
Of particular note: 7K3H and 7M0Q are trRosetta-hallucinated structures56; 8CYK is an 

example of an adversarial sequence rescued by ProteinMPNN103; each of chains X, Y, Z 

in 8SK7 is a binder generated by RFdiffusion20; 6MSQ and 6MSR are designed by tuning 

contributions to the predicted free energy of folding from hydrophobic layers, pH-responsive 

polar layers and pH-independent polar layers149. The majority of structures are generated 

from a combination of methods, such as the various tools in Rosetta (8GAA)150, library 

screening (8H7C)151, rational design (7BEY)152, parametric helical bundles (6MSQ)149, 
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kinematic loop closure (6UD9)153, rule-based design, rotamer interaction field (6D0T)59, 

database fragment and/or interaction search and assembly (6W70, 6MCT)61,97, customized 

docking protocols (8FWD) and negative design (6X9Z)19. Methods used to design select 

protein structures are listed in Supplementary Table 2. Ig, immunoglobulin.
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