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Fabricating patterned nanostructures with matter waves can help to realise new nanophotonic devices.

However, due to dispersion effects, designing patterns with nanoscale features is challenging. Here, we

consider the propagation of a helium matter wave through different holes in hexagonal boron nitride (h-

BN) as a case study for the weakest dispersion interaction and the matter wave's diffraction as it passes

through the holes. We use a quantum-mechanical model to calculate the polarisability of edge atoms

around the holes, where we observe polarisation ripples of enhanced and reduced polarisabilities around

the holes. We use these values to calculate van der Waals dispersion coefficients for the scattered

helium atoms. We find that the resulting diffraction patterns are affected by the shape and size of the

holes, where the smallest holes have a radius of just 6 Å. These results can be used to predict the

resolution limits of nano-hole patterns on nanophotonic materials.
1 Introduction

Atomic interferometry is useful for precise measurement that
can be applied in fundamental physics tests1 and accurate
inertial sensing.2 It is common to use material gratings in such
experiments in order to make the atom interfere.3 For very small
holes or slow atoms, dispersion forces between the interfering
atoms and the mask begin to have a signicant effect. Examples
of such forces include the van der Waals force between neutral
particles and the Casimir–Polder force between neutral parti-
cles and dielectric materials.4,5 These forces arise from ground
state uctuations of the electromagnetic elds and reduce the
effective size of the holes, as shown in Fig. 4. Furthermore, they
produce a phase shi that affects the atomic waves passing
through the holes.6 This limits the size of the holes in a given
diffraction mask.

Since the dispersion forces depend on the thickness of the
mask, 2D monolayer materials, such as hexagonal boron nitride
(h-BN)7 and graphene,8,9 represent the theoretical lower limit to
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these interactions. Graphene has already been used as a beam
splitter formatter waves in experiments by creating lines and holes
in it.8 In addition, by ring high-speed hydrogen and helium
atoms at the membrane (at a speed in excess of 27 000 ms−1), the
matter wave should semi-coherently diffract through even the
hexagonal grid in 2D materials.10

Many advanced technologies exploit quantum effects at the
nanoscale, requiring highly controlled and precise fabrication
techniques. Examples include quantum electronic devices, such
as resonant tunnelling diodes, single-electron Coulomb blockade
transistors,11,12 and quantum dot transistors.13 However, fabrica-
tion techniques oen limit the realisation of new devices. For
example, ferromagnetic semiconductors could be used in the next
generation of energy-efficient computers and electronic devices,
which rely on the quantum control of spin states instead of charge
carriers.14 However, the fabrication of ferromagnetic semi-
conductors is challenging and requires new methods to pattern
magnetic materials as sub-nanometre dots.

Currently, it is only possible to pattern arbitrary structures
with resolution and pitch on the “few-nanometre” scale using
electron or ion beam lithography or a scanning probe tip.15 These
techniques all write patterns in a series, one pixel at a time,
which makes them unsuitable for large-scale industrial applica-
tions as it is too time-consuming to pattern large areas. Thus, the
lithography industry is dominated by photolithography due to its
much higher speed despite its lower resolution. The current state
of the art is extreme-ultra-violet (EUV) lithography. This uses
light with a wavelength of 13.5 nm, corresponding to an Abbe
resolution limit of 6.75 nm, assuming the maximum value of the
numerical aperture (NA = 1). Beyond the Abbe resolution limit,
electron blurring of the pattern from secondary effects in the
Nanoscale Adv., 2024, 6, 5337–5347 | 5337
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resist material limits the ultimate resolution to approximately
6 nm for any photon-based lithography.16

Binary holography methods using metastable atoms have
been proposed as a solution to the challenge of speeding up and
improving the resolution of this process.17–19 The early
proposals did not account for dispersion forces between atoms
and the mask.20,21 This is a problem, as when using binary
holography, very small holes are needed to create patterns of
high resolution,17,18 and thus, these forces must be accounted
for. A structure of holes in a membrane, a so-called “atom
sieve”, has been used to focus neutral helium atoms, analogous
to the “photon sieve” solution22 for the purpose of neutral
helium atom microscopy.23

In the case of h-BN considered here, additional electrostatic
forces may appear near the hole as the single charges do not
compensate for each other. These forces are attractive and have
a smaller but similar effect on surrounding atoms compared to
the dispersion forces.24

In this paper, we present a model describing the diffraction
of a neutral, ground-state helium matter wave through
a monolayer. More specically, we consider helium atoms
passing holes in h-BN. We chose these materials as they are
both available for experiments, and they both have weak
dispersion interactions due to helium being a small, inert atom
and h-BN being an insulator. Thus, the dispersion interaction
will be weak. By removing atoms from the lattice structure of the
h-BNmonolayer, we create four stable holes that vary in size and
shape from about 5–15 Å across. The experimental realisation of
atomically precise holes has been demonstrated using electron
beams,25 proton beams26 and ions.27 By modelling the atoms
quantum mechanically, we nd the forces acting on the atoms
passing through the hole and the effective reduction in the radii
of the holes. Then, we use the hole reduction and the forces to
calculate the diffraction patterns macroscopically.

