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International sharing of cohort data for research is important and challenging. We explored the feasibility of
multicohort federated analyses by examining associations between 3 pregnancy exposures (maternal education,
exposure to green vegetation, and gestational diabetes) and offspring body mass index (BMI) from infancy to age
17 years. We used data from 18 cohorts (n = 206,180 mother-child pairs) from the EU Child Cohort Network and
derived BMI at ages 0–1, 2–3, 4–7, 8–13, and 14–17 years. Associations were estimated using linear regression
via 1-stage individual participant data meta-analysis using DataSHIELD. Associations between lower maternal
education and higher child BMI emerged from age 4 and increased with age (difference in BMI z score comparing
low with high education, at age 2–3 years = 0.03 (95% confidence interval (CI): 0.00, 0.05), at 4–7 years =
0.16 (95% CI: 0.14, 0.17), and at 8–13 years = 0.24 (95% CI: 0.22, 0.26)). Gestational diabetes was positively
associated with BMI from age 8 years (BMI z score difference = 0.18, 95% CI: 0.12, 0.25) but not at younger ages;
however, associations attenuated towards the null when restricted to cohorts that measured gestational diabetes
via universal screening. Exposure to green vegetation was weakly associated with higher BMI up to age 1 year
but not at older ages. Opportunities of cross-cohort federated analyses are discussed.

BMI; cohort data sharing; federated analyses; gestational diabetes; green spaces; maternal education

Abbreviations: BMI, body mass index; ECCN, EU Child Cohort Network; GDM, gestational diabetes mellitus; IPD, individual
participant data; SEP, socioeconomic position.

Prospective cohort studies contribute to important re-
search questions, but they are resource intensive. Over recent
decades, international funders and cohort data custodians
have emphasized the importance of data sharing (1–4). This
provides economic efficiency, enables replication and trian-
gulation of findings across different studies, increases the

period of the life course that can be studied for repeated
measures, and increases statistical power particularly for
rare outcomes.

To meet this challenge, the EU Child Cohort Network
(ECCN) has been created to address key research questions
about the associations of early life stressors with health
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from infancy to adulthood (5, 6). The ECCN is an open and
sustainable network of 17 birth cohorts across 12 countries
in Europe and Australia comprising more than 250,000
participants. In addition to increasing power and support-
ing replication, this network contains extensive repeated-
measured data and thus enables researchers to explore how
associations might differ across the life course.

The aim of this paper is to use the ECCN to explore
the feasibility of multicohort federated analyses (“federated”
describes the analysis of multiple data sets) by examining
associations between different pregnancy exposures and off-
spring body mass index (BMI) from infancy to 17 years.
BMI was chosen as a suitable outcome for this proof-of-
concept study, as reducing childhood overweight and obesity
is a major global public health challenge, and it is hypothe-
sized that higher BMI starts to be “programmed” in intrauter-
ine and early infancy (7, 8). Furthermore, as weight and
height are often measured at repeated time points, it provides
an opportunity to investigate potential changes in exposure-
BMI associations at different ages across the life course.

We chose 3 pregnancy exposures that were hypothesized
to influence offspring BMI and that would be useful to
illustrate different challenges in federated analyses (e.g.,
harmonization and missingness): 1) maternal education,
2) exposure to green vegetation, and 3) gestational diabetes
(GDM). We chose maternal education as an example of a
categorical variable with low levels of missing data in ECCN
and for which there is extensive previous research on asso-
ciations with BMI. We chose exposure to green vegetation
as a continuous, area-based variable, with high levels of
missing data due to some cohorts in ECCN not having
geographic data. Finally, we chose GDM as a categorical
variable harmonized from diverse sources of information
(e.g., retrospective self-report, health record extraction and
diagnosis made on the basis of results from blood samples).
The exposures are briefly summarized below.

Maternal education: Socioeconomic position (SEP) is a
complex exposure encompassing several different domains
of family resources with maternal education at birth a com-
monly used indicator. Lower maternal education birth is
associated with higher child BMI in medium- and high-
income countries (9–14). SEP likely influences childhood
BMI through exposure to an obesogenic environment (15–
17). While studies have consistently found lower family SEP
to be associated with higher child BMI, evidence regarding
the age at which these inequalities emerge and the course
they take is not consistent. (9–13, 18, 19).

