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1 | INTRODUCTION

| Masoud Kargar

Abstract

The electrocardiogram (ECG) is a fundamental and widely used tool for diagnosing
cardiovascular diseases. It involves recording cardiac electrical signals using
electrodes, which illustrate the functioning of cardiac muscles during contraction
and relaxation phases. ECG is instrumental in identifying abnormal cardiac
activity, heart attacks, and various cardiac conditions. Arrhythmia detection, a
critical aspect of ECG analysis, entails accurately classifying heartbeats. However,
ECG signal analysis demands a high level of expertise, introducing the possibility
of human errors in interpretation. Hence, there is a clear need for robust
automated detection techniques. Recently, numerous methods have emerged for
arrhythmia detection from ECG signals. In our research, we developed a novel
one-dimensional deep neural network technique called linear deep convolutional
neural network (LDCNN) to identify arrhythmias from ECG signals. We compare
our suggested method with several state-of-the-art algorithms for arrhythmia
detection. We evaluate our methodology using benchmark datasets, including the
PTB Diagnostic ECG and MIT-BIH Arrhythmia databases. Our proposed method
achieves high accuracy rates of 99.24% on the PTB Diagnostic ECG dataset and
99.38% on the MIT-BIH Arrhythmia dataset.

KEYWORDS
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are crucial for rapidly assessing cardiac conditions and mon-

The human heart generates intricate electrical signals that
provide vital insights into the cardiovascular system's func-
tionality. These signals serve as diagnostic tools, offering
crucial information about heart rate, rhythm, and potential
abnormalities. Detecting cardiac anomalies can be challeng-
ing due to the complexity and diversity of cardiac diseases and
the expertise required for their diagnosis. Electrocardiograms

itoring heart rhythm (Singh et al., 2019). Nevertheless, in-
terpreting ECGs presents a substantial challenge due to the
intricate nature of cardiac electrical activity and signal noise.
In recent years, due to technological and architectural devel-
opments, deep learning has been very beneficial for analyzing
and processing these signals (Hu et al., 2022).

Cardiac signals hold potential for the diagnosis and in-
vestigation of heart diseases and encompass various types,
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including ECGs (Berkaya et al., 2018), photoplethys-
mograms (PPGs) (Gonzalez et al., 2023), arterial blood
pressure (ABP) (Arvanaghi et al., 2017), cardiac output
(CO) (Mehta & Arora, 2014), heart rate variability (HRV)
(Brockmann & Hunt, 2023), and more. These signals vary
in signal type, frequency domain, voltage, and measure-
ment method, commonly utilized in the analysis of heart
diseases. ECG is a prevalent noninvasive method for mea-
suring heart rate, examining heart rhythm, and timely de-
tecting cardiac irregularities (Alberdi et al., 2016; Merone
et al., 2017). ECG records the heart's electrical signals
during blood circulation throughout the body, producing
insights into cardiac activity (Burgess, 2022). This sig-
nal comprises distinct waveform shapes (P, QRS, and T),
with each shape representing specific cardiac activities.
Various heart diseases manifest differently in ECG wave-
form shapes. The ECG signal comprises several leads, as
illustrated in Figure 1 (a) the three primary leads (I, II, and
I171) and (b) the nine unipolar leads (V1-V6, aVR, aVL, and
aVF). However, ECG signals face challenges such as noise,
power line interference, baseline drift, and more (Friesen
et al., 1990). ECG signal analysis requires extensive exper-
tise due to its complexity and imperfections. Therefore,
human error in ECG interpretation underscores the need
for an efficient and accurate automated ECG detection
system (Ribeiro et al., 2020).

Cardiac diseases encompass a range of cardiovascular
conditions resulting from dysfunction of the heart and
blood vessels. Among them, arrhythmia holds particular
significance due to its impact on heart rhythm, rate, and
regularity (Hu et al., 2022; Singh et al., 2019). Arrhythmias
have various types classified based on their origin within

(a)

the heart. Examples include ventricular arrhythmia, char-
acterized by premature ventricular contractions (PVC),
ventricular tachycardia (VT), and ventricular fibrillation
(VF) (Mazidi et al., 2020). Ventricular premature contrac-
tions involve premature heartbeats originating from the
Purkinje fibers rather than the sinoatrial node (Hurley
et al., 2023). Ventricular tachycardia is marked by irreg-
ular and rapid heartbeats, with monomorphic ventric-
ular tachycardia being the most common type (Zhang
et al., 1999). Ventricular fibrillation (Wang et al., 2007)
results in completely irregular and swift heartbeats in
the ventricles, causing erratic contractions and trem-
bling of the heart (Tseng & Tseng, 2020). Additionally,
Torsades de Pointes, a form of polymorphic ventricular
tachycardia characterized by a twisting pattern on the
electrocardiogram, poses a distinct risk, especially in the
context of prolonged QT intervals (Leenhardt et al., 2012).
Supraventricular tachycardia (SVT) entails a faster-than-
normal heart rate in the atria, with several variations
(Grubb et al., 2020). Bradyarrhythmia manifests as a
significantly slow heart rate, often associated with heart
failure or sinus node dysfunction (Sidhu & Marine, 2020).
We can categorize arrhythmias as either morphological,
characterized by irregularities in the shape or structure of
the heart's electrical signals, or rhythmic, caused by sets
of irregular heartbeats. Accurate and timely diagnosis of
cardiac arrhythmias is crucial, as these irregularities can
manifest as disruptions in rhythm, alterations in conduc-
tion, or changes in repolarization patterns that may sug-
gest underlying disease or altered physiological states.
Deep learning is a formidable approach within the ma-
chine learning domain, leveraging deep neural networks

(b)
Mid-clavicular line
Anterior axillary line
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FIGURE 1 Types of ECG leads, including (a) the three primary leads and (b) the nine unipolar leads.
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to extract high-level features from data. In the context of
signal processing, the application of deep learning, par-
ticularly for the analysis of ECG signals, has proven to be
highly effective and practical (Murat et al., 2020). Deep
neural networks can identify and utilize significant latent
features within ECG signals to classify and diagnose car-
diac diseases (Liu et al., 2021).

In the field of arrhythmia detection, multiple meth-
ods for analyzing ECG signals exist, and we can catego-
rize them into two main groups: non-deep learning-based
methods, which include traditional machine learning
algorithms or signal processing techniques, and deep
learning-based methods.

1.1 | Non-deep learning-based methods

Asl et al. (2008). proposed a classification algorithm for
cardiac arrhythmias using heart rate variability (HRV)
signals. They employed the MIT-BIH Arrhythmia
Database to diagnose six different types of cardiac
arrhythmias. Their approach improved the classification
metrics by selecting optimal features and achieved
accuracies of 98.94%, 98.96%, 98.53%, 98.51%, 100%, and
100% for six arrhythmia classes (2008). Hadj Slimane
et al. (2010). introduced a novel algorithm for complex
QRS detection using Empirical Mode Decomposition
in ECG signals. This algorithm employed low-pass and
high-pass filters, empirical mode decomposition of
signals, and a nonlinear transformation. They evaluated
their technique on the MIT-BIH dataset and achieved
accuracy results of 95.58% accuracy, 99.84% sensitivity,
and 99.92% specificity (2010). Kutlu et al. (2012) indicated
an automated heartbeat detection method utilizing
higher order statistics of wavelet packet decomposition
coefficients. They classified using the K-Nearest
Neighbors algorithm. The experiments were performed
on the MIT-BIH dataset, resulting in an average
sensitivity of 90%, average selectivity of 92%, and average
specificity of 98% (2012). Raj et al. (2016) proposed a
method for classifying cardiac arrhythmia beats using
discrete orthogonal Stockwell transform (DOST) and
Support Vector Machine (SVM) with Particle Swarm
Optimization (PSO) tuning. The method was validated
on the MIT-BIH dataset, achieving overall accuracies
of 99.18% for 16 classes and 89.10% for five classes.
PSO improved classification accuracy, with symmetry
features contributing significantly to this improvement
(2016). Sahoo et al. (2017). introduced an improved
algorithm for detecting complex QRS features using
the Multiresolution Wavelet Transform for classifying
four types of ECG beats, including arrhythmias. Their
approach's performance was evaluated for accuracy,

sssss

sensitivity, and specificity on 48 ECG signals from the
MIT-BIH dataset, reaching average accuracies of 96.67%
and 98.39% in ANN (Artificial Neural Network) and
SVM (Support Vector Machine), respectively (2017).