First, in Section 2, we use electronic structure theory and
dispersion force theory to model defects in h-BN. We nd
several stable structures corresponding to charge-compensated
holes in h-BN. We determine the polarisability and van der
Waals coefficients of edge atoms around the defects, which
allows us to calculate the corresponding forces around the hole.
Then, in Section 3.1, we estimate the hole reduction by simu-
lating a helium atom colliding with boron and nitrogen atoms.
Having found both the forces and the hole reduction, we switch
to a macroscopic diffraction picture in Section 3.3, due to the
difficulty of numerically modelling the atomic wavefunction.
We calculate the resulting shape of the hole and how the forces
inside and outside the hole change the phase of the matter wave
passing through it. Using this information, we nd a trans-
mission function, telling us where the atom can pass through
the hole and the phase change at that point. This can then be
used to nd the far-eld diffraction patterns of the holes.

2 Modelling
2.1 Screened atomic polarisabilities

We obtain the screened atomic polarisabilities from the elec-
tronic structure theory. In the rst step, the structures of
5338 | Nanoscale Adv., 2024, 6, 5337–5347
pristine h-BN and several defects are constructed with the help
of the atomic simulation environment.28 h-BN has a hexagonal
lattice structure, similar to graphene, with a lattice constant al=
0.2504 nm,29,30 leading to a bond-length between boron and
nitrogen of a = 0.1446 nm. We consider only neutral holes
where the number of removed B and N atoms is equal in order
to avoid the need for compensation charges in periodic calcu-
lations. The resulting structure is then relaxed until the
maximal force on each atom is below 0.05 eV Å−1. The electronic
structure is determined within DFT as implemented in the
open-source GPAW code.31,32 The exchange–correlation energy
is described by the PBE functional.33 Kohn–Sham wave func-
tions and electron density are represented in Blöchl's projector
augmented wave method34 and the smooth wave functions are
represented on real space grids with a grid spacing of 0.2 Å.

We follow the Tkatchenko–Scheffler approach35,36 to correct
the atomic polarisabilities for effects through the constraints of
their interaction within the material. Free atomic polar-
isabilities, afreei , are taken from the Chu and Dalgarno dataset37

and are isotropic. The polarisability of the bounded atoms,
ahirshi , are known to scale approximately linearly38 with the
ratios of bonded-atom volumes to free atom volumes

ahirsh
i ½nðrÞ�
afree
i

z
Vhirsh

i ½nðrÞ�
V free

i

: (1)

The volume ratios, Vhirshi /Vfreei , are calculated from the electronic
density of the h-BN monolayer, [n(r)], using the Hirshfeld
charge partitioning scheme.39

We subsequently apply a correction for screening between
neighbouring atoms using the range-separated self-consistent
screening method available in the libMBD code.40,41 Since the
h-BN supercell is periodic, a cut-off radius determines neigh-
bouring atoms, and calculations are truncated according to the
Ewald summation method.42,43 The screened atomic polar-
isabilities are obtained by solving the self-consistent screening
equation from classical electrodynamics

ai ¼ ahirsh
i

 
1�

X
isj

T ijaj

!
; (2)

where ai denote the screened atomic polarisability tensors and
ahirshi are the Hirshfeld-partitioned atomic polarisabilities given
by eqn (1). Here, T ij denotes the dipole–dipole interaction
tensor, which depends on the relative displacement of the
atoms in the h-BN monolayer. The implementation in the
libMBD code attenuates the short-range interactions between
atoms to avoid unphysical values at short interatomic
separations.
2.2 Screened van der Waals coefficients

Calculating the van der Waals dispersion coefficients requires
a model for the dynamic polarisability of atoms. We can intro-
duce frequency dependence through the single-pole
approximation

aiðixÞ ¼ ai

1þ fx=xig2
; (3)
© 2024 The Author(s). Published by the Royal Society of Chemistry
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where ai = Tr[ai]/3 denotes the scalar, screened polarisability of
an atom in the h-BN membrane, evaluated using eqn (2). xi is
the corresponding characteristic resonance frequency, approx-
imated by35

xi ¼
4ð4p30Þ2

3ħ
Cfree

6; ii�
afree
i

�2 : (4)

using the free atom values for the polarisabilities and van der
Waals C6 coefficients.37 This represents a suitable approxima-
tion for xi because the scaling factors due to Hirshfeld parti-
tioning approximately cancel each other in this ratio.

