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Abstract

Motivated by the task of 2-D classification in single particle reconstruction by cryo-electron 

microscopy (cryo-EM), we consider the problem of heterogeneous multireference alignment of 

images. In this problem, the goal is to estimate a (typically small) set of target images from a 

(typically large) collection of observations. Each observation is a rotated, noisy version of one of 

the target images. For each individual observation, neither the rotation nor which target image has 

been rotated are known. As the noise level in cryo-EM data is high, clustering the observations 

and estimating individual rotations is challenging. We propose a framework to estimate the target 

images directly from the observations, completely bypassing the need to cluster or register the 

images. The framework consists of two steps. First, we estimate rotation-invariant features of the 

images, such as the bispectrum. These features can be estimated to any desired accuracy, at any 

noise level, provided sufficiently many observations are collected. Then, we estimate the images 

from the invariant features. Numerical experiments on synthetic cryo-EM datasets demonstrate 

the effectiveness of the method. Ultimately, we outline future developments required to apply this 

method to experimental data.
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I. INTRODUCTION

Single particle reconstruction using cryo-EM is a high-resolution imaging technique used 

in structural biology to image 3-D structures of macromolecules [1], [2]. In a cryo-EM 

experiment, multiple samples of a particle are frozen in a thin layer of vitreous ice. 

Within the ice, the samples are randomly oriented and positioned. The electron microscope 

produces a tomographic image of the ice and the embedded samples, called a micrograph. 

The goal is then to estimate the 3-D structure of the particle from the micrograph. 

HHS Public Access
Author manuscript
IEEE Trans Image Process. Author manuscript; available in PMC 2024 September 02.A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript



Importantly, the signal to noise ratio (SNR) of the micrograph is usually low because of 

the limited electron dose that can be applied without causing excessive radiation damage.

The first stage of existing cryo-EM algorithmic pipelines is called particle picking. In this 

stage, one aims to detect the projections of the samples within the micrograph and extract 

them. We refer to these extracted images as projection images. Throughout this paper, we 

assume perfect particle picking, that is, we obtain a large number of projection images, each 

containing a centered particle projection corresponding to an unknown viewing direction.

An important intermediate stage in the 3-D reconstruction procedure of cryo-EM is called 

2-D classification. The goal of this stage is to produce K 2-D images—called class averages
—with higher SNR. Each one of the K images should represent a subset of the projections 

taken from a similar viewing direction. The 2-D class averages can be used as templates for 

particle picking, to construct ab initio 3-D structures [3]–[6], to provide a quick assessment 

of the particles, to remove picked particles which are associated with non-informative 

classes, and for symmetry detection [7]–[9].

Different solutions were proposed for the 2-D classification problem. One approach is the 

reference-free alignment (RFA) technique [10]. RFA tries to align all projection images 

globally by estimating all individual rotation parameters. However, when the images arise 

from many different viewing directions, RFA tends to produce large errors as no assignment 

of in-plane rotational angles can align all images simultaneously. Methods based on 

expectation-maximization (EM)—an iterative algorithm that aims to find the marginalized 

maximum likelihood—are also popular. In the context of cryo-EM, the method is usually 

referred to as Maximum Likelihood 2-D classification (ML2D). The method was first 

proposed in [11], and is implemented in the popular software package RELION [12], [13]. 

Nevertheless, the EM framework lacks theoretical analysis and may be computationally 

expensive. In addition, EM suffers from an intrinsic resolution-computational load trade-off, 

since the sampling of the in-plane rotation angles is Nyquist sampling. In Section IV we 

present some numerical results of EM and discuss more of its properties.

A different 2-D classification technique is based on multireference alignment (MRA) [14]–

[16]. In MRA, the images are clustered into K classes and the images within each class are 

averaged to suppress the noise. The averaged images are the class averages. As projection 

images can be similar up to rotation, the clustering is based on either rotationally aligning 

the images within each class, or on features of the images which are invariant under 

rotations, such as autocorrelation [17] or bispectrum [18]. MRA and invariant features play a 

key role in this paper and are discussed in detail later. Notably, our proposed method avoids 

the clustering stage, which may be inaccurate at low SNR. Instead, we aim to estimate the K
class averages directly from the projection images, with no intermediate clustering stage.