Residential proximity to green space: Maternal avail-
ability of green spaces could influence offspring BMI via
increased physical activity during pregnancy, stress reduc-
tion, or reduced exposure to pollution (20, 21). Some studies
have reported that higher postnatal exposure to green spaces
is associated with lower BMI, but evidence is not conclusive
(22–24). While increased prenatal exposure to green spaces
has been consistently associated with higher birth weight
(25, 26), little is known about associations with BMI at older
ages (27).

Gestational diabetes mellitus (GDM, defined as hyper-
glycemia in pregnancy) (28) is robustly associated with
higher mean birth weight and being large for gestational age

(29–32). Higher birth weight is in turn associated with higher
future offspring BMI, fat mass, and lean mass (33, 34);
thus, it has been proposed that intrauterine fetal overgrowth
related to higher maternal circulating glucose may result
in lifelong higher offspring BMI (35, 36). However, few
studies have explored whether any association of GDM with
offspring BMI changes as the offspring age. This is impor-
tant as a lasting effect into older age and/or an increasing
effect across both childhood and adulthood might lead to
higher risk of adverse adult cardiometabolic outcomes than
association limited only to childhood (37).

The aims of this study, therefore, were to explore the
feasibility of multicohort federated analyses by examining
associations between 3 pregnancy exposures (maternal edu-
cation, green spaces, and GDM) and BMI measured at 5 age
periods across childhood. We hypothesized that those whose
parents had lower educational attainment and those exposed
in utero to maternal gestational diabetes would have higher
BMI. As evidence for the association of maternal gestational
access to green space and offspring BMI is limited, we had
no specific hypothesis for the association.

METHODS

Inclusion criteria and participating cohorts

Pregnancy and birth cohort studies from the ECCN were
eligible to participate if they: 1) had information on at least
one of the 4 exposures and BMI measured at a minimum of
1 time point; 2) the study was approved by their institutional
review boards; and 3) the infrastructure for federated anal-
ysis was established. Further details of each cohort can be
found in Jaddoe et al. (5) and each cohort’s profile paper. All
17 core cohorts were invited, plus 2 additional cohorts from
the wider LifeCycle network (Web Appendix 1, available at
https://doi.org/10.1093/aje/kwad206) that had harmonized
data available (The Amsterdam Born Children and their
Development cohort (ABCD) (38) and The Healthy Growth
Study, (HGS) (39)). Of these 19 studies, 18 were able to
participate (the Helsinki Birth Cohort Study was unable
to participate as they had not implemented the required
infrastructure; Table 1). The analysis sample thus consisted
of these 18 cohorts, with a maximum sample size of n =
206,180 (Figure 1). All participants gave written informed
consent and ethical approval was granted by local ethics
boards (Web Appendix 2). The analysis plan can be viewed
at https://osf.io/58vau/.

Exposures

Maternal education at birth. A harmonized maternal educa-
tion variable was created in each cohort based on the Interna-
tional Standard Classification of Education 97 (ISCED-97)
and consisted of 3 categories: low (no education to lower
secondary; ISCED-97 categories 0–2), medium (upper and
postsecondary; ISCED-97 categories 3–4), high (degree and
above; ISCED-97 categories 5–6) (40). Data was available
in all cohorts.

Green spaces. Exposure to green space during pregnancy
was captured using normalized difference vegetation index
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Table 1. Summary of Cohort Characteristics, EU Child Cohort Network

