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1   |   INTRODUCTION

The human heart generates intricate electrical signals that 
provide vital insights into the cardiovascular system's func-
tionality. These signals serve as diagnostic tools, offering 
crucial information about heart rate, rhythm, and potential 
abnormalities. Detecting cardiac anomalies can be challeng-
ing due to the complexity and diversity of cardiac diseases and 
the expertise required for their diagnosis. Electrocardiograms 

are crucial for rapidly assessing cardiac conditions and mon-
itoring heart rhythm (Singh et  al.,  2019). Nevertheless, in-
terpreting ECGs presents a substantial challenge due to the 
intricate nature of cardiac electrical activity and signal noise. 
In recent years, due to technological and architectural devel-
opments, deep learning has been very beneficial for analyzing 
and processing these signals (Hu et al., 2022).

Cardiac signals hold potential for the diagnosis and in-
vestigation of heart diseases and encompass various types, 

Received: 1 February 2024  |  Revised: 30 July 2024  |  Accepted: 30 July 2024

DOI: 10.14814/phy2.16182  

O R I G I N A L  A R T I C L E

LDCNN: A new arrhythmia detection technique with ECG 
signals using a linear deep convolutional neural network

Ali Bayani   |   Masoud Kargar

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided 
the original work is properly cited.
© 2024 The Author(s). Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.

Department of Computer Engineering, 
Tabriz Branch, Islamic Azad University, 
Tabriz, Iran

Correspondence
Masoud Kargar, Department of 
Computer Engineering, Tabriz Branch, 
Islamic Azad University, Tabriz, Iran.
Email: kargar@iaut.ac.ir

Abstract
The electrocardiogram (ECG) is a fundamental and widely used tool for diagnosing 
cardiovascular diseases. It involves recording cardiac electrical signals using 
electrodes, which illustrate the functioning of cardiac muscles during contraction 
and relaxation phases. ECG is instrumental in identifying abnormal cardiac 
activity, heart attacks, and various cardiac conditions. Arrhythmia detection, a 
critical aspect of ECG analysis, entails accurately classifying heartbeats. However, 
ECG signal analysis demands a high level of expertise, introducing the possibility 
of human errors in interpretation. Hence, there is a clear need for robust 
automated detection techniques. Recently, numerous methods have emerged for 
arrhythmia detection from ECG signals. In our research, we developed a novel 
one-dimensional deep neural network technique called linear deep convolutional 
neural network (LDCNN) to identify arrhythmias from ECG signals. We compare 
our suggested method with several state-of-the-art algorithms for arrhythmia 
detection. We evaluate our methodology using benchmark datasets, including the 
PTB Diagnostic ECG and MIT-BIH Arrhythmia databases. Our proposed method 
achieves high accuracy rates of 99.24% on the PTB Diagnostic ECG dataset and 
99.38% on the MIT-BIH Arrhythmia dataset.

K E Y W O R D S

arrhythmia detection, cardiovascular health, convolutional neural network, deep learning, 
electrocardiogram

https://doi.org/10.14814/phy2.16182
www.wileyonlinelibrary.com/journal/phy2
https://orcid.org/0009-0003-6770-0546
mailto:
https://orcid.org/0000-0002-6650-3538
http://creativecommons.org/licenses/by/4.0/
mailto:kargar@iaut.ac.ir


2 of 23  |      BAYANI and KARGAR

including ECGs (Berkaya et  al.,  2018), photoplethys-
mograms (PPGs) (González et  al.,  2023), arterial blood 
pressure (ABP) (Arvanaghi et  al.,  2017), cardiac output 
(CO) (Mehta & Arora, 2014), heart rate variability (HRV) 
(Brockmann & Hunt, 2023), and more. These signals vary 
in signal type, frequency domain, voltage, and measure-
ment method, commonly utilized in the analysis of heart 
diseases. ECG is a prevalent noninvasive method for mea-
suring heart rate, examining heart rhythm, and timely de-
tecting cardiac irregularities (Alberdi et al., 2016; Merone 
et  al.,  2017). ECG records the heart's electrical signals 
during blood circulation throughout the body, producing 
insights into cardiac activity (Burgess,  2022). This sig-
nal comprises distinct waveform shapes (P, QRS, and T), 
with each shape representing specific cardiac activities. 
Various heart diseases manifest differently in ECG wave-
form shapes. The ECG signal comprises several leads, as 
illustrated in Figure 1 (a) the three primary leads (I, II, and 
III) and (b) the nine unipolar leads (V1–V6, aVR, aVL, and 
aVF). However, ECG signals face challenges such as noise, 
power line interference, baseline drift, and more (Friesen 
et al., 1990). ECG signal analysis requires extensive exper-
tise due to its complexity and imperfections. Therefore, 
human error in ECG interpretation underscores the need 
for an efficient and accurate automated ECG detection 
system (Ribeiro et al., 2020).

Cardiac diseases encompass a range of cardiovascular 
conditions resulting from dysfunction of the heart and 
blood vessels. Among them, arrhythmia holds particular 
significance due to its impact on heart rhythm, rate, and 
regularity (Hu et al., 2022; Singh et al., 2019). Arrhythmias 
have various types classified based on their origin within 

the heart. Examples include ventricular arrhythmia, char-
acterized by premature ventricular contractions (PVC), 
ventricular tachycardia (VT), and ventricular fibrillation 
(VF) (Mazidi et al., 2020). Ventricular premature contrac-
tions involve premature heartbeats originating from the 
Purkinje fibers rather than the sinoatrial node (Hurley 
et al., 2023). Ventricular tachycardia is marked by irreg-
ular and rapid heartbeats, with monomorphic ventric-
ular tachycardia being the most common type (Zhang 
et  al.,  1999). Ventricular fibrillation (Wang et  al.,  2007) 
results in completely irregular and swift heartbeats in 
the ventricles, causing erratic contractions and trem-
bling of the heart (Tseng & Tseng,  2020). Additionally, 
Torsades de Pointes, a form of polymorphic ventricular 
tachycardia characterized by a twisting pattern on the 
electrocardiogram, poses a distinct risk, especially in the 
context of prolonged QT intervals (Leenhardt et al., 2012). 
Supraventricular tachycardia (SVT) entails a faster-than-
normal heart rate in the atria, with several variations 
(Grubb et  al.,  2020). Bradyarrhythmia manifests as a 
significantly slow heart rate, often associated with heart 
failure or sinus node dysfunction (Sidhu & Marine, 2020). 
We can categorize arrhythmias as either morphological, 
characterized by irregularities in the shape or structure of 
the heart's electrical signals, or rhythmic, caused by sets 
of irregular heartbeats. Accurate and timely diagnosis of 
cardiac arrhythmias is crucial, as these irregularities can 
manifest as disruptions in rhythm, alterations in conduc-
tion, or changes in repolarization patterns that may sug-
gest underlying disease or altered physiological states.