1.2 | Deep learning-based methods
Abdalla et al. (2019) in their research, focused on the
Classification of ECG arrhythmias using nonlinear
and nonstationary decomposition methods. They used
the full ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) approach to extract the
intrinsic mode functions (IMFs). They used the four
parameters of these functions to construct the feature
vector. Consequently, they used the artificial neural
network to apply the feature vector and classify five
different types of arrhythmia heartbeats using the MIT-
BIH database. The results showed that the CEEMDAN
and ANN approach performed very well, with 99.9%
accuracy (2019). Zairi et al. (2020) introduced an
FPGA-based arrhythmia detection system utilizing an
artificial neural network for real-time cardiac disease
detection. This method involved Wavelet Transform for
feature extraction, a Multilayer Perceptron (MLP) for
classification and arrhythmia detection, and decision-
making based on the ANN output. The evaluation,
conducted using the MIT-BIH dataset, resulted in an
average sensitivity of 98.33% and an accuracy of 98.2%
(2020). Gupta et al. (2020) utilized three techniques: a
novel fractional wavelet transform (FrWT), Yule-Walker
Autoregressive Modeling, and Principal Component
Analysis (PCA) for denoising, feature extraction,
and dimensionality reduction. They evaluated their
approach on the MIT-BIH dataset, achieving an accuracy
of 99.94% and 99.89% for the Real-time ECG and MIT-
BIH databases, respectively (2020). Table 1 presents
the advantages and disadvantages of each of the above
approaches.

While traditional machine learning techniques offer
advantages, they often encounter challenges and are
prone to errors in feature extraction, classification, and
interpretation of ECG signals for heart disease detection.
These conventional methods come with challenges such
as complexity, the vast size of datasets, and ambiguity in
detection, requiring parameter optimization and tuning.
On the contrary, deep convolutional neural networks,
among other deep learning approaches, leverage multi-
layer neural networks and automation to automatically
extract features. They address some of the issues of tradi-
tional methods with lower complexity.

In our research, we develop a novel technique based
on a one-dimensional deep convolutional neural network.



BAYANI and KARGAR

/ Physiological

\Z Society

The

2

physiological
society

PHYSIOLOGICAL REPORTS 8 s/

40f23

wIojsue) 19[eAem Suisn
Kyxardwod reuoryeynduwod asea1ou]

0Sd s uonezrumndo 1vjowered
Ul 9WI) UOIINOSXS SUISBIOU] '
-1amod Furssaoord Y31y 10§ paou oy
pue £f1xardwod reuoneynduio) 1
eyep xo[duwrod pue a31e[ ur
doueurrojrad NN Jo uononpay ‘v
"SUONIPUOD [ensnun

ur £0BINOOE UONIIOP MOT *€
*SISPIOSIP JeIPILD JO SadA) 1930
Sursougerp ur aoueuriojad 1004 ‘¢
"uone[noed

sonsIye)s 19pIo 1y3ry Suisn ur
Axordwod reuoneindwo) 1

uonejuaure[dur

wyyosre jo Axadwo) ‘¢
'sjose)ep

HIG-LIA o510ads uo aouspuada( ‘¢
-Surssad01d UT SSOUMOTS 03 SPEa]
Axerdwod swrn reuoneinduwio) 1
[eusIs DO 2y}

ur uonyeurIojul Juelrodwir Jo sso ‘¢
‘sreudis

AYH 2510ads uo souspuada( ‘7
"J[00[q youe1q d[punq 1ySi1 pue
300[q YoUueIq A[pUNQ 3JT S Yons
seruy)AyLre 9z1ugdooar 0y AIfiqeu] ‘1

saSejueapesiq

[BAOWIAI SSION T
“UOT}BIIJISSB[O
pue sisougerp ur Aoenooe Y31y ‘T

sagueo orweuAp

JO 90€} oy} Ul sIsouSerp 10199 ‘T
"soye)sIwr SUrONpa1 pue sisouserp
Jo Koeinooe oy Suraoxdwy T

NN J31M UOnNedJIsserd

ur douewioyrad Suons ¢
‘uonn[osal Aouanbaiy 10ySiy
® SBY [BAOWI 3SI0U OdM ‘T
“U0NI}P

djel )18y UI AdRInode Y3y ‘1

u013993ap xo[duIod

SYO ur Juswasordwr JuedogIudis ¢
‘KoeInooe

sy yam sdoys opdnnA ‘1
Suryew-uoIsIoap

JO £oBINOOE 9Y) SISBAIOUT SAINJed]
Jo Iaquunu oY) Juronpay ¢
WRISAS UONINIP BIWYIAYILIR
aurfuo ue uneard Ajqissod pue
owry 3urssadoid Jo uononpay ‘g
‘KoeInooe Y31y yim sisouderq ‘1

saSejueapy

SIOTISSE[D

(INAS) seuryoew 103094 310ddng '€
(NN) 3}10M19U [eINSN T
WLIOJSUeI)

HIF-LIN J9[oARM UONN[OSAINNIA ‘T

ToyIsse[d (INAS)

QuIyorW 103094 310ddns oy, °¢
(0sd)

uorjezundo uLems d[onIed ‘g
(ILSo@) wiojsuen

HIG-LIN 1243003 [euo30y3I0 9321081 'T

NN C
SIURIOLA0D (AdM)
uonisodurooap joxoed j9[ABM JO

HIZ-LIN (SOH) sonsness 1apio 12YSIH ‘T

WyILI0ZY

HIG-LIN uonisodwodd( dpoA [edrrdwy

Iayisse) (INAS) SUIYIRIN 10J09A
j10ddng pue uonONPaYy 91N
(Vaon) sisreuy jueurwiosiq

HIE-LIN PaZI[I2UID UO Paseq WLV

josereq WYY

SONIRULIOUQE JBIPIRD
10919p 0} UOT}BILISSL[D
DD PUE UOORNXD
2INJeJJ PIseq-ULIOJSUBI}
Jo[eABM UOTIN[OSAIN[NIA

INAS paun)-OSd pue
I1SOd Sursn uoredIyIssed
Je3q BIUyIAYLIE JBIPIED

SIUSIOLFO00 Ad M

JO So1ISIIe)s I9pIo JYSIY
Sursn syeaqireay DA
10J UONORIIXS 9INJBS,]

uonisoduwod’dq
SpoA Teoniduryg Sursn
U01}99)3p X91duIod SYO

[eudis A1iqeriea 9yex
1183Y JO S2INJBIJ paonpal
Sursn uoneoyIsse[d
BIWIAYIIE paseq
-ouIyorW 103994 310ddng

L

Jnqges ejueyns
pue eIayag ysoing
‘o3unuey uadnyg
‘001ES NUBIUELS

IeyUuRYS
wQ pue ‘Aey eipuey)
yserrey ‘fey despues

drejuny] ejueq
pue npny dnyex

V-1eN
QUIWY pue dueWI[S
[pey suippg-oulz

19Q9UOIN UreAIeN
pue uepyarelds
urparewrey pakas ‘Isv
YapezZpewweyoJA
Jeqeg

aoymy

L10T

910T

10T

010C

800¢

Iedx

‘soejueApesIp pue sodejueApe I19Y) pue ssIom snoradid jo Arewrwns T A T19V.L



50f23

Y PHYSIOLOGICAL REPORTS 3

physiclogical
soclety’