In this paper, we propose to model the 2-D classification problem as an instance of the 

heterogeneous multireference alignment (hMRA) problem, for the case of 2-D images [19], 

[20]. In the hMRA problem, we observe N projection images. Each observed image is 

an in-plane rotated, noisy version of one of the K underlying images—the class averages, 

corresponding to K viewing directions. For each observation, the specific underlying image 
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and the in-plane rotation are unknown. Since in cryo-EM all in-plane rotations are equally 

likely to appear, we assume uniform distribution of rotations. The goal is to estimate the 

K class averages, as well as the distribution among the class averages. Crucially, for each 

observed particle, which class average it came from (its label) and which in-plane rotation 

was applied to it are treated as nuisance variables; that is: they are unknown, but we do not 

seek to estimate them. A detailed mathematical model of the hMRA problem is provided in 

Section II.

In the high SNR regime, the nuisance variables could be estimated accurately, at least in 

principle. Given an accurate estimate of these variables, the problem becomes trivial: one 

can cluster the observations into the K class averages, undo the rotations, and average within 

each class to suppress the noise. However, in the low SNR regime, estimating the labels 

and rotations becomes challenging, and indeed impossible as the SNR drops to zero; see 

for instance [21] for analysis in a related model. Notwithstanding, it was shown in a series 

of papers that in many MRA setups the underlying signal (or signals in our case) can be 

estimated at any noise level, provided sufficiently many observations are recorded [19], 

[22]–[27]. Remarkably, it was shown that in the low SNR regime, the method of moments 

achieves the optimal sample complexity under rather moderate conditions [24], [28].

Consequently, targeting the low SNR regime, we propose to apply the method of moments 

of MRA to the 2-D classification problem in cryo-EM. Our work builds upon the notion 

of bispectrum, first proposed by Tukey [29], and currently used in signal processing [30], 

[31]. The bispectrum is invariant under rotations; that is, the bispectrum of an image remains 

unchanged after an arbitrary in-plane rotation. This property enables us to bypass estimation 

of individual rotations associated with each one of the observations. Under the assumption 

of uniform distribution of rotations, the bispectrum is equivalent to the third-order moment 

of the image. Inspired by the seminal work of Kam [32], previous works [20], [23] studied 

the MRA and hMRA problems for 1-D signals using the bispectrum as a simplified model 

for the 3-D reconstruction problem in cryo-EM. In this paper, we study the more involved 

hMRA model for 2-D images as a model for 2-D classification.

In a nutshell, our proposed approach for 2-D classification consists of the following stages. 

First, we expand each image in a steerable basis. In this paper, we use the Fourier-Bessel 

basis, but alternative bases, such as the prolate spheroidal wave functions, can be used 

alternatively [33]. As explained in Section II, in such a basis all in-plane rotations of 

an image admit the same expansion coefficients, up to complex phase modulations. This 

property is called steerability. As a result, specific monomials in these coefficients are 

invariant under in-plane rotations. We refer to these monomials as invariant features. 

Specifically, we make use of monomials of the first-, second- and third-order called the 

mean, power spectrum and bispectrum, respectively.

In practice, instead of working directly on the expansion coefficients, we employ a 

dimensionality-reduction and denoising technique called steerable principal component 
analysis (sPCA). This technique is similar to the standard PCA, while boosting the SNR 

by accounting for all in-plane rotations of the data in an efficient way [34]. In addition, the 
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sPCA coefficients preserve the steerability property. Therefore, the invariant monomials can 

be computed in the sPCA space.

After computing the invariant features of each image, we average over all images. These 

averages are consistent estimators (up to bias terms that can be removed easily) of the 

mixed invariant features of the K class averages. Ultimately, a nonconvex least squares (LS) 

optimization problem is designed to recover the sPCA coefficients of the individual class 

averages from these mixed invariant features. All the ingredients of this algorithmic pipeline 

are provided in Sections II and III. Figure 1 illustrates the flowchart of the procedure. 

Numerical results and comparison with EM are provided in Section IV. Section V concludes 

this work, discusses its limitations and potential future extensions.

II. STATISTICAL MODEL AND INVARIANT FEATURES

In this section, we first describe in detail the hMRA model. Then, we introduce our 

framework based on computing features that are invariant under rotations in a steerable 

basis.

A. Statistical model

Let I1, I2, …, IK  be a set of K images of size L × L, with L odd1 and pixel values in [0, 

1]: these are the class averages, our target parameters. The pixels in an image are indexed 

by a pair of integers (x, y) with −(L − 1)/2 ≤ x, y ≤ (L − 1)/2. The support of the images is 

assumed to lie in the disk x2 + y2 ≤ (L − 1)2/4; as a result, any of their rotations have the 

same property. Let Rθ be a rotation operator which rotates an image counter-clockwise by 

angle θ, and let ξ be a random variable following a uniform distribution on [0, 2π). In 

addition, let π be a random variable on the set 1, 2, …, K  with distribution π1, …, πK :

πk: = ℙ(π = k) > 0, k ∈ 1, 2, …, K .