Deep learning is a formidable approach within the ma-
chine learning domain, leveraging deep neural networks 

F I G U R E  1   Types of ECG leads, including (a) the three primary leads and (b) the nine unipolar leads.
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to extract high-level features from data. In the context of 
signal processing, the application of deep learning, par-
ticularly for the analysis of ECG signals, has proven to be 
highly effective and practical (Murat et  al.,  2020). Deep 
neural networks can identify and utilize significant latent 
features within ECG signals to classify and diagnose car-
diac diseases (Liu et al., 2021).

In the field of arrhythmia detection, multiple meth-
ods for analyzing ECG signals exist, and we can catego-
rize them into two main groups: non-deep learning-based 
methods, which include traditional machine learning 
algorithms or signal processing techniques, and deep 
learning-based methods.

1.1  |  Non-deep learning-based methods

Asl et al. (2008). proposed a classification algorithm for 
cardiac arrhythmias using heart rate variability (HRV) 
signals. They employed the MIT-BIH Arrhythmia 
Database to diagnose six different types of cardiac 
arrhythmias. Their approach improved the classification 
metrics by selecting optimal features and achieved 
accuracies of 98.94%, 98.96%, 98.53%, 98.51%, 100%, and 
100% for six arrhythmia classes (2008). Hadj Slimane 
et al. (2010). introduced a novel algorithm for complex 
QRS detection using Empirical Mode Decomposition 
in ECG signals. This algorithm employed low-pass and 
high-pass filters, empirical mode decomposition of 
signals, and a nonlinear transformation. They evaluated 
their technique on the MIT–BIH dataset and achieved 
accuracy results of 95.58% accuracy, 99.84% sensitivity, 
and 99.92% specificity (2010). Kutlu et al. (2012) indicated 
an automated heartbeat detection method utilizing 
higher order statistics of wavelet packet decomposition 
coefficients. They classified using the K-Nearest 
Neighbors algorithm. The experiments were performed 
on the MIT-BIH dataset, resulting in an average 
sensitivity of 90%, average selectivity of 92%, and average 
specificity of 98% (2012). Raj et  al.  (2016) proposed a 
method for classifying cardiac arrhythmia beats using 
discrete orthogonal Stockwell transform (DOST) and 
Support Vector Machine (SVM) with Particle Swarm 
Optimization (PSO) tuning. The method was validated 
on the MIT-BIH dataset, achieving overall accuracies 
of 99.18% for 16 classes and 89.10% for five classes. 
PSO improved classification accuracy, with symmetry 
features contributing significantly to this improvement 
(2016). Sahoo et  al.  (2017). introduced an improved 
algorithm for detecting complex QRS features using 
the Multiresolution Wavelet Transform for classifying 
four types of ECG beats, including arrhythmias. Their 
approach's performance was evaluated for accuracy, 

sensitivity, and specificity on 48 ECG signals from the 
MIT-BIH dataset, reaching average accuracies of 96.67% 
and 98.39% in ANN (Artificial Neural Network) and 
SVM (Support Vector Machine), respectively (2017).

1.2  |  Deep learning-based methods

Abdalla et  al.  (2019) in their research, focused on the 
Classification of ECG arrhythmias using nonlinear 
and nonstationary decomposition methods. They used 
the full ensemble empirical mode decomposition with 
adaptive noise (CEEMDAN) approach to extract the 
intrinsic mode functions (IMFs). They used the four 
parameters of these functions to construct the feature 
vector. Consequently, they used the artificial neural 
network to apply the feature vector and classify five 
different types of arrhythmia heartbeats using the MIT-
BIH database. The results showed that the CEEMDAN 
and ANN approach performed very well, with 99.9% 
accuracy (2019). Zairi et  al.  (2020) introduced an 
FPGA-based arrhythmia detection system utilizing an 
artificial neural network for real-time cardiac disease 
detection. This method involved Wavelet Transform for 
feature extraction, a Multilayer Perceptron (MLP) for 
classification and arrhythmia detection, and decision-
making based on the ANN output. The evaluation, 
conducted using the MIT-BIH dataset, resulted in an 
average sensitivity of 98.33% and an accuracy of 98.2% 
(2020). Gupta et al.  (2020) utilized three techniques: a 
novel fractional wavelet transform (FrWT), Yule-Walker 
Autoregressive Modeling, and Principal Component 
Analysis (PCA) for denoising, feature extraction, 
and dimensionality reduction. They evaluated their 
approach on the MIT-BIH dataset, achieving an accuracy 
of 99.94% and 99.89% for the Real-time ECG and MIT-
BIH databases, respectively (2020). Table  1 presents 
the advantages and disadvantages of each of the above 
approaches.

While traditional machine learning techniques offer 
advantages, they often encounter challenges and are 
prone to errors in feature extraction, classification, and 
interpretation of ECG signals for heart disease detection. 
These conventional methods come with challenges such 
as complexity, the vast size of datasets, and ambiguity in 
detection, requiring parameter optimization and tuning. 
On the contrary, deep convolutional neural networks, 
among other deep learning approaches, leverage multi-
layer neural networks and automation to automatically 
extract features. They address some of the issues of tradi-
tional methods with lower complexity.

In our research, we develop a novel technique based 
on a one-dimensional deep convolutional neural network. 
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This technique aims to extract vital information from car-
diac signals across various frequencies and represent them 
as vectors instead of images, reducing errors. Moreover, 
we have significantly improved this algorithm's complex-
ity and execution time. For this reason, we have intro-
duced it as a one-dimensional linear deep convolutional 
neural network (LDCNN).

•	 Research Question 1: How effectively does our pro-
posed linear deep convolutional neural network 
(LDCNN) model diagnose cardiac diseases across di-
verse datasets?

•	 Research Question 2: What is the comparative perfor-
mance of our proposed LDCNN model in diagnosing 
cardiac diseases, and how does it specifically outper-
form traditional machine learning methods across dif-
ferent datasets?

•	 Research Question 3: How does the diagnostic accuracy 
of the LDCNN model vary across different arrhythmia 
classes, and what insights can be gained from the pre-
cision, recall, and F1-score metrics for each class across 
diverse datasets?

•	 Research Question 4: What trends are observed in the 
training and testing accuracy, as well as loss, during the 
training epochs of the LDCNN model, and how do these 
trends contribute to the model's overall effectiveness in 
diagnosing cardiac diseases across various datasets?