Q)

The
/ Physiological ~ 3merican

Z society

Q

BAYANI and KARGAR

Jumyes 193owered pue uoneIndFuod
19)39q sa1mbax souewioyrad
s,poyiowt oy SurzrundQ ¢
'SonIIR[NIOLIL

JerpIed awos Sursouerp ur
Koeanooe ssof Jo Apiqrssod
ST 19} ‘Y Dd UM UOTJBWITISD
SOUBLIBA JO SN Y} 03 an( ‘T
"Spot}ou SUTUIqUIOd

Jo Lrxardwos reuoneInduiod
19y31y a3 03 anp Jurssavoid
J10J POPaau SI oW} IO 'T

uonudooar ursyed ur

SIOII9 pue A0BINJoE UOT)BIIJISSE[O Ul
9SBAIOAP ® ST A1) ‘SISBI SWIOS U] 'S
*SOSBASIP JUIOS

JO SISOUSeIp dy) Ul UONEIWIT
‘Surunsuoo-awy pue

aarsuadxa st diyo yodg ue 3uis) °¢
*SUONBIIWI] 90IN0SAY T
‘uonejuswerdurr

V9OdA Jo Lxdrdwo) 1

saInjesy Tenonred

JO UONOBIIXD 9} PUE SPOYIOU
SISATeU® ITeQUITUOU JO SN 31} 0 dNP
Kyxardwod reuoneinduwods sey i1

sogejueapesiq

AoeInodoe uonoep aaoxdwy g
‘durues[o osION ‘T
UOIBOTJISSB[O

BJEP UI )81 IO1Id MOT 'S
‘Suriojruowt

9AT}OBISIUI pUB WI)-SUOT
uonejuauraduwr

QUIN-TBaI PUE ISB] '€
‘uondwnsuod A31oue Juronpal
pue saInjead) SUIZIWIUIA ‘T
“K11qeziferousd

pue Aoeanooe Y3y ‘T

UONBOJISSB[D
pue sisougerp ur AoeInode ysiy ‘¢
*San}1Ie[NSA1IT OBIPIRD ISOUTRIP
03 saIn3edj [eroads Sunoenxy T

sagejueapy

(vod)

sisATeue Juauoduros redrourid ¢
(WY VMA) Sutfopour
OAISS?13210)NE. IY[BM-I[NE T
(LML)

HIg-LIN ULIOJSUR.I) J9[9ABM [eUOI}ORI] "

(d'TIN) uondaoiad 1ekennA "¢
WIOJSURI) 19[OABM ‘T
(vOd:)

HId-LIN Keire 91ed oqewrwrerdord prarg 1

(NVANEAD)

astou aandepe y3m uonisoduwodap
opouu [eorrrdwe 9[quIasua 939[durod
Suisn spoylowr uonisoduodsp

HIg-LIN AIeUOnBISUOU PUE AJLTBQUITUON

josereq wILIosy

sisATeue juauoduod
redrourid yim wiojsuen)
JO[oABM [BUOTIORI]

Suisn 1eusdIs HOH ur
UOT}0919P BIUIIAYLIY

UONBOTISSB[O BIUIIAYIIE
JYI0M)OU [RINAU [RIOGIIIE
10J WI9)SAS Paseq-vOdd
uonisoduwodsp
A1euonejsuou pue
IeaUITUOU pUE
90UdSI[aIUI [RIOgNIE
Sursn uoryeonISSe[d
eruygiAyLre HOH

apIL

[ENTA BTUOI

pueeidno uniep  0z02

uewI[S p[nQo
eyI[eS pue YeppaN
wirey “eyye, APy
eYI[EN ‘Mrez B[peH  020C
oeyy utbex pue 100N
wely ‘uey mysuens
e[ BWNIH ‘DA
uam3uoT ‘e[repqyv

‘0 "A UIp[eIayeq 610C

oyny  JIedx

(ponupuo)) T HTAV.L



BAYANI and KARGAR

6 of 23
Q@
PHYSIOLOGICAL REPORTS 3 EFZE(%Z;J: § / EBE%‘{J,"@“

This technique aims to extract vital information from car-
diac signals across various frequencies and represent them
as vectors instead of images, reducing errors. Moreover,
we have significantly improved this algorithm's complex-
ity and execution time. For this reason, we have intro-
duced it as a one-dimensional linear deep convolutional
neural network (LDCNN).

« Research Question 1: How effectively does our pro-
posed linear deep convolutional neural network
(LDCNN) model diagnose cardiac diseases across di-
verse datasets?

» Research Question 2: What is the comparative perfor-
mance of our proposed LDCNN model in diagnosing
cardiac diseases, and how does it specifically outper-
form traditional machine learning methods across dif-
ferent datasets?

+ Research Question 3: How does the diagnostic accuracy
of the LDCNN model vary across different arrhythmia
classes, and what insights can be gained from the pre-
cision, recall, and F1-score metrics for each class across
diverse datasets?

» Research Question 4: What trends are observed in the
training and testing accuracy, as well as loss, during the
training epochs of the LDCNN model, and how do these
trends contribute to the model's overall effectiveness in
diagnosing cardiac diseases across various datasets?

2 | METHODS

2.1 | Motivation

With the continuous evolution of medical diagnostics,
the precise detection and classification of arrhythmias
have gained paramount significance. Given the increasing

Beat description

Normal beat, healthy controls

Cardiomyopathy/heart failure, myocarditis, myocardial infarction,

miscellaneous, bundle branch block, dysrhythmia, valvular heart
disease, and myocardial hypertrophy

prevalence of cardiovascular diseases, the necessity for ac-
curate and efficient arrhythmia analysis techniques has
become more critical than ever before. Among these tech-
niques, the utilization of convolutional neural networks
has demonstrated better outcomes. Traditional methods
have shown limitations in handling the complex charac-
teristics of ECG signals, often needing higher performance
accuracy. Hence, our proposed deep linear convolutional
neural network provides a comprehensive solution that
overcomes the existing challenges. This paper addresses
the unexplored potential of this technique and paves the
way for innovative advances in enhancing heart health
diagnostics.

2.2 | Datasets

We review the datasets utilized for simulating our proposed
method, leveraging two widely employed benchmark
datasets in contemporary research: the PTB Diagnostic
ECG (Bousseljot et al., 1995; Kachuee et al., 2018) and
MIT-BIH Arrhythmia (Moody & Mark, 2001) datasets.

2.2.1 | PTB Diagnostic ECG dataset

PTB Diagnostic ECG includes a set of samples that are
used to diagnose cardiovascular abnormalities. This data-
set contains 549 records from 290 people. Each record
contains 15 signals measured simultaneously, and these
signals consist of 12 leads. This dataset includes two
classes, normal and non-normal. Table 2 contains the dif-
ferent types of heartbeats available in the PTB Diagnostic
ECG dataset. Table 3 contains the heart rate types used in
this article for this dataset and contains information about
each one.

Heartbeat TABLE 2 Various primary categories
eartbeats

of heartbeats are contained in the PTB
Normal beat diagnostic ECG dataset.

Abnormal beat

TABLE 3 Types of heartbeats we used in the PTB diagnostic ECG dataset and overview of its beat annotations.