Cohort Namea Country City/Area Design
No. of

Included
Children

Birth Year
Age Range of

Included
Children, years

ABCD Netherlands Amsterdam Prospective 6,152 2003–2004 0–12

ALSPAC United Kingdom Greater Bristol Prospective 10,499 1991–1992 0–17

BiB United Kingdom Bradford Prospective 13,400 2007–2011 0–10

CHOP Germany,
Belgium, Italy,
Poland, Spain

Munich, Nuremberg, Liege,
Brussels, Milano,
Warsaw, Reus, Tarragona

Prospective 1,669 2002–2004 0–11

DNBC Denmark Greater Copenhagen Prospective 77,534 1996–2002 0–18

EDEN France Nancy and Poitiers Prospective 1,765 2003–2005 0–12

ELFE France Prospective 17,926 2011 0–9

GECKO Netherlands Drenthe Prospective 2,748 2006–2007 0–11

GENR Netherlands Rotterdam Prospective 8,680 2002–2006 0–10

HGS Greece Attica, Etoloakarnania,
Thessaloniki, Iraklion

Cross-
sectionalb

2,570 1994–2000 10–14

INMA Spain Gipuzkoa, Sabadell,
Valencia

Prospective 1,918 2003–2008 0–11

MoBa Norway Prospective 85,589 1999–2008 0–13

NFBC66 Finland Prospective 7,709 1966 0–16

NFBC86 Finland Prospective 7,315 1985–1986 0–16

NINFEA Italy Florence, Rome, Turin Prospective 6,532 2005–2016 0–14

Raine Australia Perth Prospective 2,548 1989–1992 1–17

Rhea Greece Crete Prospective 1,002 2007–2008 0–12

SWS United Kingdom Southampton Prospective 3,012 1998–2007 0–10

Abbreviations: ABCD, Amsterdam Born Children and their Development; ALSPAC, Avon Longitudinal Study of Parents and Children; BIB, Born
in Bradford; CHOP, The EU Childhood Obesity Programme; DNBC, Danish National Birth Cohort; EDEN, Study on the Pre- and Early Postnatal
Determinants of Child Health and Development; ELFE, Etude Longitudinale Francaise depuis l’Enfance; GECKO, Groningen Expert Center for
Kids with Obesity Drenthe Cohort; GenR, Generation R; HGS, Healthy Growth Study; INMA, NMA-Infancia y Medio Ambiente (Environment
and Childhood Project); MoBa, Norwegian Mother, Father, and Child Cohort Study; NFBC66, Northern Finland Birth Cohort 1966; NFBC86,
Northern Finland Birth Cohort 1986; NINFEA, Nascita e INFanzia: gli Effetti dell’Ambiente; Raine, The Raine Study; Rhea, Mother Child Cohort
in Crete; SWS, Southampton Women’s Survey.

a Descriptions of all the cohorts can be found in Web Appendix 2.
b Information on early life exposures collected retrospectively.

(NDVI) within a 300-m buffer from the residential address
using geographic information systems approaches previ-
ously described (41). NDVI (range 0–1) quantifies vegeta-
tion by measuring the difference between near-infrared and
red-light reflection based on satellite imagery. Extremely
low values (0–0.1) indicate areas of barren rock, sand, or
snow; moderate values (0.2–0.5) indicate sparse vegetation
such as shrubs and grasslands, and high values (0.6–1)
indicate dense vegetation (42). Data was available for 9
cohorts (ALSPAC, BiB, DNBC, EDEN, GENR, INMA,
MoBa, NINFEA, and Rhea; all the study names are defined
in Table 1, and descriptions of all the cohorts can be found
in Web Appendix 2.).

Gestational diabetes. A binary variable indicating the pres-
ence or absence of evidence for GDM was harmonized for
each cohort based either on extraction from clinical records

or maternal self-report (Web Table 1). Data was available
for all cohorts except HGS, NFBC66, and NFBC86. For
most of the included cohorts at the time of pregnancy, no
universal diagnostic test was used, meaning that selective
misclassification of some women with GDM being treated
as “healthy,” particularly if they had no clear risk factors for
GDM, is possible. To test this, we performed a sensitivity
analysis using data from only those studies in which all
women in the sample had a blood measure of hyperglycemia,
including glycated hemoglobin (HbA1c), fasting or random
glucose, or oral glucose challenge or tolerance test (BiB and
EDEN).

