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A B S T R A C T

Background and purpose: Radiotherapy plans with excessive complexity exhibit higher uncertainties and worse
patient-specific quality assurance (PSQA) results, while the workload of measurement-based PSQA can impact
the efficiency of the radiotherapy workflow. Machine Learning (ML) and Lean Six Sigma, a process optimization
method, were implemented to adopt a targeted PSQA approach, aiming to reduce workload, risk of failures, and
monitor complexity.
Materials and methods: Lean Six Sigma was applied using DMAIC (define, measure, analyze, improve, and control)
steps. Ten complexity metrics were computed for 69,811 volumetric modulated arc therapy (VMAT) arcs from
28,612 plans delivered in our Institute (2013–2021). Outlier complexities were defined as >95th-percentile of
the historical distributions, stratified by treatment. An ML model was trained to predict the gamma passing rate
(GPR-3 %/1mm) of an arc given its complexity. A decision support system was developed to monitor the
complexity and expected GPR. Plans at risk of PSQA failure, either extremely complex or with average GPR <90
%, were identified. The tool’s impact was assessed after nine months of clinical use.
Results: Among 1722 VMAT plans monitored prospectively, 29 (1.7 %) were found at risk of failure. Planners
reacted by performing PSQA measurement and re-optimizing the plan. Occurrences of outlier complexities
remained stable within 5 %. The expected GPR increased from a median of 97.4 % to 98.2 % (Mann-Whitney p <

0.05) due to plan re-optimization.
Conclusions: ML and Lean Six Sigma have been implemented in clinical practice enabling a targeted
measurement-based PSQA approach for plans at risk of failure to improve overall quality and patient safety.

1. Introduction

Currently, most radiotherapy (RT) plans are delivered via intensity-
modulated techniques. The American Association of Physicists in Med-
icine Task Group (AAPM TG) 218 recommended that all modulated RT
plans should undergo pre-treatment verification through a patient-
specific quality assurance (PSQA) program [1]. PSQA is based on mea-
surements to evaluate the agreement between the dose calculated by the

treatment planning system (TPS) and the dose measured at the linear
accelerator (linac). The agreement is quantified through a score, called
gamma passing rate (GPR), which considers both the dose difference and
the physical distance between the measured and calculated dose dis-
tributions [2].

The substantial workload associated with measurement-based PSQA
can impact the efficiency of the RT workflow, potentially delaying the
start of clinical treatments. The volume of intensity-modulated
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treatments has increased considerably in recent years and conducting
individual PSQA measurements for every single case has become chal-
lenging [3]. At the same time, due to advancements in technology,
improved planning techniques, and quality control, PSQA failures have
become increasingly rare incidents [4,5]. Therefore, to ensure that pa-
tient safety is maintained while preventing an excessive workload for
the clinical staff, it is crucial to maximize the overall efficiency of the RT
procedure and adopt a targeted PSQA approach.

To address this, plan complexity metrics have been proposed as
predictors of the PSQA outcome, aiming to reduce the QA workload
[6,7]. Plan complexity attempts to quantify the uncertainties that may
affect the accuracy of dose calculation and treatment delivery due to
modulation of machine parameters, limitations in calculation algo-
rithms, and beam and multileaf collimator (MLC) modeling [8–12]. The
latest approach presented in the literature concerns the development of
machine learning (ML) models to predict the PSQA results from plan
complexity [13–19]. However, their application in clinical practice over
a long period of time is yet to be reported.

In this study, we introduce a procedure to monitor the complexity
and expected PSQA result of a treatment plan leveraging an in-house ML
model. Our approach is based on Lean Six Sigma, a methodology
introduced in the manufacturing industry to improve process quality.
For our purposes, the RT planning process is under consideration, and
we use quality in Lean Six Sigma terms to denote its overall reliability,
consistency, and accuracy, thus encompassing dosimetric quality, plan
complexity, and deliverability.