2   |   METHODS

2.1  |  Motivation

With the continuous evolution of medical diagnostics, 
the precise detection and classification of arrhythmias 
have gained paramount significance. Given the increasing 

prevalence of cardiovascular diseases, the necessity for ac-
curate and efficient arrhythmia analysis techniques has 
become more critical than ever before. Among these tech-
niques, the utilization of convolutional neural networks 
has demonstrated better outcomes. Traditional methods 
have shown limitations in handling the complex charac-
teristics of ECG signals, often needing higher performance 
accuracy. Hence, our proposed deep linear convolutional 
neural network provides a comprehensive solution that 
overcomes the existing challenges. This paper addresses 
the unexplored potential of this technique and paves the 
way for innovative advances in enhancing heart health 
diagnostics.

2.2  |  Datasets

We review the datasets utilized for simulating our proposed 
method, leveraging two widely employed benchmark 
datasets in contemporary research: the PTB Diagnostic 
ECG (Bousseljot et  al.,  1995; Kachuee et  al.,  2018) and 
MIT-BIH Arrhythmia (Moody & Mark, 2001) datasets.

2.2.1  |  PTB Diagnostic ECG dataset

PTB Diagnostic ECG includes a set of samples that are 
used to diagnose cardiovascular abnormalities. This data-
set contains 549 records from 290 people. Each record 
contains 15 signals measured simultaneously, and these 
signals consist of 12 leads. This dataset includes two 
classes, normal and non-normal. Table 2 contains the dif-
ferent types of heartbeats available in the PTB Diagnostic 
ECG dataset. Table 3 contains the heart rate types used in 
this article for this dataset and contains information about 
each one.

Beat description Heartbeats

Normal beat, healthy controls Normal beat

Cardiomyopathy/heart failure, myocarditis, myocardial infarction, 
miscellaneous, bundle branch block, dysrhythmia, valvular heart 
disease, and myocardial hypertrophy

Abnormal beat

T A B L E  2   Various primary categories 
of heartbeats are contained in the PTB 
diagnostic ECG dataset.

T A B L E  3   Types of heartbeats we used in the PTB diagnostic ECG dataset and overview of its beat annotations.

Heartbeats Classes Beat description Frequency (%) Count

Normal Normal Normal beat, healthy controls 27.81 4046

Abnormal Abnormal Cardiomyopathy/heart failure, myocarditis, and myocardial 
infarction
Miscellaneous, bundle branch block, dysrhythmia, valvular 
heart disease, and myocardial hypertrophy

72.19 10,506
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2.2.2  |  MIT-BIH Arrhythmia dataset

This is a standard dataset for the evaluation of various ar-
rhythmia diseases. The dataset includes 48 dual-channel 
ECG recordings, each lasting 30 min, collected from 47 
patients over 4 years. It comprises five categories: normal 
beat, ventricular premature contraction, supraventricular 
premature beat, combined ventricular and normal beat, 
and unclassifiable beat. For this study, we selected a sub-
set of these arrhythmias based on their clinical relevance 
and prevalence in real-world scenarios. The selection 
process aimed to focus on representative arrhythmias to 
ensure a robust evaluation of our proposed methodology. 
Refer to Table 4 for the detailed breakdown of heartbeats 
in the MIT-BIH Arrhythmia dataset. Table 5 provides an 
overview of the subset of heartbeats used in this article, 
along with their respective annotations, frequencies, and 
class labels.

2.3  |  Proposed method

ECG signals are acquired and recorded in digital for-
mat, utilizing Analog-to-digital converters (ADCs) dur-
ing the data acquisition process, subsequently forming 
the basis for the creation of datasets like MIT-BIH and 
PTB. Advanced digital signal processing techniques are 
then applied for preprocessing and data conditioning, 
enabling the extraction of high-level features by a deep 
convolutional neural network (DCNN). In Figure  2, we 
visually represent an example of analog signals from the 
MIT-BIH Arrhythmia dataset using the Matplotlib li-
brary to illustrate how we use the data in our proposed 
model. The horizontal axis depicts the index of each 
sample, and the vertical axis represents the correspond-
ing voltage values. We select a specific range of observa-
tions from index 30 to 50, transforming them into a vector 
named “a.” Additionally, two random samples from this 
range are chosen, and their values are mentioned. This 

selected range is transformed into a vector called “a” and 
displayed. This reshaping and conversion into vectors, as 
detailed in phase (v) of our methodology, are crucial steps 
in preparing the data for subsequent processing. These 
vectors serve as inputs to the model.

Our proposed methodology comprises seven distinct 
phases: (i) data preprocessing and preparation, (ii) class 
balancing, (iii) data separation, (iv) data encoding, (v) 
data reshaping and vectorization, (vi) high-level feature 
extraction utilizing LDCNN and classification, and (vii) 
model testing and evaluation. Figure 3 illustrates the gen-
eral framework for ECG signal arrhythmia detection. In 
the following, we have discussed each of these phases.

2.3.1  |  Data preprocessing and preparation

After converting the signals into digital form, we propose 
this process, which consists of five steps, to increase the 
accuracy and reliability of the classification process.

Denoising ECG signals
ECG signals may contain errors due to noise, including 
interference from power lines. Such interference can re-
duce the accuracy of the analysis and lead to errors in 
diagnosing arrhythmia. Denoising is an approach to deal 
with these problems and increase the accuracy of ECG sig-
nal analysis. The Wavelet Thresholding method is a noise 
removal method that effectively separates the unwanted 
signal components from the desired signal and protects 
the key characteristics of the signal. This method is used 
if there is significant noise in the data. For example, this 
technique has been applied to the MIT-BIH Arrhythmia 
dataset. Figure 4 shows instances of ECG signals (a) be-
fore and (b) after applying the denoising method.

ECG signal normalization
Normalizing the data of ECG signals can significantly 
improve the accuracy of ECG signal analysis. Through 

Beat description Heartbeats

Normal beat, atrial escape beat, nodal (junctional) 
escape beat, right bundle branch block beat, and left 
bundle branch block beat

Normal beat

Ventricular escape beat and premature ventricular 
contraction

Premature ventricular contraction

Supraventricular premature beat, atrial premature 
beat, nodal (junctional) premature beat, and 
aberrated atrial premature beat

Supraventricular premature beat

Fusion of normal and ventricular beat Fusion beat

Fusion of normal and paced beat, and unclassifiable 
beat

Unclassifiable beat

T A B L E  4   Various primary categories 
of heartbeats are contained in the MIT-
BIH Arrhythmia dataset.
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normalization, we can transform the signal data onto a 
common scale and mitigate the effects of scale variations 
between different units. If the dataset features are not in 
a common scale, we have employed the z-score technique 
for signal normalization. First, we calculate the data's 

mean and then compute the standard deviation. Then, 
using the z-score method, we transform each point of 
the signal in a way that the mean becomes zero and the 
standard deviation becomes one. This process aligns the 
data within a specific range, making them comparable. 

T A B L E  5   Types of heartbeats we used in the MIT-BIH Arrhythmia dataset and overview of its beat annotations.