Outcome

The outcome was offspring BMI z scores based on either
clinical or parent-reported height and weight measurements

Am J Epidemiol. 2024;193(5):753–763



756 Cadman et al.

Invited (n = 19 cohorts)

Eligible Sample (n = 18 cohorts)

Participants in provided data
sets (n = 320,788)

Analysis Samples With Some
Exposure and Outcome Data 

(n = 18 cohorts; n = 258,568 participants)

Maternal education analysis
(n = 206,180)

Green spaces analysis (n = 39,690)
Gestational diabetes analysis

(n = 177,600)

Participants With No Data on All 
3 Exposures and/or Childhood 

BMI (n = 62,220)

Data Not Available via
DataSHIELD by April 1, 2022

(n = 1 cohorts; HBCS)

Figure 1. Flow chart of cohorts and participants for a study of associations of maternal educational level, proximity to green space during
pregnancy, and gestational diabetes with body mass index (BMI) from infancy to early adulthood, multiple countries. Signed agreements received
and DataSHIELD access credentials provided. HBCS, Helsinki Birth Cohort Study.

(Web Table 2). Sex- and age-specific z scores were
calculated per month for BMI using external World
Health Organization standards (43) and references (44)
excluding observations of 5 standard deviations or more
from the population median. Separate BMI z scores were
calculated for 5 age periods defined a priori: 1) 0–1
years, 2) 2–3 years, 3) 4–7 years, 4) 8–13 years, and 5)
14–17 years. These represent key developmental periods
of change (early infancy, preschool, adiposity rebound,
puberty, and late adolescence). Only 1 measurement
per child was included within each period; therefore, if
children had more than 1 measurement within an age
bracket we used the earliest. A summary of the number
of observations provided by each child is provided in Web
Table 3.

Confounders

We defined confounders as any factor that plausibly
causes the exposure and offspring BMI, and we used directed
acyclic graphs to depict these and determine whether there
was any evidence of colliders that we should not adjust
for (Web Figure 1). All confounders were assessed via
self-report except prepregnancy BMI, which was based on
either self-report or clinical measurements of weight and
height. For analyses of maternal education with offspring
BMI, no confounders were included as we did not identify
plausible causes of variation in both maternal education and
offspring BMI. For analyses with NDVI as the exposure, we
adjusted for maternal education, area deprivation, and parity.
For analyses with GDM as the exposure, we adjusted for
maternal education, maternal age at birth (years), maternal
prepregnancy BMI (calculated as weight (kg)/ height (m)2),

parity (nulliparous, multiparous), and maternal smoking
during pregnancy (yes/no). In addition, all analyses were
adjusted for cohort, child sex, and age at weight and height
measurements (months) to improve statistical precision. All
cohorts had some available data on the above confounders.
Maternal ethnicity also fit our definition of a confounder
for all exposures but was only available (defined as Western
vs. other) in 8 of the 17 cohorts (ABCD, ALSPAC, BiB,
ELFE, GECKO, GENR, INMA, and Raine; maximum n =
45,601, representing 22% of the 206,180 participants). In a
sensitivity analyses we repeated all analyses in this subset
of cohorts with additional adjustment for ethnicity.

Federated analyses using DataSHIELD

All analyses were performed using DataSHIELD, version
6.1.0 (45), and R, version 3.5.2 (R Foundation for Statis-
tical Computing, Vienna, Austria). Briefly, each participat-
ing cohort stored their harmonized data on a local server
protected by a firewall. Researchers granted permission to
access the data use DataSHIELD to conduct remote anal-
ysis of individual participant data. DataSHIELD provides
data security by preventing researchers viewing, copying,
or transferring any data. Instead, analysis commands are
performed on each server, and only nondisclosive summary
statistics are returned to the researcher.

The functionality available within DataSHIELD is con-
tinually being developed; however, at the time of writing,
mixed effects models were not available. Therefore, associ-
ations between each exposure and BMI at each age period
were tested using linear regression and 1-stage individual
participant data (IPD) meta-analysis. For each exposure,
we fitted 5 separate regression models where the outcome
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was child BMI z score calculated within each age period as
described above. All regression models included a dummy
variable for cohort and adjusted for confounders as described
above. To explore potential selection bias (due to each cohort
contributing different data at different ages), we repeated all
analyses, restricting the sample to the subgroup of partici-
pants with data at the oldest age. We also repeated analyses
using 2-stage IPD random effects meta-analysis to describe
estimates within each cohort and explore between-cohort
heterogeneity. We also assessed the influence of 2 large
cohorts (DNBC and MoBa) by repeating analyses with these
cohorts excluded.