Then, our observations are i.i.d. random samples from the model

Y = RξIπ + ε,

(II.1)

where ε = εij ∈ ℝL × L is a noise matrix of i.i.d. Gaussian variables with zero mean and 

variance σ2; the random variables ξ, π, ε are independent. Indeed, it was observed that the 

background noise in cryo-EM experiments can be treated as Gaussian [35].

Suppose we collect N independent observations from the generative model works when L is 

even. (II.1),

Y = Y 1, Y 2, …, Y N ,

1We consider an odd L for convenience of implementation and presentation. Our algorithm also works when L is even.
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so that

Y i = RξiIπi + εi, i = 1, …, N .

From the observed data Y, we seek to estimate the target images I1, I2, …, IK  (class 

averages) and, possibly, the distribution π, without estimating the in-plane rotations of 

individual observations ξi or the labels πi. The model (II.1) suffers from unavoidable 

ambiguities of rotations (of each class average) and permutation (across the K images). 

Therefore, naturally, a solution is defined up to these symmetries. In Section IV we define a 

suitable error metric.

B. Steerable basis

As mentioned above, we aim to bypass estimating the nuisance variables by computing 

features that are invariant under rotation. To this end, we first expand the images with 

respect to a steerable basis. In polar coordinates, steerable basis functions take the form

uk, q(r, θ) = fk, q(r)eιkθ,

(II.2)

where ι: = −1. Notice the separation of variables: If we expand an image in uk, q,

I(r, θ) = ∑
k, a

ak, quk, q(r, θ),

(II.3)

then the expansion of the rotated image follows from:

RαI (r, θ) = I(r, θ − α) = ∑
k, a

ak, quk, q(r, θ − α)

= ∑
k, q

ak, qe−ιkαuk, q(r, θ) .

(II.4)

Since our images are real, the coefficients satisfy a conjugacy symmetry: ak, q = a−k, q. 

Therefore, coefficients with k ≥ 0 suffice to represent the images.

Examples of steerable bases include the Fourier-Bessel basis and prolate spheroidal 

wavefunctions. See [34] [36] [33] [37] for efficient expansion algorithms. In this paper, 

we work with the Fourier-Bessel basis on a disk with radius c defined as:

uk, q(r, θ) = Nk, qJk Rk
r
c eιkθ, r ≤ c,

0, r > c,

(II.5)

Ma et al. Page 5

IEEE Trans Image Process. Author manuscript; available in PMC 2024 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Jk is the Bessel function of the first kind, Rk, q is the qtℎ root of Jk and 

Nk, q = c π Jk + 1 Rk, q
−1 is a normalization factor. We take c to be (L − 1)/2, in accordance 

with the assumed support of the images.

To reduce the dimensionality of the representation and denoise the image, we perform sPCA 

after expanding the images in a steerable basis [34]. The sPCA results in a new, data driven 

basis to represent the images. Importantly, this new basis preserves the steerability property 

and consequently the rotation property (II.4) holds true. Section III-A introduces the sPCA 

technique in more details. With some abuse of notation, in what follows the coefficients in a 

sPCA basis are also denoted by ak, q .

C. Invariant features

The steerability property (II.4) enables us to determine features of images which are 

invariant under rotation. Specifically, features that are invariant to an action of SO (2): 

the special orthogonal group in 2-D. We assume that the images are “band-limited” in the 

sense that their expansion in a steerable basis is finite.

From (II.4), it is clear that coefficients ak, q corresponding to k = 0 are not affected by 

rotation. Hence, the first-order invariants are just the mean values, or the “DC components”:

mq = a0, q,

(II.6)

for all q. The second-order invariants, which form the power spectrum, are given by

pk, q1, q2 = ak, q1ak, q2,

(II.7)

for all k, q1, q2. The power spectrum coefficients are invariant to rotation since for all α:

ak, q1e−ιkα ak, q2e−ιkα = ak, q1ak, q2 .

Unfortunately, the power spectrum does not determine the image uniquely: a multiplication 

of the expansion coefficients by eιℎ[k] for an arbitrary function ℎ does not change the power 

spectrum, yet it does change the image.

The third-order invariant, the bispectrum, is defined by

bk1, k2, q1, q2, q3 = ak1, q1ak2, q2ak1 + k2, q3,

(II.8)

for all k1, k2, q1, q2, q3. Using equation (II.4), one can verify that indeed:
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ak1, q1e−ιk1α ak2, q2e−ιk2α ak1 + k2, q3e−ι k1 + k2 α

= ak1, q1ak2, q2ak1 + k2, q3 e−ιk1αe−ιk2αe−ι k1 + k2 α

= ak1, q1ak2, q2ak1 + k2, q3 .