Our aim is twofold. First, to monitor outlier complexity and improve
overall quality while ensuring that treatment plans still meet the desired
clinical goals. Second, to reduce the risk of PSQA failure and allocate
resources more efficiently, as plans with a higher likelihood of passing
PSQA can undergo a streamlined QA program which does not require
time-consuming measurements.

2. Material and methods

2.1. Lean Six Sigma

Lean Six Sigma combines the Lean and Six Sigma approaches. Lean,
coined by Krafcik [20] and then defined by Womack et al. [21], focuses
on eliminating non-value-added activities, or waste, within a process. In
lean healthcare, waste refers to activities not directly benefiting the pa-
tient [22]. Six Sigma, a data-driven methodology introduced by Smith in
1986 [23], aims to minimize the occurrence of defects from a process
and maintain a level of performance within the specification limits of
±6σ, i.e., 3.4 defects per million opportunities. Research in the late 90s
began exploring Six Sigma in healthcare [24].

Lean and Six Sigma have been effectively applied in RT for treatment
planning, patient setup, and working group management [25–29]. In
this study, the Lean Six Sigma methodology was implemented in clinical
practice using the five DMAIC steps: Define, Measure, Analyze, Improve,
and Control. Ethical approval was not required for this study.

In the first step, the problem or opportunity for improvement was
defined. A certain level of complexity in treatment plans is often
required to achieve an acceptable dose distribution [6,7,9]. While
higher complexity can improve dosimetric quality, the increased mod-
ulation of machine parameters can reduce the deliverability below
tolerance. In addition, the agreement between dose calculation and
PSQA measurement can be compromised due to limitations in calcula-
tion algorithms and the influence of beam and MLC modeling.
Conversely, very low complexity can result in suboptimal plans where
there is margin for improving dosimetric quality without affecting
deliverability and calculation reliability [30]. Thus, the following
problem statement was identified: “The RT optimization process might
produce suboptimal plans due to extremely low or extremely high
complexity”.

In the Measure phase, data were collected to quantify the current

state of the process. A retrospective analysis was performed on all
28,612 volumetric modulated arc therapy (VMAT) plans (69,811 arcs)
delivered in our Institute between 2013 and 2021. Details on the clinical
equipment used are provided in Table S1 of the Supplementary material.
For each plan, the DICOM RTPLAN was analyzed with a MATLAB script
to compute ten metrics representing various aspects of plan complexity
for VMAT treatments [4,31]. While the software computed additional
parameters, such as gantry speed, MLC speed, field size, and MU, in this
study we focused on metrics derived from machine parameters to assess
their effectiveness on large datasets. All metrics, computed per arc, are
listed in Table 1.

PSQA measurements and analyses were performed with the linacs’
electronic portal imaging device (EPID) using the Portal Dosimetry
software (v15.6; Varian Medical Systems, Palo Alto, CA). The gamma
passing rate (GPR) was computed in absolute dose with 3 %(global)/1
mm criteria, normalizing by the maximum value within the TPS dose
distribution, and using a 10 % cut-off. A 90 % action limit was
considered.

During the Analyze stage, data were inspected to identify, validate,
and select the root cause of the problem for elimination. A causal dia-
gram, shown in Fig. 1, was outlined to characterize the source of a
suboptimal RT optimization process and delivery to the patient. The
initial lack of monitoring of plan complexity was recognized as root
cause for a series of negative effects, which ultimately impacted the
quality and timeliness of a clinical treatment.

The distributions of the complexity metrics were stratified by treat-
ment (see Fig. S1 in the Supplementary material for the stratification
statistics). To reduce the variability and improve the RT optimization
process quality, outlier values of complexity were defined as below the
5th or above the 95th percentile of the distributions, i.e., either subop-
timal or extremely complex plans, respectively. These thresholds iden-
tified the specification limits (sigma level) within which the RT
optimization process should perform after the Lean Six Sigma
implementation.