Heartbeats Classes Beat description Frequency (%) Count
Normal Normal Normal beat, healthy controls 27.81 4046
Abnormal Abnormal Cardiomyopathy/heart failure, myocarditis, and myocardial 72.19 10,506

infarction

Miscellaneous, bundle branch block, dysrhythmia, valvular
heart disease, and myocardial hypertrophy
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2.2.2 | MIT-BIH Arrhythmia dataset

This is a standard dataset for the evaluation of various ar-
rhythmia diseases. The dataset includes 48 dual-channel
ECG recordings, each lasting 30min, collected from 47
patients over 4years. It comprises five categories: normal
beat, ventricular premature contraction, supraventricular
premature beat, combined ventricular and normal beat,
and unclassifiable beat. For this study, we selected a sub-
set of these arrhythmias based on their clinical relevance
and prevalence in real-world scenarios. The selection
process aimed to focus on representative arrhythmias to
ensure a robust evaluation of our proposed methodology.
Refer to Table 4 for the detailed breakdown of heartbeats
in the MIT-BIH Arrhythmia dataset. Table 5 provides an
overview of the subset of heartbeats used in this article,
along with their respective annotations, frequencies, and
class labels.

2.3 | Proposed method

ECG signals are acquired and recorded in digital for-
mat, utilizing Analog-to-digital converters (ADCs) dur-
ing the data acquisition process, subsequently forming
the basis for the creation of datasets like MIT-BIH and
PTB. Advanced digital signal processing techniques are
then applied for preprocessing and data conditioning,
enabling the extraction of high-level features by a deep
convolutional neural network (DCNN). In Figure 2, we
visually represent an example of analog signals from the
MIT-BIH Arrhythmia dataset using the Matplotlib li-
brary to illustrate how we use the data in our proposed
model. The horizontal axis depicts the index of each
sample, and the vertical axis represents the correspond-
ing voltage values. We select a specific range of observa-
tions from index 30 to 50, transforming them into a vector
named “a.” Additionally, two random samples from this
range are chosen, and their values are mentioned. This

TABLE 4 Various primary categories .
. . Beat description
of heartbeats are contained in the MIT-

BIH Arrhythmia dataset.

Normal beat, atrial escape beat, nodal (junctional)

7 of 23
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selected range is transformed into a vector called “a” and
displayed. This reshaping and conversion into vectors, as
detailed in phase (v) of our methodology, are crucial steps
in preparing the data for subsequent processing. These
vectors serve as inputs to the model.

Our proposed methodology comprises seven distinct
phases: (i) data preprocessing and preparation, (ii) class
balancing, (iii) data separation, (iv) data encoding, (v)
data reshaping and vectorization, (vi) high-level feature
extraction utilizing LDCNN and classification, and (vii)
model testing and evaluation. Figure 3 illustrates the gen-
eral framework for ECG signal arrhythmia detection. In
the following, we have discussed each of these phases.

2.3.1 | Data preprocessing and preparation
After converting the signals into digital form, we propose
this process, which consists of five steps, to increase the
accuracy and reliability of the classification process.

Denoising ECG signals

ECG signals may contain errors due to noise, including
interference from power lines. Such interference can re-
duce the accuracy of the analysis and lead to errors in
diagnosing arrhythmia. Denoising is an approach to deal
with these problems and increase the accuracy of ECG sig-
nal analysis. The Wavelet Thresholding method is a noise
removal method that effectively separates the unwanted
signal components from the desired signal and protects
the key characteristics of the signal. This method is used
if there is significant noise in the data. For example, this
technique has been applied to the MIT-BIH Arrhythmia
dataset. Figure 4 shows instances of ECG signals (a) be-
fore and (b) after applying the denoising method.

ECG signal normalization
Normalizing the data of ECG signals can significantly
improve the accuracy of ECG signal analysis. Through

Heartbeats

Normal beat

escape beat, right bundle branch block beat, and left
bundle branch block beat

Ventricular escape beat and premature ventricular

contraction

Supraventricular premature beat, atrial premature

Premature ventricular contraction

Supraventricular premature beat

beat, nodal (junctional) premature beat, and
aberrated atrial premature beat

Fusion of normal and ventricular beat

Fusion of normal and paced beat, and unclassifiable

beat

Fusion beat

Unclassifiable beat
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TABLE 5 Types of heartbeats we used in the MIT-BIH Arrhythmia dataset and overview of its beat annotations.
Heartbeats Classes Beat description Frequency (%) Count
Normal N Normal beat 75.0 75,011
L Left bundle branch block beat 8.07 8071
R Right bundle branch block beat 7.25 7255
Supraventricular A Atrial premature beat 7.13 7129
Ventricular \Y% Premature ventricular contraction 2.55 2546

Analog Signal
1

1150

1100

1050

Amplitude

1000

950

900

[} 20 40 60 80
Sample Index

¥

Digital Signal (Sample Index 30 — 50)

1 1
1781 1 i
18
155 1 1
i -
-t 1
11 1 1
11 1
105
100 1 1
095
1090 1 1
1085
10211 1
070
065 1 1
= -
R LR 1 Information of two selected ECG samples:
g; o311 1 The value of sample number 35: 919
020 ¥ : The value of sample number 47: 1130
. :
! !
- !
975 1 1
%21 1
960
2311 1
945
38 $
- 1
— 320 —4 1
R -
895 1 1
1 1

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Sample Index

[+ (o)) o)

eee 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 eee

Vector a

Sample indexes

FIGURE 2 Visualization of an example signal in analog and digital forms, along with the vectorization process.

normalization, we can transform the signal data onto a mean and then compute the standard deviation. Then,
common scale and mitigate the effects of scale variations  using the z-score method, we transform each point of
between different units. If the dataset features are not in the signal in a way that the mean becomes zero and the
a common scale, we have employed the z-score technique standard deviation becomes one. This process aligns the
for signal normalization. First, we calculate the data's data within a specific range, making them comparable.
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Figure 5 (a) illustrates an example of ECG signals after
applying the normalization method to the MIT-BIH
Arrhythmia dataset.

Reading annotations files

Reading annotations refers to the process of extract-
ing information related to each heartbeat in a signal.
Annotations typically provide additional information
about events or specific features in the signal, such as the
positions of R-peaks (the highest point of the QRS complex
in an ECG signal) and the corresponding arrhythmia class
(such as normal beat, premature ventricular contraction).
They contain information about the timing or location of
important events in the signal and are often used for labe-
ling signal data for further analysis or classification tasks.
Due to the annotation files in the MIT-BIH Arrhythmia
dataset, we utilize this process. By reading annotation
files, we can extract information related to each sample
and utilize it in subsequent phases. This information is
crucial for tasks like heartbeat classification and analysis,
enabling us to understand the characteristics of each beat
and make informed decisions based on the extracted fea-
tures and annotations.

ECG signal segmentation

After completing the previous steps, the focus shifts to
the vital components of the signal waves. In this context,
segmentation is performed to extract only the necessary
segments for model training. It is crucial to emphasize

< 9of 23
§é§§§m@ka. m(‘lf PHYSIOLOGICAL REPORTS aJ—

t

that a comprehensive view of the entire conduction
cycle, including the P wave in PQRST, is essential for
accurate delineation of specific heart blocks like SA or
AV block, and for distinguishing between variations
within each. Additionally, without consideration of
the complete conduction cycle, differentiation between
premature atrial contractions (PACs) and premature
ventricular contractions (PVCs), as well as discerning
non-conducted PACs from AV block, can be challeng-
ing. In this phase, we utilize a technique called fixed-
size window segmentation and specifically extract the
R-peak from the ECG signals. The R-peak, representing
the peak of the QRS complex in the ECG signal, offers
crucial information about heart rate and cardiac abnor-
malities. It is the distance from the beginning of the QRS
complex to the maximum point of the R wave. The fixed-
size window segmentation involves extracting sections
(windows) with a predefined and fixed length from the
ECG signal, enhancing clarity and focus. Figure 5 (b) il-
lustrates the segmentation of the ECG signal.