Heartbeats Classes Beat description Frequency (%) Count

Normal N Normal beat 75.0 75,011

L Left bundle branch block beat 8.07 8071

R Right bundle branch block beat 7.25 7255

Supraventricular A Atrial premature beat 7.13 7129

Ventricular V Premature ventricular contraction 2.55 2546

F I G U R E  2   Visualization of an example signal in analog and digital forms, along with the vectorization process.
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Figure  5 (a) illustrates an example of ECG signals after 
applying the normalization method to the MIT-BIH 
Arrhythmia dataset.

Reading annotations files
Reading annotations refers to the process of extract-
ing information related to each heartbeat in a signal. 
Annotations typically provide additional information 
about events or specific features in the signal, such as the 
positions of R-peaks (the highest point of the QRS complex 
in an ECG signal) and the corresponding arrhythmia class 
(such as normal beat, premature ventricular contraction). 
They contain information about the timing or location of 
important events in the signal and are often used for labe-
ling signal data for further analysis or classification tasks. 
Due to the annotation files in the MIT-BIH Arrhythmia 
dataset, we utilize this process. By reading annotation 
files, we can extract information related to each sample 
and utilize it in subsequent phases. This information is 
crucial for tasks like heartbeat classification and analysis, 
enabling us to understand the characteristics of each beat 
and make informed decisions based on the extracted fea-
tures and annotations.

ECG signal segmentation
After completing the previous steps, the focus shifts to 
the vital components of the signal waves. In this context, 
segmentation is performed to extract only the necessary 
segments for model training. It is crucial to emphasize 

that a comprehensive view of the entire conduction 
cycle, including the P wave in PQRST, is essential for 
accurate delineation of specific heart blocks like SA or 
AV block, and for distinguishing between variations 
within each. Additionally, without consideration of 
the complete conduction cycle, differentiation between 
premature atrial contractions (PACs) and premature 
ventricular contractions (PVCs), as well as discerning 
non-conducted PACs from AV block, can be challeng-
ing. In this phase, we utilize a technique called fixed-
size window segmentation and specifically extract the 
R-peak from the ECG signals. The R-peak, representing 
the peak of the QRS complex in the ECG signal, offers 
crucial information about heart rate and cardiac abnor-
malities. It is the distance from the beginning of the QRS 
complex to the maximum point of the R wave. The fixed-
size window segmentation involves extracting sections 
(windows) with a predefined and fixed length from the 
ECG signal, enhancing clarity and focus. Figure 5 (b) il-
lustrates the segmentation of the ECG signal.

Class labeling
In this step, labels are assigned to the segmented ECG sig-
nal data based on the arrhythmia classes associated with 
each heartbeat. This process is necessary to train a machine 
learning model to accurately classify different types of ar-
rhythmias. To obtain arrhythmia class information, we 
use annotations associated with ECG signals. Annotations 
provide details about the type of each heartbeat event. 

F I G U R E  3   The general schema of our proposed method for arrhythmia detection from ECG signals.

Input dataset
(Digitized Data)

Step 1:  Data preprocessing and data preparation

a. Denoise b. Z-Score normalization c. Read annotations

d. Data segmentation e. Extract labels and class labeling

Step 2:  Class balancing

Resample for class balancing

Step 3:  Splitting the data

 Split the resampled data into training and testing sets 
(The testing set size is set to 20% of the total data)

Step 4:  Encoding data

Convert the target class labels in the training
and testing sets to one-hot encoded vectors

Step 5:  Reshaping and vectorization the data

Reshape the input data (train_x and test_x) to have
a third dimension of size 1 and vectorization

Step 6:  Defining CNN model

Feature extraction and classification
using CNN then training and testing

Step 7:  Performance evaluation

Evaluation the model's accuracy and
different performance metrics

Is the data quality
 not good and has
significant noise?

Read data

Yes

Are the features
 in the dataset not on

 a similar scale?No

Yes

Is the dataset has 
separate annotation
files or not labeled

 in csv files?
No

Yes

Are classes balanced?
Yes

No

No

Does the dataset have 
categorical variables with multiple

categories (more than two)?

Yes

No
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For example, they can represent classes such as A (atrial 
premature), R (right bundle branch block), L (left bundle 
branch block), V (premature ventricular contraction), N 
(normal), or abnormal. Tables 3 and 5 contain informa-
tion about the classes within each dataset.

2.3.2  |  Class balancing

Normally, the uneven distribution in the number 
of samples of different classes of a dataset leads to 

problems in the field of ECG signal analysis. To solve 
these challenges and improve the efficiency of machine 
learning models, we have used the resampling tech-
nique. This technique involves generating additional 
samples from the minority class to achieve a more 
balanced distribution of samples among the different 
classes. Figure  6 illustrates the number of samples in 
the MIT-BIH Arrhythmia dataset, with (a) showing the 
class distribution before and (b) showing the distribu-
tion after resampling. Additional details are provided 
in Table 6.

F I G U R E  4   ECG signal (a) before and (b) after denoising.

F I G U R E  5   (a) ECG signal after normalization and (b) segmented ECG signal or beat from this wave.
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2.3.3  |  Data splitting

The data segmentation strategy is a significant step in pre-
paring datasets for training and testing machine learning 
models. After resampling, we separated the data into two 
sets for training and testing, where the testing set contains 
20% of the total data. This is done to evaluate the perfor-
mance of the model and ensure that the model works cor-
rectly on new data.

2.3.4  |  Data encoding

Encoding techniques in the field of machine learning 
refer to the process of converting categorical data into 
a numerical format that can be easily processed by ma-
chine learning algorithms. Categorical data includes la-
bels or categories that do not have a natural numeric 
representation. Machine learning algorithms usually 
require numerical inputs, which is why encoding is es-
sential. We have used the One-Hot Encoding method 
in this section. In this method, we convert categorical 
data into binary vectors. If there are two categories for 
a categorical variable, it is often coded as the numbers 
zero and one. However, if suppose the categorical vari-
able has more than two categories in a dataset, in that 
case, we usually treat each category as a binary feature 
and then convert these binary features to numeric val-
ues. According to the MIT-BIH Arrhythmia dataset, it 
is assumed that there is a variable called arrhythmia in 
this dataset, whose values are “Normal beat,” “Right 
bundle branch block beat,” “Left bundle branch block 
beat,” “Atrial premature beat,” and “Premature ventric-
ular contraction.” As shown in Table 7, all the values of 
this variable are converted into five separate columns 
with five samples. Now, for the first sample, which is 
“Normal beat,” the number 1 is entered in the Normal 

beat column and zero in the rest of the columns. For 
the second sample, which is “Right bundle branch 
block beat,” in the columns “Normal beat,” “Left bun-
dle branch block beat,” “Atrial premature beat,” and 
“Premature ventricular contraction,” the value is zero, 
and, in the column, “Right bundle branch block beat,” 
“The value one is entered. It is done in the same way for 
other samples.”