The aim of the Improve phase was to design, implement, and verify a
solution. AnMLmodel (xgboost) was trained to predict the GPR of an arc
based on its complexity and other plan parameters, for a total of 19
numerical features. The detailed methodology and evaluation can be
found in the original paper [4]. The model was trained on 5522 VMAT
plans delivered from 2018 to 2022 (including data after the conclusion
of the Measure phase). HyperArc (Varian) plans, fields whose size was
greater than the EPID acquisition size, and incorrect/incomplete mea-
surements were excluded. As the GPR was affected by the mechanical
precision of the treatment machines, only Varian TrueBeam machines
were considered.

Table 1
List of complexity metrics considered in this study, calculated for each arc.

Name Description

1 Q1 MLCGap First quartile of the distribution of MLC gap sizes (calculated
per control point)

2 Median
MLCGap

Median of the distribution of MLC gap sizes (calculated per
control point)

3 SAS10 [32] Small aperture score: fraction of MLC gaps <10 mm
4 MeanTGI [33] Mean tongue and groove index: irregularity in beam

aperture shapes
5 MCS [34] Modulation complexity score: combines segment shape and

area of beam aperture
6 MITotal [35] Modulation index for total modulation: combines MLC

dynamics, gantry speed variability and dose rate variability
7 BI [36] Beam irregularity: measures the non-circularity of the MLC

aperture
8 BM [36] Beam modulation: indicates to what extent the beam is

delivered into smaller apertures (compared to the total
beam area)

9 EdgeMetric
[12]

Ratio of MLC side-length to aperture area

10 LT/AL [37] Average leaf travel distance divided by the arc length
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The model, trained on the largest single-institute database of VMAT
plans, achieved a mean absolute error of 2.3 %, and a sensitivity/spec-
ificity of 0.39/0.99 when predicting GPR at 3 %/1 mm with a 90 %
action limit. The low sensitivity resulted from the model’s objective to
minimize absolute error and the highly imbalanced dataset, where 94 %
of arcs had passing rates above the 90 % action limit.

A Decision Support System (DSS) tool was developed using the
Eclipse Scripting Application Programming Interface (ESAPI; Varian
Medical Systems, Palo Alto, CA) for the Eclipse TPS. This tool monitored
the ten complexity metrics and expected PSQA result at the end of the
optimization process directly in the TPS. As visual management, outlier
complexities were flagged according to the historical distributions of the
treatment site (see Fig. S2 in the Supplementary material).

In our previous study, we found strong correlations between similar
metrics, such as Q1 MLCGap, Median MLCGap, and SAS10, which could
fictitiously increase the number of outliers [4]. To prevent inflation and
following the Six Sigma methodology, an arc was defined as a defect of
the optimization process if more than five out of ten complexity metrics
were outside the specification limits. Furthermore, to address the
model’s low sensitivity, an arc was considered at risk of PSQA failure if
more than five metrics were in the region of high complexity.

Finally, the purpose of the Control stage was to embed the solution
into the RT optimization process and ensure sustainability. The DSS tool
was introduced in August 2022, with follow-up results prospectively
measured from September 2022 to May 2023. In a preliminary phase,
the DSS tool could be used only within the TPS. Then, a Poka Yoke
approach was implemented to sustain the solution and address the po-
tential miss of plans at risk of PSQA failure due to the non-utilization of
the tool. Poka Yoke is a Lean mechanism that helps avoid (yokeru)
mistakes (poka) by preventing or drawing attention as they occur. Since
November 2022, the DSS tool has run automatically at the end of each
day, analyzing all approved plans.

A plan was considered at risk of PSQA failure if most of its arcs had
more than five metrics in the high-complexity region or if the average
predicted GPR was below a 90 % action limit. If a plan was at risk, an
automatic email was sent to the planners with a report of plan
complexity, expected PSQA outcome, and visualization of the impact
that each feature had on the prediction of the ML model. In response,
planners performed the PSQA analysis using the same criteria and, if
necessary, re-optimized the RT plan.