Class labeling

In this step, labels are assigned to the segmented ECG sig-
nal data based on the arrhythmia classes associated with
each heartbeat. This process is necessary to train a machine
learning model to accurately classify different types of ar-
rhythmias. To obtain arrhythmia class information, we
use annotations associated with ECG signals. Annotations
provide details about the type of each heartbeat event.

Step 1: Data preprocessing and data preparation
Y
/@]— b. Z-Score normalization
\

Input dataset
(Digitized Data)

y
— N

‘ Read data

- J

Is the data quality
not good and has
significant noise?

Are the features
in the dataset not on
a similar scale?

-

—

c. Read annotations

s the dataset has
separate annotation
files or not labeled

—DL d. Data segmentationHe. Extract labels and class Iabeling}

in csvfiles?

J

Step 4: Encoding data

Step 3: Splitting the data

Step 2: Class balancing

‘ Convert the target class labels in the training
‘ and testing sets to one-hot encoded vectors

Split the resampled data into training and testing sets \

L F for class balancing
S

(The testing set size is set to 20% of the total data) | J
J

Does the dataset have
ical variables with multiple <
categories (more than two)?

Step 5: Reshaping and vectorization the data

( Reshape the input data (train_x and test_x) to have
'L a third dimension of size 1 and vectorization

-

Step 6: Defining CNN model

Are classes balanced?

>
N~

Step 7: Performance evaluation

Feature extraction and classification
using CNN then training and testing

Evaluation the model's accuracy and
different performance metrics

FIGURE 3 The general schema of our proposed method for arrhythmia detection from ECG signals.
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FIGURE 4 ECG signal (a) before and (b) after denoising.

400 500 600 700

(@) wave after z-score normalization

0 100 200 300

400 500 600 700

(b) A beat from this wave

FIGURE 5 (a)ECG signal after normalization and (b) segmented ECG signal or beat from this wave.

For example, they can represent classes such as A (atrial
premature), R (right bundle branch block), L (left bundle
branch block), V (premature ventricular contraction), N
(normal), or abnormal. Tables 3 and 5 contain informa-
tion about the classes within each dataset.

2.3.2 | Class balancing

Normally, the uneven distribution in the number
of samples of different classes of a dataset leads to

problems in the field of ECG signal analysis. To solve
these challenges and improve the efficiency of machine
learning models, we have used the resampling tech-
nique. This technique involves generating additional
samples from the minority class to achieve a more
balanced distribution of samples among the different
classes. Figure 6 illustrates the number of samples in
the MIT-BIH Arrhythmia dataset, with (a) showing the
class distribution before and (b) showing the distribu-
tion after resampling. Additional details are provided
in Table 6.
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2.3.3 | Data splitting

The data segmentation strategy is a significant step in pre-
paring datasets for training and testing machine learning
models. After resampling, we separated the data into two
sets for training and testing, where the testing set contains
20% of the total data. This is done to evaluate the perfor-
mance of the model and ensure that the model works cor-
rectly on new data.

2.3.4 | Dataencoding

Encoding techniques in the field of machine learning
refer to the process of converting categorical data into
a numerical format that can be easily processed by ma-
chine learning algorithms. Categorical data includes la-
bels or categories that do not have a natural numeric
representation. Machine learning algorithms usually
require numerical inputs, which is why encoding is es-
sential. We have used the One-Hot Encoding method
in this section. In this method, we convert categorical
data into binary vectors. If there are two categories for
a categorical variable, it is often coded as the numbers
zero and one. However, if suppose the categorical vari-
able has more than two categories in a dataset, in that
case, we usually treat each category as a binary feature
and then convert these binary features to numeric val-
ues. According to the MIT-BIH Arrhythmia dataset, it
is assumed that there is a variable called arrhythmia in
this dataset, whose values are “Normal beat,” “Right
bundle branch block beat,” “Left bundle branch block
beat,” “Atrial premature beat,” and “Premature ventric-
ular contraction.” As shown in Table 7, all the values of
this variable are converted into five separate columns
with five samples. Now, for the first sample, which is
“Normal beat,” the number 1 is entered in the Normal

(a) Classes distribution before resampling (Imbalanced)
75011
70000
60000
50000
E 40000
8
30000

20000

10000 8071 7255 7129

Class labels

FIGURE 6
resampling.
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beat column and zero in the rest of the columns. For
the second sample, which is “Right bundle branch
block beat,” in the columns “Normal beat,” “Left bun-
dle branch block beat,” “Atrial premature beat,” and
“Premature ventricular contraction,” the value is zero,
and, in the column, “Right bundle branch block beat,”
“The value one is entered. It is done in the same way for
other samples.”

2.3.5 | Data reshaping and vectorization

The data are represented as a tensor with the shape (rows,
columns, layers, and number of samples). We have trans-
formed the input data to have a third dimension of size
one. In our research and code implementation, the pro-
cess of data reshaping plays an essential role in prepar-
ing our datasets for neural network training. This process
involves transforming the input data arrays to conform
to the specific structure required by the neural network
architecture and is very important when working with
CNNs, especially when handling one-dimensional signals
such as ECG data. This step is integral to the preproc-
essing step and serves as an effective strategy to handle
class-specific irregularities in diverse datasets, thereby in-
creasing the flexibility and accuracy of ECG signal anal-
ysis. After doing this, we have applied the vectorization
process. A process in which data, often represented as an
array or matrix, is converted to a one-dimensional vector.
This transformation facilitates ease of processing for algo-
rithms and operations designed to work with linear data.

2.3.6 | Definition of LDCNN

Our proposed technique, known as linear deep convo-
lutional neural network (LDCNN), consists of a linear

(b) Classes distribution after resampling (Balanced)

5000 5000 5000 5000 5000 5000

4000

3000

Count

2000

1000

Class labels

Resampling for balancing the classes of the MIT-BIH Arrhythmia dataset: (a) class distribution before and (b) after
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TABLE 6 The count of samples

CIl Bef li Aft li
asses elore resampiing Sl from distinct classes in the MIT-BIH
Premature ventricular contraction 2546 5000 Arrhythmia dataset both before and after
Atrial premature beat 7129 5000 the resampling process.
Right bundle branch block beat 7255 5000
Left bundle branch block beat 8071 5000
Normal beat 75,011 5000
TABLE 7 Encoding classes for the MIT-BIH Arrhythmia dataset.
Normal Right bundle Left bundle Atrial Premature ventricular
Arrhythmia beat branch block beat  branch block beat  premature beat contraction
Normal beat 1 0 0 0 0
Right bundle branch 0 1 0 0 0
block beat
Left bundle branch block 0 0 1 0 0
beat
Atrial premature beat 0 0 0 1 0
Premature ventricular 0 0 0 0 1

contraction

one-dimensional deep convolutional neural network.
In this technique, one-dimensional linear convolution
is used deeply, which means using several layers. Using
this method, we can extract high-level features from the
ECG signal and recognize patterns. The use of convolu-
tion in this technique helps us to extract important fea-
tures due to the unknown location of arrhythmia and the
absence of a specific time to observe cardiac arrhythmia.
The data are one-dimensional and in the form of an input
signal. But when these signals are sampled, they become
a vector form of a one-dimensional tensor. Therefore, by
using linear convolution, we can extract patterns from
these vectors and recognize the moment of the event
based on the previous steps. For this reason, this tech-
nique is known as LDCNN, and its use increases the ac-
curacy. The general structure of our proposed model is
shown in Figure 7.

In the LDCNN architecture for PTB Diagnostic ECG
and MIT-BIH Arrhythmia dataset, eight and five con-
volution layers are considered, respectively, and each of
these layers is associated with a pooling layer. After the
flattening layer, a dropout layer is subsequently applied to
generate the final feature vector. Tables 8 and 9 contain
information about each architecture and hyperparameters
of each.