The combined power spectrum and bispectrum do determine an image uniquely, up to global 

rotation:

Theorem II.1.—Consider two images with steerable basis coefficients ak, q and ak, q
′ , 

respectively, in the range −kmax ≤ k ≤ kmax. Assume that for all −kmax ≤ k ≤ kmax there exists 

at least one q such that ak, q ≠ 0. If for all indices

ak, q1ak, q2 = ak, q1
′ ak, q2

′ ,

(II.9)

ak1, q1ak2, q2ak1 + k2, q3 = ak1, q1
′ ak2, q2

′ ak1 + k2, q3
′ ,

(II.10)

then there exists θ ∈ [0, 2π) such that

ak, q
′ = ak, qe−ιkθ .

(II.11)

for all k, q. That is, the two images only differ by a rotation.

Proof: Set q1 = q2 in (II.9), we have ak, q = ak, q
′  for any k and q. Hence, ak, q

′ ≠ 0 if and only if 

ak, q ≠ 0, and there exists θk, q ∈ [0, 2π) such that ak, q
′ = ak, qe−ιθk, q. Then, still by (II.9), we have

ak, q1
′ ak, q2

′ = ak, q1ak, q2e−ι θk, q1 − θk, q2 .

This means that, for fixed k, θk, q take a same value (in [0, 2π)) for all q satisfying ak, q ≠ 0. 

Hence, for each k, there exists a single θk ∈ [0, 2π) such that

ak, q
′ = ak, qe−ιθk .

Next, by (II.10), we have for all k1, k2, q1, q2, and q3,

ak1, q1
′ ak2, q2

′ ak1 + k2, q3
′ = ak1, q1ak2, q2ak1 + k2, q3

× e−ι θk1 + θk2 − θk1 + k2 .
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By assumption, we can always choose q1, q2 and q3 such that ak1, q1, ak2, q2 and ak1 + k2, q3 are all 

nonzero. Then, we have

θk1 + θk2 = θk1 + k2,

for all −kmax ≤ k1, k2 ≤ kmax. This in turn implies

θk = kθ,

for some constant θ. Thus we conclude that

ak, q
′ = ak, qe−ιkθ .

■

III. 2-D CLASSIFICATION USING INVARIANT FEATURES

In this section, we introduce the whole pipeline of our algorithm in detail. We start by 

expanding the observed images in Fourier-Bessel basis. We then perform sPCA on the 

resulting coefficients. Next, we estimate the mixed invariants of the K true images (class 

averages) from the observations’ sPCA coefficients. Ultimately, we estimate the sPCA 

coefficients of the true images, and thus the images themselves, from the mixed invariants 

via a nonconvex LS optimization problem. Figure 1 shows a schematic flow chart of our 

algorithm and Algorithm 1 describes our algorithm step by step. Next, we elaborate on each 

of the steps.

Algorithm 1:

2-D classification by invariant features

1 Input: Observations Y 1, …, Y N; noise variance σ2.

2 Expand the observations in the Fourier-Bessel basis, and perform sPCA on the expansion coefficients using the 
method described in [34].

3 Estimate the mixed invariants of the true images using the sPCA coefficients of the data by (III.5), (III.6) and 
(III.7).

4 Estimate the sPCA coefficients of the true images and the distribution π by solving the optimization problem 
(III.13).

5 Recover the images I 1, …, I K from the sPCA coefficients by (III.16).

6 Output: images I 1, …, I K (up to permutation and rotations); distribution π.

A. Fourier-Bessel sPCA

We perform sPCA on the images after they were expanded in a Fourier-Bessel steerable 

basis, introduced in Section II-B. Like in a standard PCA, the first step is to subtract the 

mean observed image from each observation to center the data. The mean image is added 
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back at the last step of the PCA. To ease exposition, we assume (only in this subsection) that 

the images have zero mean.

For a regular PCA, one would construct the data matrix X such that each column holds the 

expansion coefficients of one image. Then, PCA would extract the dominant eigenvectors 

of XX∗, where X∗ is the conjugate transpose of X. Note that since XX∗ is Hermitian, 

it has real eigenvalues. Since in our model (and in cryo-EM) any observed images could 

have been observed after arbitrary in-plane rotation with the same probability, we wish to 

include all such rotated versions of all images in the PCA procedure. This can be done 

efficiently owing to steerability, as described in [38]. The dominant eigenimages obtained 

through sPCA form an orthonormal basis for a lower dimensional subspace, where we now 

project all observations. Crucially, this eigenbasis is also steerable (since each eigenimage 

is a linear combination of steerable basis functions.) We still get the two usual benefits of 

PCA—dimensionality reduction and denoising—with the added benefit that we exploited 

all of the available information. The sPCA has been proven to be an effective denoising 

tool for cryo-EM reconstruction [18], [33], [39], [40]. The procedure is actually faster than 

standard PCA because the data covariance XX∗ is block-diagonal upon factoring in all 

rotated images. In the next subsection, we use the expansion coefficients in the sPCA basis 

to compute invariant features.