The screened van der Waals coefficients can then be ob-
tained using the Casimir–Polder integral,

C6; ij ¼ 3ħ
pð4p30Þ2

ðN
0

dxaiðixÞajðixÞ; (5)

which can be solved by substituting eqn (3) into (5). This leads
to the London formula,35,44

C6; ij ¼ 3ħ
2ð4p30Þ2

xixj�
xi þ xj

�aiaj ; (6)

in terms of the screened atomic polarisabilities ai= Tr[ai]/3 and
characteristic frequencies xi.

Here, we are interested in the dispersion interactions
between free helium particles and the set of {j} atoms in the h-
BN membrane. Therefore, we can set xi = xHe and ai = aHe in
eqn (6), reducing the dimensionality of the problem. This gives

C6; j ¼ 3ħ
2ð4p30Þ2

xix
He�

xi þ xHe
�aHeaj ; (7)

where the values for the free helium atom are given in Table 1.
The values of aj depend on the atomic species and the
displacement of the atom relative to the defect in the
monolayer.

2.3 Polarisability ripples

We solve eqn (2) for the 5 different supercell geometries shown
in Fig. 1. The structures are charge neutral since we remove
equal numbers of boron and nitrogen atoms to create the holes.
The innite h-BN monolayer is used as a reference point to
calculate the change in atomic polarisabilities for the other
structures with differently shaped holes. The baseline values for
the innite h-BN supercell are summarised in Table 1. In the
case of supercells with holes, we observe a “polarisability ripple”
around the hole's circumference. The atoms immediately
surrounding the hole have an enhanced polarisability
Table 1 Polarisability and (homonuclear) C6 coefficients (in atomic
units) of boron and nitrogen atoms in the infinite h-BNmonolayer and
the free helium atom. 1 Bohr3 = 1.48 × 10−31 m3, 1 Ha Bohr6 = 9.57 ×
10−80 J m6, 1 Ha = 4.36 × 10−18 J

Atom a/(4p30) [Bohr
3] C6 [Ha Bohr6] ħx [Ha]

B 18.09 75.23 0.30
N 3.70 14.62 0.59
He 1.38 1.42 0.99

© 2024 The Author(s). Published by the Royal Society of Chemistry
compared to equivalent atoms in the innite h-BN monolayer.
The enhancement is about twice as strong for nitrogen atoms
(z40%) compared to boron atoms (z20%). The second ring of
atoms surrounding the hole shows a decrease in atomic polar-
isability, although this is a less pronounced change than for the
rst ring of atoms. This ripple effect propagates outwards from
the hole, and the oscillations rapidly decay until they return to
the h-BN baseline values for the innite monolayer. This effect
looks like a “polarisability ripple” in Fig. 1(b)–(e).
2.4 Dispersion interactions by h-BN monolayers

We now determine the interaction potentials experienced by
a helium atom approaching h-BN monolayers. We consider an
atomically thin monolayer as depicted in Fig. 2. A small
spherical hole with a diameter d is treated as a vacancy of
several atoms. Thus, the interaction is considered on an atomic
level in a rhombus with the side length l surrounding the hole.
The remaining part of the monolayer membrane is treated as
a continuum without signicant interaction. We particularly
consider hexagonal boron nitride (h-BN) and neutral helium
atoms. However, the derived models for the interactions and
their effective treatments for matter-wave interference can also
be adapted easily to other materials.

The interaction between a neutral particle characterised
through its polarisability tensor a and a dielectric object is, in
general, given by the Casimir–Polder potential4,20

UCPðrÞ ¼ ħm0

2p

ðN
0

dxx2Tr½aðixÞ$Gðr; r; ixÞ� (8)

with the reduced Planck constant ħ, the vacuum permeability m0
and the scattering Green functionG that contains the properties
of the dielectric object. This equation can be understood as an
exchange of virtual photons with frequency ix, which are
induced at the particle's position r and back-scattered from the
surrounding dielectric objects as described by G(r,r,ix). The
scattered virtual photons polarise the particle. The sum
(respectively the integral) over all possible photon exchanges
yields the Casimir–Polder interaction.