2.3.7 | Performance evaluation

After training the model, it is employed to test on a sepa-
rate test dataset, and a range of evaluation criteria are as-
sessed accordingly. Various critical evaluation criteria are

used to measure the efficiency of the proposed method.
Some of these criteria are as follows:

Accuracy

Accuracy, as defined by Equation 1, serves as a met-
ric that measures the overall correctness of a model by
representing the proportion of correctly identified sam-
ples in the entire dataset. Equations use True Positive
(TP), False Positive (FP), True Negative (TN), and
False Negative (FN) to quantify correct and mistaken
identifications.

TP + TN

Accuracy =
Y= TP+ TN+ FP + FN @

Accuracy is a commonly used metric to assess the over-
all performance of a classification model.

Precision
Precision, outlined in Equation 2, functions as a gauge for
the reliability of positive predictions, indicating the pro-
portion of true positives among all samples classified as
positive.
. . TP

Precision = TP + FP )
Recall
Equation 3 defines Recall, which assesses the model's abil-
ity to detect positive instances by representing the propor-
tion of true positives among all actual positive samples.

TP
Recall = — &
A= TP N G)
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F1 score

F1 Score, calculated through Equation 4, is a composite
measure that balances precision and recall, providing
a single value for the evaluation of the model's overall
performance.

F1 Score — 2 X Pr(?0}51on X Recall )
Precision + Recall

2.4 | Additional details

In addition to the MIT-BIH Arrhythmia examples, within
the context of the PTB Diagnostic ECG dataset, our im-
plemented CNN model, referred to as the linear deep
convolutional neural network (LDCNN), serves as a
valuable tool for associating nuanced waveform features
with specific cardiac diseases. The model is designed to
differentiate between disease types based on subtle pat-
terns identified in ECG signals. The utilization of the PTB
dataset allows our LDCNN to capture and process wave-
form nuances associated with various cardiac conditions,
contributing to the accurate classification of different
disease types. This approach enables the identification
of novel markers of disease within ECG waveforms, pro-
viding insights into unique patterns that may not require
processing data through the LDCNN itself. The LDCNN
thus proves to be a valuable asset in detecting and under-
standing nuanced markers of cardiac diseases, enhancing

§é§§§$.yogica. m“W/ PHYSIOLOGICAL REPORTS
its applicability and potential for novel disease marker
discovery. However, it is important to note that our tech-
nique is invented to be adaptable and applicable to vari-
ous datasets. Its strength lies in its ability to be employed
across different datasets, offering a versatile solution for
cardiac disease diagnosis.

2.5 | Proposed algorithm

Algorithm 1 presents an overview of the different phases
involved in our proposed method. Input to our algorithm
includes the ECG signal dataset, labels corresponding
to those signals, and the count of arrhythmia classes.
Conversely, the algorithm yields a set of assessed perfor-
mance metrics. The process begins by reading a dataset (D),
addressing noise if present through Wavelet Thresholding,
and standardizing features using z-score normalization. If
there are annotation files, beat positions and arrhythmia
class information are extracted. The data are then seg-
mented using fixed-size window segmentation and option-
ally resampled. Then, the data are divided into training
and test sets, and if there are more than two arrhythmia
classes, one-hot encoding is applied. The data are then
transformed and fed into a convolutional neural network
feature extractor, followed by training a CNN. The trained
CNN is used to predict arrhythmia labels for the test set,
and performance metrics are calculated and returned.

Input: ECG signals dataset, D; Labels, L; Number of arrhythmia classes, n
Output: Evaluated performance metrics

1: START;

2: D & read D;

3: if D has significant noise:

4: DenoisedData < denoise (D, type = {Wavelet Thresholding});

5: D & DenoisedData;

6: else if the features in D are not on a similar scale:

7: NormalizedData ¢ normalize (D, type = {z-score});

8: D & NormalizedData;

9: else if D has annotation files:

10: Annotations < read annotation files;

11: BeatPosition < extract beat position (Annotations);

12: ArrhythmiaType or Symbol & get arrhythmia class information (BeatPosition, Annotations);
13:

14: SegmentedData < segment (D, type = {fixed-size window segmentation});

15: LabelledClass ¢ read L;

16: if SegmentedData is not resampled:

17: ResampledData ¢ resample SegmentedData;

18:

19: TrainData, TestData < train_test_split (ResampledData, test_size < 0.20);

20: if the number of categories > 2:

21: EncodedData & categorical encode (TrainData, TestData, type = {one-hot encoding});
22: else:

23: ReshapedData < reshape (TrainData, TestData);

24: ExtractedFeatures < CNNFeatureExtractor (ReshapedData);

25: TrainedClassifier & CNN (TrainData, TrainLabels, n);

26: ClassifiedLabels < TrainedClassifier (TestData);

27: PerformanceMetrics <~ Evaluate Performance Metrics (ClassifiedLabels, TestLabels);
28: return PerformanceMetrics;

29:

35: END;
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1D vector representing
ECG heartbeat signals

Convolution1D  Pooling layer

Convolution1D  Pooling layer

FIGURE 7 The architecture of our proposed LDCNN model.

3 | RESULTS
3.1 | Evaluation of our proposed deep
learning

We implemented the proposed model in Python on Google
Colab as well as on a CPU with 8 GB RAM, utilizing an
AMD Ryzen 55,500U processor with Radeon Graphics
(running at 2.10 GHz). Figure 8 (a) illustrates the accuracy
trends of model training and testing over 30 epochs on the
PTB dataset. The blue curve represents changes in training
set accuracy, while the orange curve represents changes in
test set accuracy. Furthermore, Figure 8 (b) displays the
loss trends of model training and testing across 30 epochs
for the PTB dataset. The blue curve depicts changes in
training set loss, while the orange curve portrays changes
in test set loss. According to these results, it is possible to
evaluate how much the model has improved during train-
ing and how well it maintains its performance in the test
set. The accuracy of our proposed method achieves a high
accuracy rate of 99.24% on this dataset.

The results of model training and testing accuracy
during 80 epochs for the MIT-BIH Arrhythmia dataset
are shown in Figure 8 (c). As shown in the figure, the
blue and orange curves represent the accuracy of the
training set and the test set, respectively. Also, Figure 8
(d) shows the loss of model training and testing during
80 epochs for this dataset. The blue and orange curves
represent the loss in the training set and the test set,
respectively. As is evident, overfitting does not occur.
The accuracy of our proposed method achieves a high
accuracy rate of 99.38% on this dataset. In Table 10, our
proposed model demonstrates robust classification per-
formance on both the MIT-BIH Arrhythmia and PTB
Diagnostic ECG datasets, achieving high accuracy rates
and class-specific metrics. Table 11 summarizes the ob-
tained results, showcasing impressive F1 scores, recall,
precision, and overall accuracy for the proposed model
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across different evaluation metrics and epochs on the
two datasets.

3.2 | Assessment of various machine
learning methods

In addition to our proposed deep learning model, we im-
plemented and evaluated various machine learning tech-
niques across two datasets. The results obtained for both
datasets are shown in Tables 12 and 13. It can be seen in
Table 12 that our proposed method performs better than
the machine learning methods in the MIT-BIH arrhyth-
mia dataset based on F1 score, recall, precision, and ac-
curacy. In Table 13 for the PTB Diagnostic ECG dataset,
the competition between classical classification and clus-
tering methods can be seen. These results show that our
proposed method performs better than different basic
machine learning algorithms according to the four evalu-
ation indicators.

