Abstract
Based upon the observed cleavage of various peptidyl substrates by the recombinant prohormone convertases PC1 and furin, an intramolecularly quenched fluorogenic peptidyl substrate, (o-aminobenzoyl)-Lys-Glu-Arg-Ser-Lys-Arg-Ser-Ala-Leu-Arg-Asp-(3-nitro)Ty r-Ala, was synthesized. In spite of the distance (approx. 33 A) separating the fluorescent donor/acceptor pair, the highly fluorescent o-aminobenzoyl group is efficiently quenched by long-range resonance energy transfer to the (3-nitro)Tyr moiety. Both recombinant human PC1 and human furin recognize and cleave specifically this substrate at the expected Arg-Ser site in a sensitive manner. The Km values for human PC1 and human furin were 17 microM and 30 microM respectively, with Vmax. values of 6.4 microM/h and 18 microM/h. These values differ significantly from those obtained when using a 7-amino-4-methylcoumarin-containing pentapeptidyl substrate where, for similar Km values, the Vmax. values were much lower. The peptide sequence was used to synthesize another peptide incorporating a ketomethylene arginyl pseudopeptide bond. This compound proved to be a potent competitive inhibitor of both human PC1 and human furin, displaying Ki values of 7.2 microM and 2.4 microM respectively.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alarcón C., Cheatham B., Lincoln B., Kahn C. R., Siddle K., Rhodes C. J. A Kex2-related endopeptidase activity present in rat liver specifically processes the insulin proreceptor. Biochem J. 1994 Jul 1;301(Pt 1):257–265. doi: 10.1042/bj3010257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bailyes E. M., Hutton J. C. Kinetic analysis of the type-1 proinsulin endopeptidase by a monoclonal antibody-based immunoadsorbent assay. Biochem J. 1992 Aug 15;286(Pt 1):223–229. doi: 10.1042/bj2860223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barrett A. J., Knight C. G., Brown M. A., Tisljar U. A continuous fluorimetric assay for clostridial collagenase and Pz-peptidase activity. Biochem J. 1989 May 15;260(1):259–263. doi: 10.1042/bj2600259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Basak A., Boudreault A., Jean F., Chrétien M., Lazure C. Radiolabeled biotinyl peptides as useful reagents for the study of proteolytic enzymes. Anal Biochem. 1993 Mar;209(2):306–314. doi: 10.1006/abio.1993.1124. [DOI] [PubMed] [Google Scholar]
- Basak A., Jean F., Dugas H., Lazure C. Biotinylation of an enkephalin-containing heptapeptide via various spacer arms. Synthesis, comparative binding studies toward avidin, and application as substrates in enzymatic reactions. Bioconjug Chem. 1994 Jul-Aug;5(4):301–305. doi: 10.1021/bc00028a003. [DOI] [PubMed] [Google Scholar]
- Basak A., Jean F., Seidah N. G., Lazure C. Design and synthesis of novel inhibitors of prohormone convertases. Int J Pept Protein Res. 1994 Sep;44(3):253–261. doi: 10.1111/j.1399-3011.1994.tb00168.x. [DOI] [PubMed] [Google Scholar]
- Brennan S. O., Nakayama K. Cleavage of proalbumin peptides by furin reveals unexpected restrictions at the P2 and P'1 sites. FEBS Lett. 1994 Jun 20;347(1):80–84. doi: 10.1016/0014-5793(94)00511-7. [DOI] [PubMed] [Google Scholar]
- Brown A. M., George S. M., Blume A. J., Dushin R. G., Jacobsen J. S., Sonnenberg-Reines J. Biotinylated and cysteine-modified peptides as useful reagents for studying the inhibition of cathepsin G. Anal Biochem. 1994 Feb 15;217(1):139–147. doi: 10.1006/abio.1994.1094. [DOI] [PubMed] [Google Scholar]
- Chagas J. R., Juliano L., Prado E. S. Intramolecularly quenched fluorogenic tetrapeptide substrates for tissue and plasma kallikreins. Anal Biochem. 1991 Feb 1;192(2):419–425. doi: 10.1016/0003-2697(91)90558-b. [DOI] [PubMed] [Google Scholar]
- Decroly E., Vandenbranden M., Ruysschaert J. M., Cogniaux J., Jacob G. S., Howard S. C., Marshall G., Kompelli A., Basak A., Jean F. The convertases furin and PC1 can both cleave the human immunodeficiency virus (HIV)-1 envelope glycoprotein gp160 into gp120 (HIV-1 SU) and gp41 (HIV-I TM). J Biol Chem. 1994 Apr 22;269(16):12240–12247. [PubMed] [Google Scholar]
- DiMaio J., Gibbs B., Lefebvre J., Konishi Y., Munn D., Yue S. Y., Hornberger W. Synthesis of a homologous series of ketomethylene arginyl pseudodipeptides and application to low molecular weight hirudin-like thrombin inhibitors. J Med Chem. 1992 Sep 4;35(18):3331–3341. doi: 10.1021/jm00096a004. [DOI] [PubMed] [Google Scholar]
- DiMaio J., Ni F., Gibbs B., Konishi Y. A new class of potent thrombin inhibitors that incorporates a scissile pseudopeptide bond. FEBS Lett. 1991 Apr 22;282(1):47–52. doi: 10.1016/0014-5793(91)80441-5. [DOI] [PubMed] [Google Scholar]
- Green J. D. Detection of femtomole quantities of proteases by high-performance liquid chromatography. Anal Biochem. 1986 Jan;152(1):83–88. doi: 10.1016/0003-2697(86)90123-5. [DOI] [PubMed] [Google Scholar]