Here, for a monolayer membrane, the question of the scat-
tering properties of the membrane arises. In previous works, we
derived an approximation for the dispersion interaction for
weakly responding materials by integrating over the volume of
the dielectric object.6 Due to this volume integral, the interac-
tion will strongly depend on the assumed thickness of the
monolayer, which is not precisely quantiable for monolayers.
For h-BN, the thickness of a monolayer can be approximated by
0.3 nm.46 However, as we are interested in the behaviour at very
short separations, the thickness's uncertainty will substantially
impact the results.

To avoid issues concerning the monolayer's thickness, we
separate the monolayer's surface into sections according to
Fig. 2 with a rhomboidally shaped section (region I)
surrounding the spherical hole with diameter d. According to
the lattice structure, this section is dened by a side length l and
a wedge angle w. We used w = 60° for h-BN. This section will be
treated atomically, whereas the remaining outer part (yellow
Nanoscale Adv., 2024, 6, 5337–5347 | 5339



Fig. 1 Polarisability ripples around different shaped holes in the h-BNmonolayer: (a) monolayer, (b) 6 Å-sized hole, (c) 11 Å-sized hole, (d) elliptic
hole, and (e) snowflake-shaped hole. The colour bar represents the percentage increase (red) or decrease (blue) of the atomic polarisabilities
compared to equivalent atoms in the infinite h-BNmonolayer. Geometries visualisedwith the Atomic Simulation Environment28 and overlaid with
polarisability data using Matplotlib.45

Fig. 2 Sketch of a spherical hole with diametre d in an infinite
monolayer (yellow area). A small rhombus with side length l and angle
wwill be treated atomically. The remaining yellow area is a solid object.
We always model a large enough area atomically such that we can
neglect the solid part.

Nanoscale Advances Paper
area; region II) is a non-contributing continuum by sufficiently
increasing the size of the region I. This is motivated by the r−6

power law for the distance dependence of the short-range
dispersive pairwise interaction potential. In region I, we
consider an atomistic representation of the membrane char-
acterised by the atom's positions ri and its type expressed by
a local polarisability ai. This approach yields the discrete form
of the rst-order of the Born series expansion21

G
�
r; r

0
;u
��

¼ u2

c230

X
i

Gðr; ri;uÞ$aiðuÞ$G
�
ri; r

0
;u
�
: (9)

By plugging eqn (9) into the Casimir–Polder potential (8), the
interaction in the region I can be written as the sum over the
screened van der Waals interactions
5340 | Nanoscale Adv., 2024, 6, 5337–5347
UCPðrÞ ¼ �
X
j

C6;j��rj � r
��6; (10)

with the screened van der Waals coefficient from eqn (7).
Eqn (10) can be used as a criterion for the width of the region

I. By considering a linear atomic chain with period aC in a one-
dimensional conguration, the total van der Waals potential for
a particle at a distance r to the chain is determined by

UvdWðrÞ ¼ �C6

r6

XN
j¼0

1

ð1þ jaC=rÞ6
: (11)

By restricting the chain to a nite particle number N, the devi-
ation between the truncated and innite sum can be obtained as���UðrÞ � lim

N1N
UðrÞ

���
lim
N1N

UðrÞ ¼ Li5ðN þ 1þ r=aCÞ
Li5ðr=aCÞ ; (12)

with the polylogarithm Li5ðxÞ ¼
PN
k¼0

xk=k5. Thus, the error

according to the chain length NaC can be estimated, leading to
two atoms (N= 2) for an error below 1%. Consequently, two atomic
rings surrounding the hole cause almost the entire interaction. For
the holes considered here, all layers aer the 3rd contribute to less
than 1% of the total potential inside the holes.

A directional dependence appears assuming that ai(u) =

ai(u)Di,47–49 with Di being a 3 × 3-matrix, the Casimir–Polder
potential can be written as

UCPðrÞ ¼ �
X
i

C6
ðiÞ

6jri � rj6
"
TrDi þ 3

ðri � rÞ$Di$ðri � rÞ
jri � rj2

#
: (13)

These potentials inside hole (b) from Fig. 2 are shown in
Fig. 3.
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 LogLog plot showing the potentials inside the 6 Å hole from
Fig. 1. The lines show the potential from the holes' edges where boron
and nitrogen atoms exist. It also shows the different contributions from
electrostatic and van der Waals potentials.