Corrective actions were taken to increase the expected PSQA result
or decrease the occurrence of defective arcs in the high complexity re-
gion. The predominant approach was to re-start the optimization with
the same parameters. Other techniques included limiting MU and using
the aperture shape controller of the Eclipse TPS to increase the size and
decrease the complexity of the MLC aperture [30]. For plans optimized
by junior planners, a senior planner supervised the results and assessed
each case at risk.

2.2. Data analysis

Data analysis and visualizations were performed using Python
3.9.13, scipy 1.10.1, pandas 2.0.1, and seaborn 0.12.2. The Mann-
Whitney test was used to compare the predicted GPR before and after
re-optimization, with a significance level of 0.05.

In the following section, Q1 MLCGap, MeanTGI, and MCS metrics
were considered to describe the leaf gap sizes, irregularity in beam
aperture shape, and leaf/beam aperture variability, respectively. Head

and neck (H&N), thorax stereotactic body radiation therapy (SBRT),
abdomen SBRT, and genitourinary (GU) were selected as representative
treatments spanning different anatomical sites.

3. Results

The distribution of the complexity metrics did not change abruptly
between the Measure and Control phase, as shown in Fig. 2 (see Fig. S3
in the Supplementary material for the complete results). During the
Control phase, the occurrences of arcs in the low and high complexity
regions for Q1 MLCGap, MeanTGI, and MCS were on average 5 % and 6
%, respectively. Table 2 reports the summary statistics of these
distributions.

In the preliminary phase, 782 VMAT plans (1783 arcs) were analyzed
directly in the TPS using the DSS tool. The calculations took less than 30
s per plan and revealed 123 (7 %) defective arcs. Among the outlier
complexities, 46 % and 58 % were located in the low- and high-
complexity regions, respectively. According to our criteria of
complexity, 58 defective arcs were considered at risk of PSQA failure.
Fig. S4 shows the comparison of the complexity metrics before and after
re-optimization for all treatment sites.

The ML model integrated into the DSS tool allowed to compare
multiple plans in terms of expected PSQA outcome and detect 52 arcs (3
%) with GPR <90 %. With corrective actions, the distribution of the
expected GPR significantly improved (p = 0.007), with an increase in
the median – [first, third] quartile – from 97.4 % [92.0, 98.8]% to 98.2
% [96.2, 99.1]%, as shown in Fig. 3. Specifically, we observed signifi-
cant changes in the expected GPR for abdomen and thorax cases, from
91.1 % [88.0, 92.9]% to 97.4 % [96.4, 98.6]% (p = 0.004) and from
89.5 % [87.2, 91.4]% to 97.0 % [93.6, 98.0]% (p = 0.007), respectively
(see Fig. S5 in the Supplementary material).

The Poka Yoke system analyzed 1722 VMAT plans, and 29 (1.7 %) of
them were marked at risk. After the PSQA measurements, 9 out of 29
plans were found to be actual failures and were re-optimized such that
they were no longer ranked at risk. Fig. S6 in the Supplementary ma-
terial shows a representative report attached to the automatic email sent
by the Poka Yoke system, with plan information, complexity metrics and
expected PSQA outcome for each arc. We provide in Fig. S7 a repre-
sentative case of false positive result.

4. Discussion

In this study, we presented the clinical application of ML and Lean
Six Sigma to monitor outlier complexities and implement a targeted
PSQA approach for VMAT plans. Our automatic tool allowed to analyze
RT plans daily and take corrective actions for cases identified at risk.
Nine months after its introduction, the system analyzed 1722 VMAT
plans. Throughout this prospective period, the occurrences of outlier
complexities remained stable and the expected median GPR (3 %/1mm)
of clinically approved plans significantly increased from 97.4 % to 98.2
%. Only 29 plans were marked at risk and nine were found to be actual
failures.