2.3.5  |  Data reshaping and vectorization

The data are represented as a tensor with the shape (rows, 
columns, layers, and number of samples). We have trans-
formed the input data to have a third dimension of size 
one. In our research and code implementation, the pro-
cess of data reshaping plays an essential role in prepar-
ing our datasets for neural network training. This process 
involves transforming the input data arrays to conform 
to the specific structure required by the neural network 
architecture and is very important when working with 
CNNs, especially when handling one-dimensional signals 
such as ECG data. This step is integral to the preproc-
essing step and serves as an effective strategy to handle 
class-specific irregularities in diverse datasets, thereby in-
creasing the flexibility and accuracy of ECG signal anal-
ysis. After doing this, we have applied the vectorization 
process. A process in which data, often represented as an 
array or matrix, is converted to a one-dimensional vector. 
This transformation facilitates ease of processing for algo-
rithms and operations designed to work with linear data.

2.3.6  |  Definition of LDCNN

Our proposed technique, known as linear deep convo-
lutional neural network (LDCNN), consists of a linear 

F I G U R E  6   Resampling for balancing the classes of the MIT-BIH Arrhythmia dataset: (a) class distribution before and (b) after 
resampling.
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one-dimensional deep convolutional neural network. 
In this technique, one-dimensional linear convolution 
is used deeply, which means using several layers. Using 
this method, we can extract high-level features from the 
ECG signal and recognize patterns. The use of convolu-
tion in this technique helps us to extract important fea-
tures due to the unknown location of arrhythmia and the 
absence of a specific time to observe cardiac arrhythmia. 
The data are one-dimensional and in the form of an input 
signal. But when these signals are sampled, they become 
a vector form of a one-dimensional tensor. Therefore, by 
using linear convolution, we can extract patterns from 
these vectors and recognize the moment of the event 
based on the previous steps. For this reason, this tech-
nique is known as LDCNN, and its use increases the ac-
curacy. The general structure of our proposed model is 
shown in Figure 7.

In the LDCNN architecture for PTB Diagnostic ECG 
and MIT-BIH Arrhythmia dataset, eight and five con-
volution layers are considered, respectively, and each of 
these layers is associated with a pooling layer. After the 
flattening layer, a dropout layer is subsequently applied to 
generate the final feature vector. Tables 8 and 9 contain 
information about each architecture and hyperparameters 
of each.

2.3.7  |  Performance evaluation

After training the model, it is employed to test on a sepa-
rate test dataset, and a range of evaluation criteria are as-
sessed accordingly. Various critical evaluation criteria are 

used to measure the efficiency of the proposed method. 
Some of these criteria are as follows:

Accuracy
Accuracy, as defined by Equation  1, serves as a met-
ric that measures the overall correctness of a model by 
representing the proportion of correctly identified sam-
ples in the entire dataset. Equations use True Positive 
(TP), False Positive (FP), True Negative (TN), and 
False Negative (FN) to quantify correct and mistaken 
identifications.

Accuracy is a commonly used metric to assess the over-
all performance of a classification model.

Precision
Precision, outlined in Equation 2, functions as a gauge for 
the reliability of positive predictions, indicating the pro-
portion of true positives among all samples classified as 
positive.

Recall
Equation 3 defines Recall, which assesses the model's abil-
ity to detect positive instances by representing the propor-
tion of true positives among all actual positive samples.

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

Classes Before resampling After resampling

Premature ventricular contraction 2546 5000

Atrial premature beat 7129 5000

Right bundle branch block beat 7255 5000

Left bundle branch block beat 8071 5000

Normal beat 75,011 5000

T A B L E  6   The count of samples 
from distinct classes in the MIT-BIH 
Arrhythmia dataset both before and after 
the resampling process.

T A B L E  7   Encoding classes for the MIT-BIH Arrhythmia dataset.

Arrhythmia
Normal 
beat

Right bundle 
branch block beat

Left bundle 
branch block beat

Atrial 
premature beat

Premature ventricular 
contraction

Normal beat 1 0 0 0 0

Right bundle branch 
block beat

0 1 0 0 0

Left bundle branch block 
beat

0 0 1 0 0

Atrial premature beat 0 0 0 1 0

Premature ventricular 
contraction

0 0 0 0 1
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F1 score
F1 Score, calculated through Equation 4, is a composite 
measure that balances precision and recall, providing 
a single value for the evaluation of the model's overall 
performance.

2.4  |  Additional details

In addition to the MIT-BIH Arrhythmia examples, within 
the context of the PTB Diagnostic ECG dataset, our im-
plemented CNN model, referred to as the linear deep 
convolutional neural network (LDCNN), serves as a 
valuable tool for associating nuanced waveform features 
with specific cardiac diseases. The model is designed to 
differentiate between disease types based on subtle pat-
terns identified in ECG signals. The utilization of the PTB 
dataset allows our LDCNN to capture and process wave-
form nuances associated with various cardiac conditions, 
contributing to the accurate classification of different 
disease types. This approach enables the identification 
of novel markers of disease within ECG waveforms, pro-
viding insights into unique patterns that may not require 
processing data through the LDCNN itself. The LDCNN 
thus proves to be a valuable asset in detecting and under-
standing nuanced markers of cardiac diseases, enhancing 

its applicability and potential for novel disease marker 
discovery. However, it is important to note that our tech-
nique is invented to be adaptable and applicable to vari-
ous datasets. Its strength lies in its ability to be employed 
across different datasets, offering a versatile solution for 
cardiac disease diagnosis.

2.5  |  Proposed algorithm

Algorithm 1 presents an overview of the different phases 
involved in our proposed method. Input to our algorithm 
includes the ECG signal dataset, labels corresponding 
to those signals, and the count of arrhythmia classes. 
Conversely, the algorithm yields a set of assessed perfor-
mance metrics. The process begins by reading a dataset (D), 
addressing noise if present through Wavelet Thresholding, 
and standardizing features using z-score normalization. If 
there are annotation files, beat positions and arrhythmia 
class information are extracted. The data are then seg-
mented using fixed-size window segmentation and option-
ally resampled. Then, the data are divided into training 
and test sets, and if there are more than two arrhythmia 
classes, one-hot encoding is applied. The data are then 
transformed and fed into a convolutional neural network 
feature extractor, followed by training a CNN. The trained 
CNN is used to predict arrhythmia labels for the test set, 
and performance metrics are calculated and returned.