Fig. 4 Schematic of the hole reduction DR for: (a) slow helium atoms,
and (b) fast helium atoms passing through a hole in hexagonal boron
nitride (h-BN). The dispersion forces are stronger for slow atoms
compared to fast atoms. Therefore, the hole reduction effect is greater
in part (a) compared to part (b). Additionally, the heliummatter wave in
part (a) experiences a greater angular spread compared to part (b). The
transmission close to nitrogen atoms (blue) is increased compared to
boron atoms (pink) since nitrogen atoms have a reduced C6 coeffi-
cient compared to boron atoms. This leads to interesting features in
the phase shift plots and diffraction patterns.

Paper Nanoscale Advances
2.5 Electrostatic forces

Such membranes are usually electrically neutral, like bulk
systems. However, due to the removed atoms creating the hole,
the single charges do not compensate each other near the hole.
For this reason, each atom at the position ri also carries a charge
qi, leading to an induced interaction24,50

UelðrÞ ¼ � að0Þ
2ð4p30Þ2

 X
i

qi

jr� rij2
!2

; (14)

with the static polarisability of the free helium atom a(0). The
charge qi is obtained from Hirshfeld-partitioning39 of the
© 2024 The Author(s). Published by the Royal Society of Chemistry
electron density of h-BN. This leads to charges of +0.2jej on B
and −0.2jej on N within pristine h-BN in good agreement with
previous studies51 (there are severe disagreements for Bader52,53

charges in the literature54–56 as shown in ESI†). The atoms near
to the hole show slightly increased local charges,55 never
exceeding ±0.39jej, however. The different potentials experi-
enced by the helium atom inside the 6 Å hole from Fig. 1(b) are
shown in Fig. 3. We can see that the van der Waals potential is
considerably stronger. We will nevertheless also consider the
electrostatic contributions in what follows.
3 Diffraction

We utilise Kirchhoff diffraction to nd the resulting diffraction
patterns. We need to nd the hole reduction and phase shi
caused by the van der Waals and electrostatic forces to do this.
We nd this by simulating a helium wavepacket passing
a boron and a nitrogen atom and seeing how much of the
wavepacket passes within the van der Waals radius. This then
approximates the hole reduction caused by the surrounding
atoms. Aerwards, we nd the phase shi caused by the forces
using an eikonal approximation as the atoms move very fast.
Having both the phase shi and the hole reduction, we dene
a transmission function and nd the diffraction patterns for the
investigated holes.
3.1 Hole reduction

A known effect on atoms passing holes is a hole size reduction
due to the forces on the atom attracting it to the edges.6,57 A
previous method used to estimate the hole reduction is to track
the classical trajectories of atoms and see how far away they
have to pass from the wall to avoid collisions.6 Another method
uses numerical simulations of the wavefront to nd the
diffraction at gratings.57 We will compare the classical trajectory
method with numerically solving the propagation of the helium
wavefunction colliding with an atom. We will simulate the
collision with boron and nitrogen separately as it is very difficult
to solve the propagation through the entire hole numerically. In
addition, the forces become much weaker as you move away
from the atom such that the vast majority of the force is caused
by the closest atom in the monolayer, as demonstrated in eqn
(11) and (12).

In both the classical and quantum mechanical approaches,
we assume the extent of the atom to be equal to its van der
Waals radius, which is 1.92 Å for B,58 and 1.55 Å for N.59 The h-
BN layer is extended in x, y direction at z = 0. The classical hole
reduction, DRclassical, is then estimated by starting with the
initial conditions r = (x,y,z), _r = (0,0,v), where z = 100 Å is the
starting distance from the h-BN plane and v is the initial velocity
of the He atom. Then we let r evolve according to

m€r = −VU(r), (15)

with, m the mass of the helium. The potential

U(r) = Uel(r) + UvdW(r) (16)
Nanoscale Adv., 2024, 6, 5337–5347 | 5341



Table 2 The hole reduction for helium passing by boron and nitrogen
at different velocities. Both the classical results DRclassical and the
quantum mechanical results DRquantum are given

Atom He velocity [ms−1] DRclassical [Å] DRquantum [Å]

B 200 6.2 8.1
B 2000 2.5 3.6
B 20 000 1.9 2.3
N 200 5.9 7.8
N 2000 2.4 3.2
N 20 000 1.6 1.9

Nanoscale Advances Paper
consists of the electrostatic potential (14) reducing to

UelðrÞ ¼ � 1

ð4p30Þ2
qj

2að0Þ
2jrj4 ; (17)

for a single atom j, with the static polarisability of the helium
atom a(0) and the van der Waals potential from eqn (10) for
a single atom j

UvdWðrÞ ¼ �C6;j

jrj6 : (18)

The atom propagates in the z direction, perpendicular to the
monolayer. We test propagate with several different initial
starting positions in the x, y coordinates. The hole reduction,
DRclassical, is then the smallest initial distance in the value of x, y
plane where the atom does not pass within the van der Waals
radius of the atom. The values of DRclassical are given for several
velocities in Table 2.