- Jean F., Basak A., Chrétien M., Lazure C. Detection of endopeptidase activity and analysis of cleavage specificity using a radiometric solid-phase enzymatic assay. Anal Biochem. 1991 May 1;194(2):399–406. doi: 10.1016/0003-2697(91)90248-r. [DOI] [PubMed] [Google Scholar]
- Jean F., Basak A., Rondeau N., Benjannet S., Hendy G. N., Seidah N. G., Chrétien M., Lazure C. Enzymic characterization of murine and human prohormone convertase-1 (mPC1 and hPC1) expressed in mammalian GH4C1 cells. Biochem J. 1993 Jun 15;292(Pt 3):891–900. doi: 10.1042/bj2920891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King D. S., Fields C. G., Fields G. B. A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis. Int J Pept Protein Res. 1990 Sep;36(3):255–266. doi: 10.1111/j.1399-3011.1990.tb00976.x. [DOI] [PubMed] [Google Scholar]
- Knight C. G. A quenched fluorescent substrate for thimet peptidase containing a new fluorescent amino acid, DL-2-amino-3-(7-methoxy-4-coumaryl)propionic acid. Biochem J. 1991 Feb 15;274(Pt 1):45–48. doi: 10.1042/bj2740045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matayoshi E. D., Wang G. T., Krafft G. A., Erickson J. Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer. Science. 1990 Feb 23;247(4945):954–958. doi: 10.1126/science.2106161. [DOI] [PubMed] [Google Scholar]
- Matthews D. J., Goodman L. J., Gorman C. M., Wells J. A. A survey of furin substrate specificity using substrate phage display. Protein Sci. 1994 Aug;3(8):1197–1205. doi: 10.1002/pro.5560030805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meldal M., Breddam K. Anthranilamide and nitrotyrosine as a donor-acceptor pair in internally quenched fluorescent substrates for endopeptidases: multicolumn peptide synthesis of enzyme substrates for subtilisin Carlsberg and pepsin. Anal Biochem. 1991 May 15;195(1):141–147. doi: 10.1016/0003-2697(91)90309-h. [DOI] [PubMed] [Google Scholar]
- Meldal M., Svendsen I., Breddam K., Auzanneau F. I. Portion-mixing peptide libraries of quenched fluorogenic substrates for complete subsite mapping of endoprotease specificity. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3314–3318. doi: 10.1073/pnas.91.8.3314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milton R. C., Becker E., Milton S. C., Baxter J. E., Elsworth J. F. Improved purities for Fmoc-amino acids from Fmoc-ONSu. Int J Pept Protein Res. 1987 Sep;30(3):431–432. doi: 10.1111/j.1399-3011.1987.tb03351.x. [DOI] [PubMed] [Google Scholar]
- Molloy S. S., Bresnahan P. A., Leppla S. H., Klimpel K. R., Thomas G. Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem. 1992 Aug 15;267(23):16396–16402. [PubMed] [Google Scholar]
- Nagase H., Fields C. G., Fields G. B. Design and characterization of a fluorogenic substrate selectively hydrolyzed by stromelysin 1 (matrix metalloproteinase-3). J Biol Chem. 1994 Aug 19;269(33):20952–20957. [PubMed] [Google Scholar]
- Rucklidge G. J., Milne G. A radiolabel-release microwell assay for proteolytic enzymes present in cell culture media. Anal Biochem. 1990 Mar;185(2):265–269. doi: 10.1016/0003-2697(90)90290-p. [DOI] [PubMed] [Google Scholar]
- Seidah N. G., Day R., Marcinkiewicz M., Benjannet S., Chrétien M. Mammalian neural and endocrine pro-protein and pro-hormone convertases belonging to the subtilisin family of serine proteinases. Enzyme. 1991;45(5-6):271–284. doi: 10.1159/000468901. [DOI] [PubMed] [Google Scholar]
- Steiner D. F., Smeekens S. P., Ohagi S., Chan S. J. The new enzymology of precursor processing endoproteases. J Biol Chem. 1992 Nov 25;267(33):23435–23438. [PubMed] [Google Scholar]
- Stöcker W., Ng M., Auld D. S. Fluorescent oligopeptide substrates for kinetic characterization of the specificity of Astacus protease. Biochemistry. 1990 Nov 13;29(45):10418–10425. doi: 10.1021/bi00497a018. [DOI] [PubMed] [Google Scholar]
- Tamburini P. P., Dreyer R. N., Hansen J., Letsinger J., Elting J., Gore-Willse A., Dally R., Hanko R., Osterman D., Kamarck M. E. A fluorometric assay for HIV-protease activity using high-performance liquid chromatography. Anal Biochem. 1990 May 1;186(2):363–368. doi: 10.1016/0003-2697(90)90095-q. [DOI] [PubMed] [Google Scholar]
- Van de Ven W. J., Roebroek A. J., Van Duijnhoven H. L. Structure and function of eukaryotic proprotein processing enzymes of the subtilisin family of serine proteases. Crit Rev Oncog. 1993;4(2):115–136. [PubMed] [Google Scholar]
- Yaron A., Carmel A., Katchalski-Katzir E. Intramolecularly quenched fluorogenic substrates for hydrolytic enzymes. Anal Biochem. 1979 May;95(1):228–235. doi: 10.1016/0003-2697(79)90210-0. [DOI] [PubMed] [Google Scholar]
- Zimmerman M., Yurewicz E., Patel G. A new fluorogenic substrate for chymotrypsin. Anal Biochem. 1976 Jan;70(1):258–262. doi: 10.1016/s0003-2697(76)80066-8. [DOI] [PubMed] [Google Scholar]