(4)F1 Score =
2 × Precision × Recall

Precision + Recall
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3   |   RESULTS

3.1  |  Evaluation of our proposed deep 
learning

We implemented the proposed model in Python on Google 
Colab as well as on a CPU with 8 GB RAM, utilizing an 
AMD Ryzen 55,500U processor with Radeon Graphics 
(running at 2.10 GHz). Figure 8 (a) illustrates the accuracy 
trends of model training and testing over 30 epochs on the 
PTB dataset. The blue curve represents changes in training 
set accuracy, while the orange curve represents changes in 
test set accuracy. Furthermore, Figure 8 (b) displays the 
loss trends of model training and testing across 30 epochs 
for the PTB dataset. The blue curve depicts changes in 
training set loss, while the orange curve portrays changes 
in test set loss. According to these results, it is possible to 
evaluate how much the model has improved during train-
ing and how well it maintains its performance in the test 
set. The accuracy of our proposed method achieves a high 
accuracy rate of 99.24% on this dataset.

The results of model training and testing accuracy 
during 80 epochs for the MIT-BIH Arrhythmia dataset 
are shown in Figure 8 (c). As shown in the figure, the 
blue and orange curves represent the accuracy of the 
training set and the test set, respectively. Also, Figure 8 
(d) shows the loss of model training and testing during 
80 epochs for this dataset. The blue and orange curves 
represent the loss in the training set and the test set, 
respectively. As is evident, overfitting does not occur. 
The accuracy of our proposed method achieves a high 
accuracy rate of 99.38% on this dataset. In Table 10, our 
proposed model demonstrates robust classification per-
formance on both the MIT-BIH Arrhythmia and PTB 
Diagnostic ECG datasets, achieving high accuracy rates 
and class-specific metrics. Table 11 summarizes the ob-
tained results, showcasing impressive F1 scores, recall, 
precision, and overall accuracy for the proposed model 

across different evaluation metrics and epochs on the 
two datasets.

3.2  |  Assessment of various machine 
learning methods

In addition to our proposed deep learning model, we im-
plemented and evaluated various machine learning tech-
niques across two datasets. The results obtained for both 
datasets are shown in Tables 12 and 13. It can be seen in 
Table 12 that our proposed method performs better than 
the machine learning methods in the MIT-BIH arrhyth-
mia dataset based on F1 score, recall, precision, and ac-
curacy. In Table 13 for the PTB Diagnostic ECG dataset, 
the competition between classical classification and clus-
tering methods can be seen. These results show that our 
proposed method performs better than different basic 
machine learning algorithms according to the four evalu-
ation indicators.

3.3  |  Comparison with different 
contemporary techniques

We have conducted a comparison between the proposed 
LDCNN method and several modern techniques in the 
context of arrhythmia detection. For the evaluation, we 
utilized the two datasets and considered all the evalua-
tion metrics outlined in the Methods Section. According 
to Table 14, our proposed method has shown the best per-
formance for all criteria compared to contemporary meth-
ods in the MIT-BIH Arrhythmia dataset. Furthermore, 
Fradi et  al. achieved the second-highest performance, 
whereas Atal et al. exhibited the least accuracy. As indi-
cated by the results presented in Table 15, our proposed 
method outperforms other contemporary techniques 
based on Accuracy, Recall, and F1 score, and ranks as the 

F I G U R E  7   The architecture of our proposed LDCNN model.
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second-best based on precision for the PTB Diagnostic 
ECG dataset. Additionally, Pham et  al. secured the 
second-highest ranking among performers, with Sharma 

et al. exhibiting the lowest level of accuracy. These analy-
ses show that our proposed method has been validated for 
both the PTB and MIT-BIH datasets as an efficient and 

T A B L E  8   The diverse hyperparameters used in configuring our LDCNN model for the MIT-BIH Arrhythmia dataset.

Layer name Filters
Kernel 
size

Activation 
function

Input 
shape

Output 
shape

Dropout 
rate

Pool size 
(Avg) Padding Stride

Input layer - - - 1 × 360 - - - - -

Conv1D layer 1 16 13 ReLU 1 × 360 16 × 360 - - Same 1

AvgPool1D - - - 16 × 360 179 × 16 - 3 - 2

Conv1D layer 2 32 15 ReLU 179 × 16 32 × 179 - - Same 1

AvgPool1D - - - 32 × 179 32 × 89 - 3 - 2

Conv1D layer 3 64 17 ReLU 32 × 89 64 × 89 - - Same 1

AvgPool1D - - - 64 × 89 64 × 44 - 3 - 2

Conv1D layer 4 128 19 ReLU 64 × 44 128 × 44 - - Same 1

AvgPool1D - - - 128 × 44 128 × 21 - 3 - 2

Conv1D layer 5 256 21 ReLU 128 × 21 256 × 21 - - Same 1

AvgPool1D - - - 256 × 21 256 × 10 - 3 - 2

Flatten layer - - - 256 × 10 2560 - - - -

Dropout layer - - - 2560 2560 0.5 - - -

Dense layer 1 35 - - 2560 35 - - - -

Dense layer 2 5 - - 35 5 - - - -

Output layer - - Softmax 5 5 - - - -

T A B L E  9   The diverse hyperparameters used in configuring our LDCNN model for the PTB diagnostic ECG dataset.

Layer name Filters
Kernel 
size

Activation 
function

Input 
shape

Output 
shape

Dropout 
rate

Pool size 
(max) Padding Stride

Input layer - - - 1 × 187 - - - - -

Conv1D layer 1 16 5 ReLU 1 × 187 16 × 183 - - Valid 1

Conv1D layer 2 16 5 ReLU 16 × 183 16× 179 - - Valid 1

MaxPool1D - - - 16× 179 16 × 89 - 2 - 1

Dropout 1 - - - 16 × 89 16 × 89 0.1 - - -

Conv1D layer 3 32 3 ReLU 16 × 89 32× 87 - - Valid 1

Conv1D layer 4 32 3 ReLU 32× 87 32 × 85 - - Valid 1

MaxPool1D - - - 32 × 85 32 × 42 - 2 - 1

Dropout 2 - - - 32 × 42 32 × 42 0.1 - - -

Conv1D layer 5 32 3 ReLU 32 × 42 32 × 40 - - Valid 1

Conv1D layer 6 32 3 ReLU 32 × 40 32 × 38 - - Valid 1

MaxPool1D - - - 32 × 38 32 × 19 - 2 - 1

Dropout 3 - - - 32 × 19 32 × 19 0.1 - - -

Conv1D layer 7 256 3 ReLU 32 × 19 256 × 17 - - Valid 1

Conv1D layer 8 256 3 ReLU 256 × 17 256 × 15 - - Valid 1

GlobalMaxPool1D - - - 256 × 15 256 - - - 1

Dropout 4 - - - 256 256 0.2 - - -

Dense layer 1 64 - ReLU 256 64 - - - -

Dense layer 2 64 - ReLU 64 64 - - - -

Output layer 1 - Sigmoid 64 1 - - - -
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F I G U R E  8   (a) Improvement in model training and testing accuracy on the PTB diagnostic ECG dataset, (b) loss trend during epochs on 
the PTB diagnostic ECG dataset, (c) improvement in model training and testing accuracy on the MIT-BIH Arrhythmia dataset, and (d) loss 
trend across epochs on the MIT-BIH Arrhythmia dataset.
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accurate method for detecting arrhythmias in terms of 
various criteria.