B. Estimating the invariant features of the class average images

After performing sPCA, we get a steerable eigenbasis (a collection of eigenimages) 

and the expansion coefficients of the observed images in that basis (after projection to 

the corresponding subspace). Then, we can compute the invariant features using these 

coefficients. The invariants can be computed according to equations (II.6), (II.7) and (II.8). 

Next, we estimate the mixed invariants of the underlying class average images using the 

invariants of the noisy data, which we now explain.

Let ak, q
i  be the sPCA coefficients of the ith target image Ii. As per our model (II.1), in the 

absence of noise, the coefficients of an observation Y  are given by ak, q
π e−ιkξ. Let bk1, k2, q1, q2, q3

π, ξ

be the bispectrum computed from the latter. By construction, this is independent of ξ: this 

is simply the bispectrum of the target image Iπ. Marginalizing over the remaining nuisance 

variable π, we find

Eπbk1, k2, q1, q2, q3
π, ξ = Eπak1, q1

π ak2, q2
π ak1 + k2, q3

π ,

(III.1)

where Eπ represents expectation taken against π: a sum over π = 1, …, K weighted by 

π1, …, πK .

This relation implies that by averaging over all the bispectra of the observations we can 

estimate the mixed bispectra of the K class averages. Estimation of mixed mean and power 

spectra can be similarly obtained. Crucially, we approximate the mixed invariants of the true 

images without estimating the rotations ξ or the labels π of individual observations.
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The same method can be applied in the presence of noise. Now, the coefficients of the 

observations are given by

ak, q
π e−ιkξ + εk, q

c e−ιkξ,

(III.2)

where εc denotes the complex Gaussian noise in the coefficients, satisfying Eεc = 0 and 

Eεc εc ∗ = σ2I, where I is the identity matrix. The noise terms induce bias in the power 

spectrum and bispectrum estimation. Particularly, the noisy power spectrum of Y  satisfies

Eπ, εpk, q1, q2
π, ξ, ε = Eπak, q1

π ak, q2
π + σ2δq1, q2,

(III.3)

where δq1, q2 is the Kronecker delta function. Hence, we get a bias term which depends solely 

on σ, which is usually estimated in the cryo-EM algorithmic pipeline. Similarly, expectation 

over the noisy bispectrum results in

Eπ, εbk1, k2, q1, q2, q3
π, ξ, ε = Eπak1, q1

π ak2, q2
π ak1 + k2, q3

π

+ σ2EπAπ,

(III.4)

where

Aπ: = δq2, q3δk1, 0a0, q1
π + δq1, q3δk2, 0a0, q2

π + δq1, q2δk1 + k2, 0a0, q3
π .

Here, the bias term depends on both σ2 and the coefficients a0, q
π . Noise does not introduce 

bias in estimates of the mean.

Equipped with (III.3) and (III.4), estimating the mixed invariants can be executed by 

averaging over the invariants of the observations and removing the bias terms. Specifically, 

let mq
Yi, pk, q1, q2

Yi , bk1, k2, q1, q2, q3
Yi  be, respectively, the mean, power spectrum and bispectrum of the 

noisy observation Y i. Then, our estimators of the mixed invariants are easily computed as:

mq = 1
N ∑

i = 1

N
mq

Yi,

(III.5)

pk, q1, q2 = 1
N ∑

i = 1

N
pk, q1, q2

Yi − σ2δq1, q2,

(III.6)
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b k1, k2, q1, q2, q3 = 1
N ∑

i = 1

N
bk1, k2, q1, q2, q3

Yi − σ2EπAπ .

(III.7)

In (III.7), the bias term EπAπ can be estimated by mq.

C. Estimating the coefficients of the class averages

In the last section, we showed how the mixed invariants of the class averages can be 

estimated from the data. Now, we turn our attention to estimating the sPCA coefficients of 

the class average images from their mixed invariants by a LS optimization problem.

Our optimization problem consists of two types of variables. The first type represents the 

sPCA coefficients of the target images:

ai = ak, q
i , i = 1, 2, …, K .

(III.8)

The second type represents the distribution from which the observations are sampled:

π = π1, …πK .