The integration of artificial intelligence (AI) tools in clinical practice
to streamline the RTworkflow and improve patient care is rapidly rising.
International Institutions are studying proposals for updating the core
curriculum of medical physics experts to include AI, as well as the level
of qualification needed to manage the increasing technological
complexity of radiation treatments and demands on quality and risk

Fig. 1. Diagram reporting the root cause of a suboptimal RT workflow, stemming from the lack of monitoring of plan complexity. Abbreviations: PSQA = patient-
specific quality assurance; RT = radiotherapy.
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management [38,39]. Our system addresses the demand highlighted in
the 2020 ESTRO survey for tools to evaluate complexity during and after
optimization, offering amethod to translate complexity into plan quality
and deliverability with AI [40].

Currently, several groups are investigating methods for improving
plan quality and reducing measurement-based PSQA either by using
predictive models or long-term analysis of data. Marsac et al. quantified
the correlation and sensitivity between complexity metrics and GPR.

They identified the most appropriate metric (MCS) for reducing their
PSQAworkload, achieving a 30% reduction [14]. Cavinato et al. trained
a regression model for virtual PSQA of helical tomotherapy plans, esti-
mating a 35 % workload reduction [16]. Clinical applications of ML
models were reported by Wall et al. and Noblet et al. The first group
presented a virtual PSQA prediction model based on complexity metrics
for point dose ion chamber measurement of VMAT plans, estimating
average time savings of 32.5 h per month [19]. The second group

Fig. 2. Boxplots of the complexity metrics in the Measure and Control phase, stratified by treatment, for the plans that were monitored. The crosses represent the
outliers of the distributions (i.e., <5th or >95th percentile). Arrows indicate the direction of increase in complexity for each metric. A small value of Q1 MLCGap
indicates smaller distances between MLC leaves pairs, resulting in increased dosimetric uncertainties due to limitations in modeling radiation transmitted at the tip of
the MLC leaves. A large MeanTGI value indicates an irregular MLC aperture which can affect dose calculation accuracy due to the tongue-and-groove modeling. A
small MCS value indicates a high variability in both MLC shape and area. Abbreviations: GU = genitourinary; H&N = head and neck; MCS = modulation complexity
score; MeanTGI = mean tongue-and-groove index; SBRT = stereotactic body radiation therapy.

Table 2
Summary statistics of the distributions of Q1 MLCGap, MeanTGI, and MCS metrics for relevant treatment sites. Measure and Control denote the stages before and after
the introduction of the DSS tool in clinic. For the Control phase, the percentage variation of the statistics with respect to the Measure phase is shown. The percentage of
arcs falling in the low and high complexity regions after the introduction of the tool is reported. Note that complexity increases with the metric’s value for MeanTGI,
while for MCS and Q1 MLCGap the complexity decreases with the metric’s value.

Treatment site Metrics Phase 5 % 50 % 95 % % arcs low complexity % arcs high complexity