4   |   DISCUSSION

4.1  |  Related works on cardiac 
arrhythmia classification from ECG signals 
using CNNs

In this research, we perform a comparative analysis in-
volving five previously proposed methods from recent 
advances. Our goal was to evaluate and benchmark our 
technique against these established methods. A summary 
of the advantages and disadvantages of each approach is 
presented in Table 16.

1.	 Cardiac arrhythmia classification from ECG signals 
using a 16-layer deep convolutional network (Yıldırım 
et  al.,  2018):
a.	This approach employs a 16-layer deep convolutional 

network with a 1D-CNN architecture. This network 
can perform classification automatically using an 
end-to-end structure. The preprocessing of the sig-
nals involved three steps: one without normaliza-
tion, another with signal rescaling within the (Singh 
et al., 2019) interval, and the third involving signal 
standardization. Finally, rescaling has achieved the 
best result. This network has three classification 
classes, which are 13, 15, and 17. The overall accu-
racy for each reaches 95.2%, 92.51%, and 91.33%, re-
spectively. The highest sensitivity and specificity of 
93.52% and 99.61% were achieved for 13 classes in 
2018, respectively.

2.	 Multiple classification of heart disease using ECG 
signal experimental mode analysis features and one-
dimensional convolutional neural network (Hasan & 
Bhattacharjee, 2019):
a.	In this method, a one-dimensional CNN model 

mechanism is presented for the classification of 
arrhythmia types. The network processes the mod-
ified ECG signal as input in this context. Empirical 
mode decomposition methods (IMFs) and higher 
order intrinsic mode functions (IMFS) have been 
used to form the modified ECG signal. In this 
method, a pattern-matching algorithm is applied 
using Pearson's correlation coefficient to check the 
ability to remove noise in the modified ECG signal. 
Then, the one-dimensional CNN performs the clas-
sification operation by learning the features of the 
modified ECG signal. At the end of the network, 
the Softmax regressor activation function is used. 
This method has been evaluated on two MIT-BIH T

A
B

L
E

 1
0

 
C

om
pa

ri
so

n 
of

 c
la

ss
ifi

ca
tio

n 
pe

rf
or

m
an

ce
 m

et
ri

cs
 fo

r e
ac

h 
cl

as
s a

nd
 d

at
as

et
 c

ha
ra

ct
er

is
tic

s i
n 

M
IT

-B
IH

 A
rr

hy
th

m
ia

 a
nd

 P
TB

 D
ia

gn
os

tic
 E

C
G

 d
at

as
et

s.

D
at

as
et

s
T

ot
al

 n
um

be
r 

of
 

sa
m

pl
es

T
ra

in
in

g 
sa

m
pl

es
T

es
ti

ng
 s

am
pl

es
C

la
ss

es
A

cc
ur

ac
y 

(%
)

Pr
ec

is
io

n 
(%

)
R

ec
al

l (
%

)
F1

-s
co

re
 (%

)

M
IT

-B
IH

 
A

rr
hy

th
m

ia
25

,0
00

20
,0

00
50

00
N

98
.9

1
99

.5
9

98
.9

1
99

.5
0

L
99

.9
0

99
.8

0
99

.9
0

99
.8

0

R
10

0.
0

99
.6

9
10

0.
0

99
.7

3

A
98

.6
1

99
.5

0
98

.6
1

99
.6

1

V
99

.6
1

99
.3

4
99

.4
1

99
.2

2

PT
B 

D
ia

gn
os

tic
 E

C
G

14
,5

52
11

,6
41

29
11

N
or

m
al

98
.5

2
99

.0
0

98
.0

2
98

.5
1

A
bn

or
m

al
99

.6
2

99
.2

4
99

.6
2

99
.4

3



18 of 23  |      BAYANI and KARGAR

T A B L E  1 1   The obtained results of our proposed model for four evaluation metrics for two used datasets.

Method Dataset Epochs Accuracy (%) Precision (%) Recall (%) F1 score (%)

Proposed method PTB 30 99.24 99.09 99.02 99.05

MIT-BIT 80 99.38 99.60 99.40 99.60

Methods Accuracy (%) Precision (%) Recall (%) F1 score (%)

Gaussian Naive 
Bayes

67.0 67.4 67.0 66.8

Logistic regression 67.42 67.4 68.0 67.4

Decision trees 94.4 94.4 94.2 94.4

Linear support 
vector machine

94.4 94.4 94.2 94.4

Support vector 
machine

96.18 96.4 96.2 96.0

K nearest neighbors 97.22 97.4 97.2 97.2

Random forest 98.24 98.4 98.2 98.2

Proposed LDCNN 99.38 99.6 99.4 99.6

The bolding indicates that these results are particularly noteworthy and represent key findings of our 
study.

T A B L E  1 2   Assessing the efficacy of 
our novel model against various machine 
learning methods using the MIT-BIH 
Arrhythmia dataset.

Methods Accuracy (%) Precision (%) Recall (%) F1 score (%)

Gaussian Naive 
Bayes

61.1 65.0 68.0 60.0

Logistic regression 82.2 79.0 75.0 76.0

Linear support 
vector machine

82.2 79.0 75.0 77.0

Decision trees 92.1 90.0 90.0 90.5

K nearest neighbors 92.2 90.0 91.0 90.5

Support vector 
machine

94.48 92.0 95.0 93.0

Random forest 96.9 97.0 95.5 96.0

Proposed LDCNN 99.24 99.09 99.02 99.05

The bolding indicates that these results are particularly noteworthy and represent key findings of our 
study.

T A B L E  1 3   Assessing the efficacy 
of our novel model against various 
machine learning methods using the PTB 
diagnostic ECG dataset.

Techniques Accuracy (%) Precision (%) Recall (%) F1 score (%)

Atal & 
Singh, (2020)

93.19 - 93.98 -

Sharma 
et al. (2021)

95.63 99.03 92.73 95.77

Farag, (2023) 98.18 92.44 91.90 92.17

Kumar 
et al. (2023)

98.66 98.92 93.88 96.34

Fradi et al. (2021) 99.34 - - 99.54

Proposed 
LDCNN

99.38 99.60 99.40 99.60

The bolding indicates that these results are particularly noteworthy and represent key findings of our 
study.