We also estimate the quantum mechanical hole reduction,
DRquantum, by considering the case of a helium wave packet
colliding with boron or nitrogen atoms. The wave packet, j,
evolves according to the Schrödinger equation

� ħ2

2m
V2jþUðrÞj ¼ iħ

v

vt
j: (19)

We used a nite difference scheme to evolve a wave packet by
colliding with the atoms. The details of this scheme are detailed
in the ESI.†6,60–62 Starting with a Gaussian wave packet of widths,
sr = sz = 8 Å, representing a h of the box radius such that
negligible amounts of the wave function are at the boundary of
the simulation box. We move the potential at a given velocity v
towards it from a distance of 60 Å to a distance of 40 Å past the
helium wave packet. Finally, we assume that the parts of the
wave packet that come within the van der Waals radius of the
atom have collided with it. These parts of the wave packet might
scatter, lose energy or otherwise lose coherence. We model this
loss of coherence as an absorption of this section of the wave
packet. The radius of the hole reduction then corresponds to
the radius of the sphere that would absorb the same amount
without any van der Waals or electrostatic interactions. We
determine the hole reduction using the norm of the wave packet

Nf ¼
ðN
0

ðN
�N

��jfðr; zÞ
��22pr drdz; (20)
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at the end of the propagation. We assume that the hole reduc-
tion corresponds to the radius of a moving sphere absorbing the
part of the wave packet that comes within it such thatðN

�N

ðDRquantum

0

2prffiffiffiffiffiffiffiffi
2p3

p
szsr

2
exp

�
� r2

2sr

� z2

2sz

	
drdz ¼ 1�Nf ; (21)

with sr and sz being the r and z spread of the wave packet.
Solving eqn (21) for DRquantum then gives

DRquantum ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ln�Nf

�
2sr

2

q
; (22)

with the resulting hole reductions given in Table 2. In all cases,
the quantum approach gives a larger hole reduction radius than
the classical trajectory approach. The difference varies between
a 19–44% increase in the reduction radius. For a small velocity
of 200 ms−1, the hole reduction is so large that the holes in
Fig. 1 are completely closed for the helium atom as the hole
reduction is greater than the radius of the hole. Even for
velocities of 2000 ms−1, the elliptic hole and the 6 Å hole, 1 (b)
and (d) in Fig. 1, are too narrow for transmission of helium
atoms. Only at velocities of 20 000ms−1, all holes allow for some
transmission. The resulting effective shape of the holes can be
seen in Fig. 5.
3.2 Phase shi

By bypassing a dielectric obstacle, a matter wave experiences
a spatial-dependent phase shi due to the interactions between
both objects.5,6,63,64 This phase-shi reads

4ðrÞz � mldB

2pħ2

ð
Uðr; zÞdz; (23)

in eikonal approximation, where r = (x,y)T are the in-plane
coordinates, and U(r,z) is the potential experienced by the
helium atom. z denotes the direction of the moving particles,
and ldB = h/mv is the de Broglie wavelength. This approach
means that the particles almost pass the obstacle in straight
lines. Thus, the phase can be separated into three contribu-
tions: an electrostatic part

4elðrÞ ¼
mldBað0Þ
8pħ230

X
i

X
j

qiqj

jr� rij2
��r� rj

��þ jr� rij
��r� rj

��2 (24)

and van der Waals part

4vdWðrÞ ¼
mldB

64ħ2
X
i

C6
ðiÞ
"
2TrDi þ 3Dizz

jr� rij5
þ 5ðr� riÞ$Di$ðr� riÞ

jr� rij7
#
;