(III.9)

In practice, as long as we have sufficiently many observations so that the empirical estimates 

of the invariant features are accurate, the following identities hold approximately:

∑
i = 1

K
πia0, q

i ≈ m0, q,

(III.10)

∑
i = 1

K
πiak, q1

i ak, q2
i ≈ pk, q1, q2,

(III.11)

∑
i = 1

K
πiak1, q2

i ak2, q2
i ak1 + k2, q3

i ≈ b k1, k2, q1, q2, q3 .

(III.12)

In an ideal case, we want ai to be coefficients of Ii (or an in-plane rotated version 

thereof), and πi = πi. Hence, we design an LS problem to minimize the difference 
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between left- and right-hand sides of equations (III.10), (III.11) and (III.12). Let 

Mq(a, π), Pk, q1, q2(a, π), Bk1, k2, q1, q2, q3(a, π) capture the left-hand sides of the three equations above, 

respectively, with the estimators (a, π) rather the unknown, underlying parameters (a, π). Our 

objective function reads

F(a, π) = ∑
q

Mq(a, π) − m0, q
2

+ 1
1 + σ2 ∑

k, q1, q2

Pk, q1, q2(a, π) − pk, q1, q2
2

+ 1
1 + σ2 + σ4 ∑

k1, k2, q1, q2, q3

Bk1, k2, q1, q2, q3(a, π) − b k1, k2, q1, q2, q3
2 .

(III.13)

Here we use 1, 1 + σ2 and 1 + σ2 + σ4 as rough estimates for the variances of corresponding 

terms; see also [20].

Some constraints need to be imposed. First, as variables π are used to represent a 

distribution, they should lie on the simplex, that is, πi ≥ 0 and π1 + ⋯ + πK = 1. Second, 

as our images are real, and Fourier-Bessel sPCA basis functions with k = 0 are real, we 

have ℑ a0, q
i = 0 (where ℑ extracts imaginary part). Consequently, we can force a0, q

i  to be real. 

Similarly, coefficients with the same q but opposite k are conjugate,

ak, q
i = a−k, q

i .

(III.14)

In the optimization problem, we can just consider those coefficients with nonnegative k.

To conclude, we aim to solve the following constrained LS optimization problem:

min
ak, q

i ∈ ℂ, πi ∈ ℝ
F(a, π),

subject to ∑
i = 1

K
πi = 1, πi ≥ 0,

ℑ a0, q
i = 0.

(III.15)

While the LS is nonconvex, we find that we can solve it satisfactorily in practice—see 

Section IV. This is in line with recent related work [20], [23], [26], [41].

We attempt to solve the optimization problem (III.15) by a trust-regions algorithm or 

conjugate gradient method using Manopt [42]: a toolbox for optimization on manifolds2. 

In our problem, the variable a lies in Euclidean space, while π lies on the simplex, whose 

relative interior is endowed with a Riemannian geometry in the toolbox [43]. When using 

2 www.manopt.org 
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Manopt, we only provide the gradient on Euclidean space. The gradient on the manifold 

is computed from the gradient on Euclidean space together with the representation of the 

manifold. The Hessian is approximated automatically by finite differences of the gradient.

D. Recovery of the images

After solving the optimization problem, we obtain a collection of coefficients ak, q
i , which 

are believed to approximate the sPCA coefficients of the target images, ak, q
i . To recover the 

images themselves, up to rotation, we simply compute a linear combination of the basis 

images given by the sPCA, using coefficients ai. We then add the mean image that was 

subtracted from all observations during the sPCA preprocessing, denoted by Im
i —see Section 

III-A. Specifically, letting Φ be the sPCA basis, we recover the images by

I i = Φai + Im
i .

(III.16)

E. Computational complexity

In this section we discuss the computational complexity of each step of Algorithm 1. By 

[34], the computational cost of the sPCA step is O NL3 + L4 , where N is the number of 

observations and L is the side length of the images. For each image, assume the sPCA 

provides M components and the maximum angular frequency is kmax. Then, we obtain 

O M3
kmax

 invariants in total [18]. Hence, O NM3
kmax

 computations are required to compute the 

invariants of all observations and estimate the mixed invariants for groundtruth images. 

Next, in the optimization part, computing the gradient requires going through all terms in 

the objective function, and each term contributes O(K) elements of the gradient. Hence, if T

iterations are performed, the computational complexity of the optimization step is O TKM3
kmax

. 

Finally, building the recovered images just involves K linear combinations of the principal 

components with computational cost O KML2 .