Missing data

The analysis sample consisted of participants with avail-
able data on at least 1 exposure and BMI in at least 1
outcome period. There were minimal differences between
participants in the analysis sample and those who were
excluded, except included participants had slightly lower
education and had lower rates of smoking in pregnancy
(Web Table 4). Multiple imputation was also not available
within DataSHIELD; therefore, missing data were handled
through complete-case analysis, with the percentage of par-
ticipants who were complete cases ranging from 6% to
65% of eligible participants from all cohorts combined; the
proportion with complete data decreased with increasing age
(Web Table 5). In addition to attrition across all cohorts,
one reason for the low percentage of complete cases in the
oldest age bracket was that for one of the largest cohorts
(DNBC) only a small percentage of children had reached this
age at the time of analysis. Estimates from linear regression
models using complete cases are unbiased if the chance
of being missing is not associated with the outcome after
adjusting for covariates (46). To explore this assumption,
for each exposure-outcome analysis we derived a variable
indicating whether each participant had complete data. We
then regressed this variable on child BMI, adjusting for
nonmissing covariates (Web Figure 2). For all exposures,
associations between BMI at all ages and the chance of
having complete data were close to null.

RESULTS

Participant characteristics

The number of participants included in analyses ranged
from 206,180 (maternal education and BMI for ages up to
1 year) to 7,096 (NDVI and BMI at ages 14–17 years).
There were large differences between cohorts in the educa-
tional level of mothers, with MoBa and NINFEA containing
mostly highly educated mothers while BiB, NFBC66, and
Raine contained mothers with lowest levels of education
(Figure 2A). INMA, NINFEA, and Rhea had the lowest
values for NDVI, indicating exposure to lower levels of
vegetation (Figure 2B). There was marked heterogeneity
between cohorts in estimated rates of GDM (e.g., GENR =
0.8%, NINFEA = 8.1%; Figure 2C). Cohort-specific infor-
mation on covariates and child BMI, height, weight, and age
at measurement are shown in Web Tables 6–10.

Figure 2. Exposure descriptive statistics for a study of associations
of maternal educational level, proximity to green space during preg-
nancy, and gestational diabetes with body mass index (BMI) from
infancy to early adulthood, multiple countries. A) Maternal education:
dark blue = low education, teal = medium education, yellow = high
education, orange = missing. B) Normalized difference vegetation
index (NDVI). C) Gestational diabetes: dark blue = no pregnancy
diabetes, teal = pregnancy diabetes, orange = missing. No data
was available on gestational diabetes for the EU Childhood Obesity
Programme (CHOP) as this was an exclusion criterion for entry
into the study. For all other studies, figures are blank where the
exposure is entirely missing. Values for NDVI represent median and
interquartile range. All the study names are defined in Table 1, and
descriptions of all the cohorts can be found in Web Appendix 2. Data
was included from cohorts containing births from years 1966–2016.

Associations between pregnancy exposures and child
BMI

Figures 3–5 show associations between each exposure
and BMI z scores within each age period. At ages 0–1 and
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Figure 3. Associations between maternal education at birth and child body mass index z scores using 1-stage individual patient data meta-
analysis of data from multiple countries, from cohorts containing births from years 1966–2016. Models adjusted for cohort, child sex, and exact
age at measurement in days. Solid fill = maximum available sample; no fill = restricted to sample with available data at ages 14–17 years. BMI,
body mass index.

2–3 years, associations between maternal education and
BMI were close to null; however, at older ages a consistent
pattern emerged, with lower maternal education associated
with higher childhood BMI (Figure 3). There was some
evidence of a linear relationship as the magnitude of the
association increased across categories of maternal educa-
tion. Associations at earlier ages were slightly weaker when
restricting analyses to the subgroup of participants with
data at the oldest age. Results were similar using 2-stage
IPD (Web Figures 3A–B), and while there was consider-
able heterogeneity between cohorts (I2 range, 0%–92%) the
direction of association was largely consistent.

At ages 0–1, higher NDVI in pregnancy was associated
with slightly higher BMI; however, at older ages, associa-
tions were close to null (Figure 4). Repeating analyses using
2-stage IPD showed considerable heterogeneity between
cohorts (I2 range 0%–66%): For example at ages 2–3, higher
NDVI was associated with higher BMI in BiB but lower BMI
in Rhea (Web Figure 4).