(25)

for the interaction with the atomic representation in region I.
We solve these equations to nd the phase shi of a matter

wave propagating through different types of holes in h-BN. The
resulting phase shis are plotted in Fig. 5, using a cyclical
colour map. In parts (b), (c), (e) and (f), the He atoms have a high
velocity (v = 20 000 ms−1), whereas in parts (a) and (d), the He
atoms have a comparatively low velocity (v= 2000 ms−1). The de
Broglie wavelength, ldB, is inversely proportional to the velocity.
Therefore, from eqn (23), we expect the phase shi to be smaller
when the velocity of He atoms is higher (shorter ldB).
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 The phase shifts of the helium atoms from interactions with the atoms around the holes shown in Fig. 1. Black areas mean that the helium
atom is not transmitted through the hole. The velocity of the matter wave in parts (a) and (d) is 2000ms−1, whereas the velocity in parts (b), (c), (e)
and (f) is 20 000 ms−1. The insets show the layout of the atoms around the hole with B in orange and N in blue. Due to the matter waves
interaction with the monolayer, there is an additional reduction in transmission area of (a) 37%, (b) 31%, (c) 17%, (d) 88% (e) 5% and (f) 15%
compared to the area of the monolayer covered by the removed atoms.
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This effect can be seen in Fig. 5, where the blue regions at the
centre of the holes in parts (b), (c), (e) and (f) correspond to a low
phase shi. The phase shi through the central region in part
(b) is greater than in part (c) due to the smaller size of the hole (6
Å vs. 11 Å). Therefore, the matter wave experiences stronger
dispersion interactions with the edge atoms. By comparison,
there is a much larger phase shi at the centre of the holes in
parts (a) and (d) due to the slower velocity (longer ldB) of the
matter wave. We can directly compare parts (a)/(c) and (d)/(f) to
see this effect since the potentials around these pairs of holes
are the same.

We also observe the h-BN lattice structure's effect in all the
phase shi plots. Boron atoms have a higher dispersion coef-
cient compared to nitrogen atoms. Therefore, we observe
greater transmission and more fringes near nitrogen-
terminated edges in all cases. For example, this can be clearly
seen in the elliptical hole in part (e), where the nitrogen-
terminated edge (long right edge) has features that are not
observed on the boron-terminated edge (le long edge).

Another example is the snowake structure in part (f), which
has unequal transmission through the different arms of the
snowake. The structure has 6 arms, whereas only 3 arms
strongly transmit matter waves. In each arm, there are either 3
© 2024 The Author(s). Published by the Royal Society of Chemistry
nitrogen edge atoms or 3 boron edge atoms (these alternate for
each arm around the hole). We observe a high transmission in
the arms where nitrogen atoms are dominant, along with
rapidly oscillating phase shi patterns. It could be interesting to
compare this result with an atomically homogeneous structure,
such as graphene, where we would expect to see a 6-fold, rather
than 3-fold, rotational symmetry in the phase shi pattern.

By comparison, in part (d), we do not observe the rapidly
oscillating features present in part (f). We attribute this to the
lower velocity of the matter wave in part (d) compared to (f),
which leads to stronger dispersion interactions and reduced
transmission through the arms of the snowake.
3.3 Diffraction patterns

From the phase shis and the hole reduction, we can derive
a transmission function T(r), which is ei4(r) wherever the
helium atom is transmitted through the hole and zero every-
where else. The diffraction pattern from passing a hole is given
by Kirchhoff's diffraction formula:65

JðrÞ ¼ Ak

2pi

ð
d2
rTðrÞ e

ikðr0þsÞ

2r0s
½cosðn; r0Þ � cosðn; sÞ�: (26)
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Here, A is the amplitude of the wave function, and k= 2p/ldB. r0
is the distance between the point source of the helium matter
wave and the in-plane coordinates r of the h-BN monolayer. s is
the distance between r and the coordinates r at which the
diffraction pattern is measured (s = jr − rj). The sum of r0 and s
describes the total path length of the helium matter-wave.
cos(n,r0) and cos(n,s) describe the cosine similarity between r0,
s and the normal n of the h-BN plane. The cosine similarity is
dened as

cosðn; sÞ: ¼ cosðqÞ ¼ n$ðr� rÞ
ns

(27)

with an equivalent expression for cos(n,r0).
If the path length of the matter wave is large compared to the

linear dimensions of the aperture, we can apply the small angle
approximation, whereby [cos(n,r0) − cos(n,s)] / 2 cos(d). Here,
d is the angle between the helium matter wave's displacement
vector and the h-BN plane's normal vector. We can further
assume that the distances r0 and s are measured from the origin
of the coordinate system rather than an arbitrary point in the h-
BN plane. These transformed distances are r0/r

0
0 and s / jrj.