IV. NUMERICAL EXPERIMENTS

In this section, we show results of numerical experiments using our algorithm. First, we use 

random projections of the E. coli 70S ribosome volume [44] as the groundtruth images to 

explore the performance of our algorithm under different noise levels and distributions. The 

volume is available in the software ASPIRE package3. The size of each image is 1292 (i.e., 

L = 129). Figure 2 shows some examples of the class averages and noisy input images. Later, 

we apply our algorithm on two other molecules with projections of larger size. Code for our 

algorithm and all experiments is available at https://github.com/chaom1026/2DhMRA. The 

experiments presented below are conducted by MATLAB on a machine with 4× E7–8880 v3 

CPUs, and 750GB of RAM.

3 www.spr.math.princeton.edu 
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Following [20], we define error metrics suitable for the inherent symmetries of our problem. 

For two images I and I , we define a rotationally invariant distance as

dist(I, I ) = min
θ ∈ [0, 2π]

RθI − I F .

(IV.1)

This distance measures the Frobenius norm between all rotational alignments of I and I . Let 

ℐ = I1, …, IK  be a set of underlying images, and let ℐ = I 1, …, I K  be the estimates. To be 

invariant under both rotations and permutations, we use the following definition:

dist(ℐ, ℐ)2 = min
p ∈ SK

∑
i = 1

K
dist Ii, I p(i)

2,

(IV.2)

where SK is the set of all permutations of 1, 2, …, K . The relative error between ℐ and ℐ is 

defined by

distr(ℐ, ℐ) = dist(ℐ, ℐ)
∑i = 1

K Ii F
2 .

(IV.3)

Note that when computing errors we only consider the disk area with diameter L and ignore 

the corners. We measure the error between π and the true distribution π by the total variation 

(TV) distance which takes values in [0,1]:

distTV(π, π) = 1
2 ∑

i = 1

K
πi − πi .

(IV.4)

Here we assume that a permutation given by equation (IV.2) has been applied to π. In what 

follows, we define the SNR as

SNR =
E Signal2

E Noise2 : = ∑i = 1
K Ii F

2

KL2σ2 .

(IV.5)

During sPCA, we use the method introduced in [34] to choose the eigenimages 

automatically, based on properties of the Marchenko-Pastur distribution. Specifically, for 

each frequency k, we take those eigenimages with eigenvalues satisfying

λ(k) > 1.005σ2 1 + γk ,
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(IV.6)

where σ2 is the variance of the noise, γ0 = p0
N , and γk = pk

2N  for k ≠ 0. Here, pk is the number of 

eigenimages for frequency k and N is the total number of observations. The factor 1.005 in 

(IV.6) is chosen heuristically to control the number of sPCA coefficients.

In our first experiment we consider a uniform distribution π, and assume that the algorithm 

knows that π is uniform. Hence, in the optimization problem, variables πi are fixed to be 

1/K. We choose K = 10, SNR = 1/50, and take N = 104 observations in total. Examples of 

noisy observations are shown in the third column of Figure 3. With this much noise, it would 

be challenging to rotationally align and cluster the observations. Nevertheless, the proposed 

algorithm gets estimates of the images without (even implicitly) doing either alignment or 

clustering. During sPCA, 83 coefficients are automatically chosen to represent each image, 

according to (IV.6). Hence, in total we have 830 variables. Figure 3 shows some examples 

of original images (before and after sPCA), noisy observations and the recovered images by 

our algorithm. We can see that our algorithm produces accurate recovery of the groundtruth 

images from noisy samples. We split the measured error into two terms: the error caused by 

sPCA (the error between groundtruth images before and after sPCA) and estimation error 

in the sPCA space caused by the optimization problem (the error between recovered images 

and groundtruth images after sPCA). We refer to these errors as sPCA error and estimation 

error, respectively. For this experiment, the relative sPCA error compared to the groundtruth 

images is about 19.6%, while the relative estimation error compared to groundtruth images 

after sPCA is about 5.2%. Table I shows the CPU time of each step of the algorithm. In 

this experiment, and all the experiments on uniform distribution in the following, conjugate 

gradient method is used to solve the optimization problem.

We conducted experiments to study how the recovery error increases with the noise level. As 

before, we set K = 10, π is the (known) uniform distribution, and the number of observations 

is 104. Figure 4 shows the recovery results and relative errors for different SNRs. As can 

be seen, both the relative sPCA error and estimation error are, more or less, inversely 

proportional to the SNR. When the noise is larger, the sPCA gives less coefficients and 

results in larger sPCA errors. In addition, the estimation of the invariants, and thus the 

coefficients of groundtruth images, are less accurate under larger noise. Of course, when the 

noise is larger, we need more observations to average out the noise.

The next experiment aims to examine our algorithm when optimizing over π and the images 

simultaneously. As before, we fix K = 10 and SNR = 1/50. We take 500 observations for each 

class for the first 5 classes, and 1500 observations for the other 5 classes, so that

πi = 0.05, i = 1, …, 5; πi = 0.15, i = 6, …, 10.