H&N Q1 MLCGap (mm) Measure 5 9 16
Control +2 % − 1 % − 7 % 5 % 5 %

MeanTGI Measure 0.3 0.4 0.6
Control +5 % +7 % − 6 % 2 % 2 %

MCS Measure 0.1 0.2 0.3
Control − 5 % − 16 % − 4 % 4 % 11 %

Thorax SBRT Q1 MLCGap (mm) Measure 5 9 18
Control − 50 % − 17 % − 13 % 3 % 15 %

MeanTGI Measure 0.2 0.3 0.5
Control +21 % +13 % +2 % 4 % 6 %

MCS Measure 0.1 0.3 0.4
Control − 23 % +3 % +3 % 6 % 6 %

Abdomen SBRT Q1 MLCGap (mm) Measure 5 9 20
Control − 22 % − 18 % − 2 % 5 % 13 %

MeanTGI Measure 0.2 0.3 0.5
Control +27 % +7 % +4 % 2 % 8 %

MCS Measure 0.1 0.2 0.4
Control +8 % +7 % − 2 % 5 % 2 %

GU Q1 MLCGap (mm) Measure 6 11 21
Control +10 % − 1 % +2 % 7 % 4 %

MeanTGI Measure 0.3 0.4 0.6
Control − 6 % +1 % − 6 % 8 % 1 %

MCS Measure 0.1 0.2 0.3
Control +12 % +4 % +7 % 8 % 3 %

Abbreviations: GU = genitourinary; H&N = head and neck; MCS = modulation complexity score; MeanTGI = mean tongue-and-groove index; SBRT = stereotactic
body radiation therapy.

N. Lambri et al.
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implemented a similar approach to ours, using VMAT plans, EPID
measurements with 2 %/2 mm gamma criteria, and integrating into the
TPS their ML model trained on complexity metrics. The authors esti-
mated yearly savings of 140 h [15]. More broadly, Bossuyt et al.
investigated the impact of EPID in-vivo dosimetry (IVD) for continuous
quality improvement, noticing a gradual decrease of failed measure-
ments over five years [17]. In another work byMans et al., EPID IVDwas
used to monitor incremental changes in the RT workflow and reduce
dose uncertainties [18].

Our department has introduced an independent calculation software
to reduce the workload of measurement-based PSQA, with an estimated
70 % workload reduction if only the predicted failures were actually
measured. In this study, Lean Six Sigma was introduced to provide
complementary information to our PSQA approach. Importantly, the
developed tool did not change our existing procedures and is currently
utilized as an additional layer of control at the bottom of our QA pyra-
mid (see Fig. S8 in the Supplementary material).

This study has some limitations. Despite collecting a vast number of
plans, potential biases arise from process changes over the years.
Notably, the TPS software in our clinic was updated in late 2019.
Although plan complexity may vary with algorithm changes, we
considered all historical data since 2013 to identify outlier complexity
regions and leverage the large dataset collected. Plan complexity also
depends on various factors such as radiation oncologists’ requirements,
planners’ experience, and habits, which are difficult to control. In our
recent study, we found that planner experience alone reduced plan
complexity over time for a specific treatment [41]. In this work,
involving many operators and parameters, the new TPS version did not
disrupt the optimization process. Conversely, we excluded plans opti-
mized using the HyperArc algorithm, which is specifically tailored to
treating multiple brain metastases using a single isocenter in a single
fraction, resulting in markedly different complexity compared to other
brain plans. Further, we only considered a subset of complexity metrics
representative of VMAT treatments, despite many described in the
literature.

We selected stricter GPR criteria than AAPM TG-218, reducing the
clinical relevance. With the recommended 3 %/2 mm, most cases would
have been within tolerance and the ML model challenging to train to
detect relevant cases, due to the extremely unbalanced data toward
excellent GPRs [4]. Since VMAT PSQA rarely fails with modern TPS
modeling and delivery systems, we used 3 %/1 mm with a 90 % action
limit to embrace the Lean approach of continuous improvement of
process quality. Although no consensus exists on stricter criteria, other
authors suggest 2 %(local or global)/2 mm [42,43].

This was a monocentric study, and our methodology is not directly
transferable to other centers, as it requires the collection of new data to
evaluate the state of the department optimization process. Differences in
techniques, equipment, and clinical procedures may limit the proposed
methodology and require further investigations.

In conclusion, this study presented a novel procedure based on the
Lean Six Sigma methodology to continuously monitor plan complexity
and identify cases at risk of PSQA failure. The proposed approach
allowed to supervise the variability associated with the RT optimization
process and implement a targeted approach for measurement-based
PSQA, which directed the attention and resources of the clinical staff
to rare events. As a result, we observed enhancements in the overall RT
plan quality and potential benefits for patient safety.
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