3.3 | Comparison with different
contemporary techniques

We have conducted a comparison between the proposed
LDCNN method and several modern techniques in the
context of arrhythmia detection. For the evaluation, we
utilized the two datasets and considered all the evalua-
tion metrics outlined in the Methods Section. According
to Table 14, our proposed method has shown the best per-
formance for all criteria compared to contemporary meth-
ods in the MIT-BIH Arrhythmia dataset. Furthermore,
Fradi et al. achieved the second-highest performance,
whereas Atal et al. exhibited the least accuracy. As indi-
cated by the results presented in Table 15, our proposed
method outperforms other contemporary techniques
based on Accuracy, Recall, and F1 score, and ranks as the
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TABLE 8 The diverse hyperparameters used in configuring our LDCNN model for the MIT-BIH Arrhythmia dataset.

Layer name

Input layer
ConvlD layer 1
AvgPool1D
ConvlD layer 2
AvgPool1D
Conv1D layer 3
AvgPool1D
ConvlD layer 4
AvgPool1D
ConvlD layer 5
AvgPool1D
Flatten layer
Dropout layer
Dense layer 1
Dense layer 2

Output layer

Filters

16

32

64

128

256

Kernel
size

13

15

17

19

21

Activation
function

ReLU

ReLU

ReLU

ReLU

ReLU

Softmax

Input
shape
1x360
1x360
16 X360
179x 16
32%179
32%89
64x 89
64 x 44
128 x44
128 x21
256 %21
256 %10
2560
2560

35

5

Output
shape

16 X360
179x16
32%x179
32%89
64 % 89
64 x 44
128 x44
128 x21
256 x21
256x10
2560
2560

35

5

5

Dropout
rate

Pool size
(Avg)

3

Padding

Same

Same

Same

Same

Same

TABLE 9 The diverse hyperparameters used in configuring our LDCNN model for the PTB diagnostic ECG dataset.

Layer name

Input layer
ConvlD layer 1
ConvlD layer 2
MaxPoollD
Dropout 1
ConvlD layer 3
ConvlD layer 4
MaxPool1D
Dropout 2
ConvlD layer 5
Conv1D layer 6
MaxPool1D
Dropout 3
ConvlD layer 7
ConvlD layer 8

GlobalMaxPool1D

Dropout 4
Dense layer 1
Dense layer 2

Output layer

Filters

16
16

32
32

32
32

256
256

64
64

Kernel
size

5

Activation
function

ReLU
ReLU

ReLU
ReLU

ReLU
ReLU

ReLU
ReLU

ReLU
ReLU
Sigmoid

Input Output
shape shape
1x187 -
1x187 16X 183
16x183 16x179
16x179 16X 89
1689 1689
16X 89 32% 87
32x 87 32x85
32x85 32x42
32x42 32x42
32x42 32x40
32x40 32%38
32%38 32%x19
32x19 32x19
32%x19 25617
256x17 256x15
256X 15 256

256 256

256 64

64 64

64 1

second-best based on precision for the PTB Diagnostic
ECG dataset. Additionally, Pham et al. secured the
second-highest ranking among performers, with Sharma

Dropout
rate

Pool size
(max)

Padding

Valid
Valid

Valid
Valid

Valid
Valid

Valid
Valid
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Stride
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et al. exhibiting the lowest level of accuracy. These analy-
ses show that our proposed method has been validated for
both the PTB and MIT-BIH datasets as an efficient and
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FIGURE 8 (a) Improvement in model training and testing accuracy on the PTB diagnostic ECG dataset, (b) loss trend during epochs on
the PTB diagnostic ECG dataset, (c) improvement in model training and testing accuracy on the MIT-BIH Arrhythmia dataset, and (d) loss
trend across epochs on the MIT-BIH Arrhythmia dataset.
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accurate method for detecting arrhythmias in terms of
various criteria.

4 | DISCUSSION

4.1 | Related works on cardiac
arrhythmia classification from ECG signals
using CNNs

In this research, we perform a comparative analysis in-
volving five previously proposed methods from recent
advances. Our goal was to evaluate and benchmark our
technique against these established methods. A summary
of the advantages and disadvantages of each approach is
presented in Table 16.

1. Cardiac arrhythmia classification from ECG signals
using a 16-layer deep convolutional network (Yildirim
et al., 2018):

a. This approach employs a 16-layer deep convolutional
network with a 1D-CNN architecture. This network
can perform classification automatically using an
end-to-end structure. The preprocessing of the sig-
nals involved three steps: one without normaliza-
tion, another with signal rescaling within the (Singh
et al., 2019) interval, and the third involving signal
standardization. Finally, rescaling has achieved the
best result. This network has three classification
classes, which are 13, 15, and 17. The overall accu-
racy for each reaches 95.2%, 92.51%, and 91.33%, re-
spectively. The highest sensitivity and specificity of
93.52% and 99.61% were achieved for 13 classes in
2018, respectively.

2. Multiple classification of heart disease using ECG
signal experimental mode analysis features and one-
dimensional convolutional neural network (Hasan &
Bhattacharjee, 2019):

a. In this method, a one-dimensional CNN model
mechanism is presented for the classification of
arrhythmia types. The network processes the mod-
ified ECG signal as input in this context. Empirical
mode decomposition methods (IMFs) and higher
order intrinsic mode functions (IMFS) have been
used to form the modified ECG signal. In this
method, a pattern-matching algorithm is applied
using Pearson's correlation coefficient to check the
ability to remove noise in the modified ECG signal.
Then, the one-dimensional CNN performs the clas-
sification operation by learning the features of the
modified ECG signal. At the end of the network,
the Softmax regressor activation function is used.
This method has been evaluated on two MIT-BIH
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TABLE 11 The obtained results of our proposed model for four evaluation metrics for two used datasets.

Method Dataset Epochs Accuracy (%) Precision (%) Recall (%) F1 score (%)
Proposed method PTB 30 99.24 99.09 99.02 99.05
MIT-BIT 80 99.38 99.60 99.40 99.60

TABLE 12 Assessing the efficacy of

Methods Accuracy (%)  Precision (%) Recall (%) F1 score (%) our novel model against various machine
Gaussian Naive 67.0 67.4 67.0 66.8 learning methods using the MIT-BIH
Bayes Arrhythmia dataset.
Logistic regression 67.42 67.4 68.0 67.4
Decision trees 94.4 94.4 94.2 94.4
Linear support 94.4 94.4 94.2 94.4
vector machine
Support vector 96.18 96.4 96.2 96.0
machine
K nearest neighbors ~ 97.22 97.4 97.2 97.2
Random forest 98.24 98.4 98.2 98.2
Proposed LDCNN 99.38 99.6 99.4 99.6
The bolding indicates that these results are particularly noteworthy and represent key findings of our
study.
Methods Accuracy (%)  Precision (%) Recall (%) F1score (%) :fl(\)frifvil?’mo?zls ZZZ;gStﬂ\l’z;if;C:Cy
Gaussian Naive 61.1 65.0 68.0 60.0 machine learning methods using the PTB
Bayes diagnostic ECG dataset.
Logistic regression 82.2 79.0 75.0 76.0
Linear support 82.2 79.0 75.0 77.0
vector machine
Decision trees 92.1 90.0 90.0 90.5
K nearest neighbors ~ 92.2 90.0 91.0 90.5
Support vector 94.48 92.0 95.0 93.0
machine
Random forest 96.9 97.0 95.5 96.0
Proposed LDCNN 99.24 99.09 99.02 99.05
The bolding indicates that these results are particularly noteworthy and represent key findings of our
study.
Techniques Accuracy (%) Precision (%) Recall (%)  F1score (%) :fifrl;rﬁlolx;:ttivgiﬁlg\rlﬁl;ecii?;}fjfor
Atal & 93.19 - 93.98 - arrhythmia detection with a range of
Singh, (2020) contemporary techniques using the MIT-
Sharma 95.63 99.03 92.73 95.77 BIH Arrhythmia dataset, with metrics for
et al. (2021) all listed techniques taken directly from
Farag, (2023) 98.18 92.44 91.90 92.17 their respective publications.
Kumar 98.66 98.92 93.88 96.34
et al. (2023)
Fradi et al. (2021)  99.34 - - 99.54
Proposed 99.38 99.60 99.40 99.60
LDCNN

The bolding indicates that these results are particularly noteworthy and represent key findings of our
study.