Between ages 0 and 7, associations between GDM and
childhood BMI were close to null; however, at ages 8–13,
GDM was associated with higher BMI (Figure 5). Associa-
tions at all ages, except 0–1, were stronger when restricting
to the subgroup of participants with data at the oldest age.
These results were replicated using 2-stage IPD, with 10 out
of 13 cohorts showing a positive association at ages 8–13
(I2 = 0–78%; Web Figure 5). At ages 14–17, associations

attenuated towards null; however, within this age period only
3 cohorts had available data.

Sensitivity and subgroup analyses

To test for potential confounding by indication, we
repeated analyses for GDM comparing cohorts where
assessment was via a universal blood-based glucose test ver-
sus self-report or nonuniversal test, and we found estimates
to be lower for the 2 cohorts that used a universal blood-
based test (Web Table 11). We additionally adjusted for eth-
nicity in the subset of up to 45,601 participants with available
data, which attenuated associations of maternal education
towards the null (Web Table 12). Finally we repeated
analyses removing the 2 largest cohorts (DNBC and MoBa;
Web Table 13); however, this did not change the direction
of any associations or markedly change their magnitude.

DISCUSSION

In this IPD meta-analysis of 18 cohort studies, with a max-
imum sample of 206,180 children, we explored the feasibil-
ity and utility of multicohort federated analysis by examining
associations between key pregnancy exposures and BMI
across childhood. We found consistent evidence that lower
maternal education was associated with increased childhood
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Figure 4. Associations between normalized difference vegetation index in pregnancy and child body mass index z scores using 1-stage
individual patient data meta-analysis of data from multiple countries, from cohorts containing births from years 1966–2016. Models adjusted for
cohort, child sex, exact age at measurement, maternal education, parity, and area deprivation. Normalized difference vegetation index scaled
by interquartile range. Solid fill = maximum available sample; no fill = restricted to sample with available data at ages 14–17 years. BMI, body
mass index.

BMI. Replicating and extending previous research (10–13,
18), we found this association to emerge from ages 4 to 7
years and increase in magnitude with age. Consistent with
previous studies showing a positive association between
exposure to green vegetation and birthweight (26, 27, 48,
49), we found that higher NDVI was associated with slightly
higher BMI in the first year of life, although associations at
older ages were close to null. We also found evidence that
GDM was associated with higher child BMI at ages 8–13
but not at younger ages.

Opportunities and challenges of federated data analysis

Data harmonization. In the ECCN (5), we were interested
in average associations across studies that were largely from

different European countries, with a small number of studies
from other high-income countries (e.g., Australia). As such,
a substantial effort was made to harmonize data across
all contributing studies (5, 6). Data harmonization is also
commonly undertaken in nonfederated analyses; therefore,
the opportunities and challenges discussed herein will have
relevance to other analysis attempting to estimate average
associations across studies using consistent data.

Individual participant pooling of studies (whether fed-
erated or not) provides the opportunity to increase statis-
tical power and obtain more precise estimates than any
single cohort, and to explore robustness of associations
by examining consistency (replication) across independent
populations. However, harmonization of data assessed in
different ways and to different levels of detail can result in

Figure 5. Associations between gestational diabetes and child body mass index z scores using 1-stage individual patient data meta-analysis
of data from multiple countries, from cohorts containing births from years 1966–2016. Models adjusted for cohort, child sex, exact age at
measurement, maternal education, maternal age at birth, prepregnancy body mass index (BMI), pregnancy smoking, and parity. Solid fill =
maximum available sample; no fill = restricted to sample with available data at ages 14–17.
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between-study heterogeneity that could complicate inter-
pretation of results. For example, if different studies have
used different methods for a binary variable, there may be
different levels of misclassification between studies that are
disguised by the harmonized binary variable.

