Table 6.
Hyperparameters and layer Configurations for 2D ResNet.
Hyperparameter | Value |
---|---|
Input size | (32, 25, 256, 43) |
Batch size | 32 |
Max epochs | 100 |
Learning rate | 5e-5 |
Optimizer | Adam |
Conv2d | in_channels:25, out_channels:64,kernel_size:7,stride:2,padding:3 |
BatchNorm2d | num_features: 64 |
ReLU | – |
MaxPool2d | kernel_size: 3, stride: 2, padding: 1 |
BasicBlock Conv2d | in_channels: 64, out_channels: 64, kernel_size: 3, stride: 1, padding: 1 |
Layer1 | output_channels: 64 |
Layer2 | output_channels: 128, stride: 2 |
Layer3 | output_channels: 256, stride: 2 |
Layer4 | output_channels: 512, stride: 2 |
AdaptiveAvgPool2d | output size: 1 |
Linear | in_features: 512, out_features: 3 |
Final output size | (32, 3) |