T A B L E  1 4   Comparative analysis 
of our innovative LDCNN technique for 
arrhythmia detection with a range of 
contemporary techniques using the MIT-
BIH Arrhythmia dataset, with metrics for 
all listed techniques taken directly from 
their respective publications.
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ECG and arrhythmia diagnostic PTB datasets with 
several classes and different data registers. The re-
sults show that this method has achieved a classifi-
cation accuracy of 97.70% and 98.24%, respectively, 
in 2019.

3.	 Automatic classification of arrhythmia using deep 
convolution neural network based on optimization 
(BaROA-deep CNN) (Atal & Singh, 2020):
a.	In this structure, a deep convolutional neural net-

work is used for accurate arrhythmia classification. 
This network is adjusted using the BaROA optimi-
zation algorithm. The BaROA algorithm uses the 
integration of Bat in ROA and has two modes of 
encoding the solution and the fitness function. 
This algorithm sets the optimal weights for the 
deep convolutional neural network classifier, and 
the fitness function is used to set the weights. This 
method has two phases: feature extraction and ar-
rhythmia classification. In the extraction step, the 
ECG signals are fed to the feature extraction mod-
ule. In this module, features are extracted using 
wave features such as PR interval, PP interval, R 
peak, QT interval, and RR interval. The features are 
then passed to the arrhythmia classification mod-
ule to classify patients as having arrhythmia or nor-
mal. The MIT-BIH database has been used to train 
this network. This approach had the parameters of 
accuracy, sensitivity, and specificity of 93.19%, 95%, 
and 93.98%, respectively, in 2020.

4.	 Automatic diagnosis of heart disease with optimized 
convolutional neural networks (Fradi et al., 2021):
a.	In this method, the noises of the ECG signals are re-

moved first by preprocessing through the FIR low-
pass filter. Afterward, they enhance their dataset by 
extracting R–R peak information from the ECG sig-
nals. In the next step, a fully connected layer based 
on convolutional neural networks is trained with dif-
ferent optimizers. In the training process, deep learn-
ing methods and various network optimizers such 
as Adam (Fei et al., 2020), Nadam (Li et al., 2020), 

Adadelta (Qu et al., 2019), and SGD (Amari, 1993) 
are used. Also, to improve the performance of the 
neural network model, gradient optimizers are used 
to optimize the classification results and accuracy. 
Evaluation of indices for accuracy, F1-score, sensitiv-
ity, and specificity to the values of 95%, 99%, 99.32%, 
and 99.63% for MIT-BIH and to the values of 99.61%, 
99%, 98.66%, and 98.85% for PTB in the year 2021 has 
been achieved.

5.	 Integrating Fuzzy Clustering and Deep Neural 
Networks for Heart Failure Diagnosis with ECG Data 
(Kumar et al., 2023):
a.	This mechanism uses a framework based on deep 

learning and fuzzy clustering to detect arrhythmia 
from ECG signals. In this approach, the initial step 
involves preprocessing to eliminate noise from the 
ECG signals. Then, it uses the technique of seg-
menting ECG signals and balancing the classes of 
the dataset. The performed operations are trans-
ferred to deep convolutional neural network archi-
tecture to extract features. Finally, they employed 
the fuzzy clustering algorithm to classify arrhyth-
mias, with the input being the extracted features. 
This approach has been trained using two MIT-BIH 
and PTB Diagnostic ECG datasets, and its accuracy 
has reached 98% and 0.95% in both datasets, re-
spectively, in 2023.

In response to RQ1, our linear deep convolutional 
neural network (LDCNN) achieves remarkable diag-
nostic effectiveness, boasting 99.24% accuracy on PTB 
and 99.38% on MIT-BIH datasets. Addressing RQ2, the 
LDCNN consistently outperforms traditional methods, 
surpassing them in F1 scores, precision, recall, and 
overall accuracy. RQ3 findings reveal the LDCNN's con-
sistent diagnostic accuracy across arrhythmia classes. 
Finally, RQ4 highlights stable training trends, absence 
of overfitting, and effective convergence, affirming the 
LDCNN's adaptability and robust learning, ultimately 
contributing to its efficacy in cardiac disease diagnosis 
across diverse datasets.

T A B L E  1 5   Comparative analysis of our innovative LDCNN technique for arrhythmia detection with a range of contemporary 
techniques using the PTB Diagnostic ECG dataset, with metrics for all listed techniques taken directly from their respective publications.

Techniques Accuracy (%) Precision (%) Recall (%) F1 score (%)

Sharma et al. (2021) 88.59 87.34 90.07 88.69

Wang et al. (2020) 89.87 92.86 72.38 75.23

Kumar et al. (2023) 95.79 96.29 85.38 80.37

Rafi & Ko, (2022) 98.15 97.31 96.85 97.79

Pham et al (Pham et al. (2023) 98.28 99.90 97.72 -

Proposed LDCNN 99.24 99.09 99.02 99.05

The bolding indicates that these results are particularly noteworthy and represent key findings of our study.
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In our simulation on the MIT-BIH and PTB datasets, 
we achieved remarkable maximum accuracies of 99.38% 
and 99.24%, respectively. Our approach involves pro-
cessing digital data directly, converting it into vectors, 
and utilizing datasets as digital numbers. Despite the 
one-dimensional nature of the data, our method adeptly 
addresses denoising and other issues, automatically iden-
tifying patterns for arrhythmia detection. The high accu-
racy underscores the success of our architecture in solving 
the problem without the need for analog-to-digital conver-
sion or sampling.

The strength of our method lies in its direct approach 
to digital data processing, eliminating errors associated 
with sampling. The proposed LDCNN method effectively 
covers potential errors related to sampling, ensuring sig-
nal quality and accuracy without the need for additional 
conversion steps. This result demonstrates the correctness 
and efficacy of our approach.

4.2  |  Future works

According to the obtained results and considering the ob-
served needs, future research could explore the integration 
of additional characteristics such as blood pressure and 
cholesterol levels with arrhythmia signals. Additionally, 
developing an Internet of Things (IoT) device to predict 
and detect arrhythmias in real-time, and employing artifi-
cial intelligence for long-term ECG data analysis, could sig-
nificantly enhance personalized treatment plans. Ensuring 
data security through blockchain technology could also be 
a valuable approach to protect patient privacy while allow-
ing for broader analysis of anonymized data.
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the following DOI: https://​doi.​org/​10.​13026/​​C2F305. 
You can access this dataset by visiting the provided 
DOI. Dataset 2 (PTB Diagnostic ECG dataset): The 
PTB Diagnostic ECG dataset is accessible through 
the following DOI: https://​doi.​org/​10.​13026/​​C28C71. 
Additionally, the annotated PTB dataset is available on 
Kaggle at https://​www.​kaggle.​com/​datas​ets/​shaya​nfaze​
li/​heart​beat.
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