This leads to the Fraunhofer approximation,65

JðrÞ ¼ Ak

2pi

eikðr00þrÞ
r
0
0r

ð
d2
rTðrÞeikr$k; (28)
Fig. 6 Diffraction pattern resulting from a helium atom passing the hole
away from the holes. (a) and (d) have a velocity of 2000ms−1, and (b), (c),
the atoms around the hole with B in orange and N in blue.
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where we have assumed that cos(d) z 1 for normal incidence.
The diffraction pattern at a screen is then given by the absolute
value squared of j(r)

jJðrÞj2 ¼
�����Ak2pi

eikðr00þrÞ
r
0
0r

ð
d2
rTðrÞeikr$k

�����
2

: (29)

The resulting diffraction patterns, normalised such that the
maximum value is one, are shown in Fig. 6. When the velocity of
the helium atom is 2000 ms−1, the angular spread is very large
so it should be noted that the Fraunhofer approximation holds
less well.

Fig. 6 shows that the h-BN lattice structure directly affects
the diffraction patterns. In all cases, by comparing the patterns
from Fig. 5, we see that there are more fringes close to nitrogen
atoms, which have a lower dispersion coefficient compared to
boron atoms. This is clearly visible in parts (a), (b), (c) and (f),
where we observe a 3-fold, rather than 6-fold rotational
symmetry in the phase-shi plot.

Part (d) has a much more uniform phase shi across the
hole; thus, the diffraction pattern is more similar to how light
would diffract through a similarly shaped hole. In part (f), which
is the same hole only diffracted by faster atoms, we see a much
clearer fringe pattern as we also have diffraction through some
s in Fig. 1 normalised to the maximum intensity. The patterns are 1 m
(e) and (f) have a velocity of 20 000ms−1. The insets show the layout of

© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 7 Diffraction pattern along the indicated line for the elliptic hole
(Fig. 6(e)). We clearly see that more atoms go to the right side
compared to the left. The centre of the pattern is also shifted right. The
insets show the line we plot along and the layout of the atoms around
the hole, with B in orange and N in blue.
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of the arms of the snowake where there are atoms on almost
all sides.

For narrow slits, such as in part (e), we would expect the
diffraction pattern to spread more along the short axis of the
hole compared to the long axis. While we see this, we can also
see that the diffraction pattern is stretched along the right side
of the short axis.

Even though the nitrogen atoms have a larger polarizability
enhancement, they still have a smaller dispersion coefficient
compared to boron atoms. Therefore, there is some asymmetry
in the transmission function, leading to a diffraction pattern
that is not centred directly in the middle of the elliptical hole
but that is shied closer to the nitrogen-terminated edge.
Essentially, the helium atoms are gaining angular momentum
from one side, having a stronger potential and being “shot”
right. This is illustrated in Fig. 7.

4 Conclusions

This paper describes a method of determining diffraction
patterns frommatter waves passing through holes inmonolayer
materials, using h-BN as an example. Our DFT calculations
reveal that the removal of atoms to create the hole produces
a “polarisability ripple” around the defect where the atoms
surrounding the defect show enhanced polarisability, whereas
the atoms in the next ring show reduced polarisability. This
oscillatory behaviour diminishes rapidly with increasing
distance to the defect.

Based on these polarisabilities, we have estimated the hole
reduction and phase shi resulting from van der Waals and
electrostatic interactions between the atom and the h-BN mono-
layer through a numerical wave packet propagation considering
the edge atom nearest to the classical trajectory of the helium
scattering path. We nd the van der Waals contribution to
dominate the scattering potential as compared to the electrostatic
© 2024 The Author(s). Published by the Royal Society of Chemistry
part. Using macroscopic diffraction theory, the propagation
allowed us to nd diffraction patterns of holes smaller than 1 nm
in h-BN. We found that the predicted atomic polarizabilities and
dispersion coefficients have a signicant effect on the diffraction
patterns, such as shiing the elliptical holes' diffraction pattern
in the direction of the nitrogen-terminated edge. In terms of
applications to binary holography, we have shown that is possible
to diffract at sub-nanometer holes. Our results therefore suggest
that matter-wave lithography could potentially achieve sub-
nanometer resolution by using 2D monolayer materials as
a mask. The next step will be to test the model in real experi-
mental studies. This will require preparation of the required hole
shapes, which is challenging with current technology. A viable
method could be electron radiation using aberration-corrected
transmission electron microscopy (ACTEM), which has recently
been used to demonstrate the creation of single vacancies in h-
BN.66 Other possible paths include helium ion milling.27 In order
to avoid issues with material defects as much as possible, it is
important that experiments are carried out using large area single
crystal material.67
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