Skip to main content
. 2024 Aug 14;10(16):e36170. doi: 10.1016/j.heliyon.2024.e36170

Table 6.

Hyperparameters and layer Configurations for 2D ResNet.

Hyperparameter Value
Input size (32, 25, 256, 43)
Batch size 32
Max epochs 100
Learning rate 5e-5
Optimizer Adam
Conv2d in_channels:25, out_channels:64,kernel_size:7,stride:2,padding:3
BatchNorm2d num_features: 64
ReLU
MaxPool2d kernel_size: 3, stride: 2, padding: 1
BasicBlock Conv2d in_channels: 64, out_channels: 64, kernel_size: 3, stride: 1, padding: 1
Layer1 output_channels: 64
Layer2 output_channels: 128, stride: 2
Layer3 output_channels: 256, stride: 2
Layer4 output_channels: 512, stride: 2
AdaptiveAvgPool2d output size: 1
Linear in_features: 512, out_features: 3
Final output size (32, 3)