BAYANI and KARGAR

The &) 19 of 23
§ /Ehysological 3] PHYSIOLOGICAL REPORTS

TABLE 15 Comparative analysis of our innovative LDCNN technique for arrhythmia detection with a range of contemporary

techniques using the PTB Diagnostic ECG dataset, with metrics for all listed techniques taken directly from their respective publications.

Techniques Accuracy (%)
Sharma et al. (2021) 88.59
Wang et al. (2020) 89.87
Kumar et al. (2023) 95.79
Rafi & Ko, (2022) 98.15
Pham et al (Pham et al. (2023) 98.28
Proposed LDCNN 99.24

Precision (%) Recall (%) F1 score (%)
87.34 90.07 88.69

92.86 72.38 75.23

96.29 85.38 80.37

97.31 96.85 97.79

99.90 97.72 -

99.09 99.02 99.05

The bolding indicates that these results are particularly noteworthy and represent key findings of our study.

ECG and arrhythmia diagnostic PTB datasets with
several classes and different data registers. The re-
sults show that this method has achieved a classifi-
cation accuracy of 97.70% and 98.24%, respectively,
in 2019.

3. Automatic classification of arrhythmia using deep
convolution neural network based on optimization
(BaROA-deep CNN) (Atal & Singh, 2020):

a. In this structure, a deep convolutional neural net-
work is used for accurate arrhythmia classification.
This network is adjusted using the BaROA optimi-
zation algorithm. The BaROA algorithm uses the
integration of Bat in ROA and has two modes of
encoding the solution and the fitness function.
This algorithm sets the optimal weights for the
deep convolutional neural network classifier, and
the fitness function is used to set the weights. This
method has two phases: feature extraction and ar-
rhythmia classification. In the extraction step, the
ECG signals are fed to the feature extraction mod-
ule. In this module, features are extracted using
wave features such as PR interval, PP interval, R
peak, QT interval, and RR interval. The features are
then passed to the arrhythmia classification mod-
ule to classify patients as having arrhythmia or nor-
mal. The MIT-BIH database has been used to train
this network. This approach had the parameters of
accuracy, sensitivity, and specificity of 93.19%, 95%,
and 93.98%, respectively, in 2020.

4. Automatic diagnosis of heart disease with optimized
convolutional neural networks (Fradi et al., 2021):

a. In this method, the noises of the ECG signals are re-
moved first by preprocessing through the FIR low-
pass filter. Afterward, they enhance their dataset by
extracting R-R peak information from the ECG sig-
nals. In the next step, a fully connected layer based
on convolutional neural networks is trained with dif-
ferent optimizers. In the training process, deep learn-
ing methods and various network optimizers such
as Adam (Fei et al., 2020), Nadam (Li et al., 2020),

Adadelta (Qu et al., 2019), and SGD (Amari, 1993)
are used. Also, to improve the performance of the
neural network model, gradient optimizers are used
to optimize the classification results and accuracy.
Evaluation of indices for accuracy, F1-score, sensitiv-
ity, and specificity to the values of 95%, 99%, 99.32%,
and 99.63% for MIT-BIH and to the values of 99.61%,
99%, 98.66%, and 98.85% for PTB in the year 2021 has
been achieved.

5. Integrating Fuzzy Clustering and Deep Neural
Networks for Heart Failure Diagnosis with ECG Data
(Kumar et al., 2023):

a. This mechanism uses a framework based on deep
learning and fuzzy clustering to detect arrhythmia
from ECG signals. In this approach, the initial step
involves preprocessing to eliminate noise from the
ECG signals. Then, it uses the technique of seg-
menting ECG signals and balancing the classes of
the dataset. The performed operations are trans-
ferred to deep convolutional neural network archi-
tecture to extract features. Finally, they employed
the fuzzy clustering algorithm to classify arrhyth-
mias, with the input being the extracted features.
This approach has been trained using two MIT-BIH
and PTB Diagnostic ECG datasets, and its accuracy
has reached 98% and 0.95% in both datasets, re-
spectively, in 2023.

In response to RQ1, our linear deep convolutional
neural network (LDCNN) achieves remarkable diag-
nostic effectiveness, boasting 99.24% accuracy on PTB
and 99.38% on MIT-BIH datasets. Addressing RQ2, the
LDCNN consistently outperforms traditional methods,
surpassing them in F1 scores, precision, recall, and
overall accuracy. RQ3 findings reveal the LDCNN's con-
sistent diagnostic accuracy across arrhythmia classes.
Finally, RQ4 highlights stable training trends, absence
of overfitting, and effective convergence, affirming the
LDCNN's adaptability and robust learning, ultimately
contributing to its efficacy in cardiac disease diagnosis
across diverse datasets.
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TABLE 16 (Continued)

Algorithm

Title

Year Author

1. Convolutional neural network
2. Finite impulse response (FIR)

filter

Automatic heart disease
class detection using

Marwa Fradi,

2021

Lazhar Khriji,

convolutional neural

Mohsen Machhout
and Abdulnasir

Hossen

hardware and software

resources.

improving cost performance.
4. Low computational

complexity.

network architecture-based

various optimizers-networks

2. Technical complications

in implementing algorithms

on GPU

5. Increasing the learning rate

and convergence speed

1. Absence of the 3/2 to 1/3
rule in training and testing.
2. Not using validation data
to prevent overfitting in the

training phase.

1. Denoising.

MIT-BIH and PTB

1. Deep convolutional neural

network

Fuzz-ClustNet: Coupled
fuzzy clustering and

Sanjay Kumar,

2023

2. Segmentation of the signals.

2. Balance the classes by

augmentation.

Abhishek Mallik,
Akshi Kumar,

2. Fuzzy clustering algorithm

deep neural networks for

arrhythmia detection from

ECG signals

Javier Del Ser and
Guang Yang

3. Optimal feature extraction.

3. Computational complexity

4. Increasing the accuracy of

diagnosis
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In our simulation on the MIT-BIH and PTB datasets,
we achieved remarkable maximum accuracies of 99.38%
and 99.24%, respectively. Our approach involves pro-
cessing digital data directly, converting it into vectors,
and utilizing datasets as digital numbers. Despite the
one-dimensional nature of the data, our method adeptly
addresses denoising and other issues, automatically iden-
tifying patterns for arrhythmia detection. The high accu-
racy underscores the success of our architecture in solving
the problem without the need for analog-to-digital conver-
sion or sampling.

The strength of our method lies in its direct approach
to digital data processing, eliminating errors associated
with sampling. The proposed LDCNN method effectively
covers potential errors related to sampling, ensuring sig-
nal quality and accuracy without the need for additional
conversion steps. This result demonstrates the correctness
and efficacy of our approach.

4.2 | Future works

According to the obtained results and considering the ob-
served needs, future research could explore the integration
of additional characteristics such as blood pressure and
cholesterol levels with arrhythmia signals. Additionally,
developing an Internet of Things (IoT) device to predict
and detect arrhythmias in real-time, and employing artifi-
cial intelligence for long-term ECG data analysis, could sig-
nificantly enhance personalized treatment plans. Ensuring
data security through blockchain technology could also be
a valuable approach to protect patient privacy while allow-
ing for broader analysis of anonymized data.
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