As noted in the methods and results above, this was a
concern for the harmonized GDM variable. For most stud-
ies, this was assessed via self-report, in populations where
policy-dictated diagnostic tests were only done in those with
risk factors at the first antenatal clinic visit, which could
introduce confounding by indication. To explore this, we
undertook a sensitivity analysis comparing pooled results
from the 2 studies that had diagnosed GDM in all women
using a blood-based measure of circulating glucose to those
from remaining studies. The finding of a weaker associ-
ation in those with the universal blood test suggests that
our concerns regarding confounding by indication may be
valid. While the harmonized binary variable can contain
all data from all of the studies, we would recommend that
other pooled individual participant studies undertake similar
subgroup analyses where different methods have been used
to assess a harmonized variable.

A further challenge with data harmonization is the loss
of information through having to harmonize to the study
with least detail for each measure, which could increase the
risk of residual confounding. For example, in the present
study, maternal education was harmonized into 3 categories
from the more granular detail available within many of the
cohorts, and similarly maternal smoking in pregnancy was
harmonized to yes versus no, when several studies had more
detailed measures on amount and timing of smoking (e.g.,
if a woman had smoked periconceptually and quit before
pregnancy). Thus, the associations of GDM with offspring
BMI might be influenced by residual confounding due to this
“lowest common denominator.” SEP might be expected to
confound away from the null, but as smoking results in lower
BMI (47), it might mask an association (confound towards
the null). As there are many different measures across the
studies for both maternal education and smoking, to explore
the possible effect of this in subgroups would result in groups
with small numbers, for which robustly identifying between
subgroup heterogeneity would be difficult and counter one
of the key benefits of larger sample sizes.

Available analytical methods. A key opportunity of fed-
erated analysis is the ability to analyze data from multiple
cohorts without the need for data transfer. This minimizes
the administrative burden of data transfer agreements and
governance issues related to physical data sharing. In con-
trast to the traditional approach (where researchers from sep-
arate institutions run analyses which are then meta-analyzed
by a central group), the federated approach is more time
efficient and flexible as one researcher can perform all
analyses and combine results. However, a limitation with
DataSHIELD is that only a small subset of R packages are
available so far, as any new packages need to be integrated
and tested to ensure that disclosure risk is minimized.

While many R packages are now implemented in
DataSHIELD (e.g., Metafor (48)), at the time of analysis,
2 methods were not available: multiple imputation and

mixed effects models. In the absence of multiple imputation
we used complete-case analysis, which in some scenarios
carries the risk of bias (47). To explore potential selection
bias due to attrition and cohorts differentially contributing
data to different analyses, we repeated analyses restricting
to the subgroup of participants with data at the oldest age
period. For analyses with maternal education as the exposure
we found lower estimates in this subgroup at earlier ages
which may suggest potential selection bias with results at
the older age being underestimated. By contrast, for analyses
with gestational diabetes as the exposures we found stronger
estimates at earlier ages suggesting that estimates at older
ages may be overestimated. Where complete-case analysis
is used, we therefore suggest that, at minimum, authors fully
describe missing data, consider its likely mechanisms, and
explore the potential for bias where possible.

The unavailability of mixed effects models meant that we
were not able to explore associations with change in BMI
as offspring aged in a way that accounted for correlation
between repeat measures. Mixed effects models would also
have enabled us to use all available data from participants
with at least one measure of BMI, under a missing at random
assumption (49, 50). Notwithstanding, our results for exam-
ple with maternal education are broadly similar to models
which did use trajectory analysis (i.e., showing widening
inequalities) (12). DataSHIELD is a continually evolving
project, and the implementation of other new methods is
underway.

Summary and future implications

In this multicohort study with 18 cohorts and up to
206,180 participants, we have illustrated potential scientific
gains of collaboration and data sharing between interna-
tional birth cohorts. We have demonstrated how federated
analysis using DataSHIELD with cohorts from the ECCN
provides opportunities to tackle research questions with in-
creased statistical power and the ability to explore consis-
tency (replication) across independent studies without the
need to share data. We acknowledge and demonstrate the
possibility of bias and residual confounding resulting from
harmonizing data across multiple cohorts and the limitations
that result from federated data platforms, i.e., not having
more advanced data analysis methods. While we have focused
here on DataSHIELD, we expect that other federated
analysis platforms will similarly focus on straightforward
descriptive and generalized regression models as more
advanced methods are added to the platform.
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