(IV.7)

After applying our algorithm, the TV distance between π and π turns out to be 0.0086. 

The relative estimation error of all 10 images compared to groundtruth images after sPCA 

is 6.05%. The relative estimation error of the 5 images with πi = 0.05 is 7.39%, while the 
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relative estimation error of the other 5 images with πi = 0.15 is 3.94%. Empirically, a non-

uniform distribution does not influence much the overall quality of the recovery, though it 

seems underrepresented images suffer more. Figure 5 shows some results of this experiment 

with nonuniform distribution. CPU time cost is shown in table I. For the experiments with 

non-uniform distribution, trust-regions algorithm is used to solve the optimization problem. 

Usually, trust-regions algorithm provide more accurate estimates than conjugate gradient at 

the cost of running times.

Next, we study the influence of π on the quality of the recovery. In this experiment, we take 

K = 2, SNR = 1/50, and N = 104. Table II shows the relative estimation errors on recovered 

images and the TV error on the recovered distribution as the distribution π1, π2  shifts away 

from uniform. From the table, we can see that in all cases our estimated distributions 

are close to the true distribution with TV distance less than 0.01. When the number of 

observations for different images are not equal, the image with more observations tends to 

have lower estimation error.

Usually the projection images are not perfectly centered because the particle picking is not 

ideal. We conducted experiments to examine the robustness of our algorithm to small shifts 

of the input images, albeit our model does not take these shifts into account. This time, we 

consider a problem with only one class (K = 1) of size 129 × 129, 5 × 103 noisy observations 

and SNR = 1/50. A random shift is applied to each observation. The shift is generated by a 

2-D uniform distribution on all the shifts within a circle of radius s. When s ranges from 0 to 

5, the relative estimation errors of the recovered images are 3.30%, 4.86%, 6.58%, 10.28%, 

11.64% and 18.30%, respectively. While the error increases with the size of the shifts, it 

does so at a reasonable pace: when the shifts are small, the recovery errors are too.

Comparison of our algorithm with the EM method was made. We implement a vanilla 

version of the EM algorithm, which is applied on sPCA coefficients rather than the images 

themselves, and considers only a finite set of in-plane rotations. Our EM is different from 

the EM-based algorithms implemented in cryo-EM software packages (such as RELION), 

which are more sophisticated and include many heuristics to improve running time and 

accuracy. Here we aim to underscore the resolution-computational load trade-off of EM In 

the first experiment, we take K = 5 classes and 103 observations per class with SNR = 1/50. 

Figure 6 compares the relative estimation error compared to groundtruth images after sPCA 

for each class and the running time with different number of in-plane rotations considered 

by EM. From the figure we can see that EM performs better when the number of rotations 

is large (≥ 32 in this experiments). However, at the same time EM becomes time-costing, 

taking nearly 10 times more CPU-time than our algorithm. In the right plot of Figure 6, the 

time costs of computing invariant features are shown, which are already included in the time 

cost of our algorithm (the red line). Figure 7 shows the results of another experiment for 

nonuniform distribution and larger noise. We take the distribution (IV.7) and SNR = 1/100, 

with K = 10 and N = 104. We can observe similar phenomena as the last experiment.

To demonstrate that our algorithm applies to other data sets as well, we considered two 

additional molecules: the transient receptor potential cation channel subfamily V member 1 
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(TrpV1) [45] and the yeast mitochondrial ribosome [46]. The volumes are downloaded from 

The Electronic Microscopy Data Bank4. Similarly to the experiments before, groundtruth 

images are projections randomly generated from the volumes. The size of the projections 

is 181 × 181 and we set K = 10, SNR = 1/50, and N = 104. Figure 8 shows some results 

of TrpV1 data. In this experiment, the distribution is taken to be uniform and the variable 

π is fixed. The relative estimation error compared to groundtruth images after sPCA is 

4.29%. Figure 9 shows part of the results from the yeast mitochondrial ribosome data. In this 

experiment, we use the distribution given by (IV.7). The total variation error of π is 0.0141. 

The relative estimation error of all the images compared to groundtruth images after sPCA is 

6.03%, and 3.83% and 7.96% for images with πi = 0.15 and πi = 0.05, respectively.

V. CONCLUSION

In this paper, we studied the problem of heterogeneous MRA for 2-D images and proposed 

a new algorithmic framework for 2-D classification for SPR. Experimental results show that 

our algorithm can provide high-quality recovery of the groundtruth images (class averages), 

even when the noise level is high. The algorithm requires only one pass over the data and 

thus suits for large experimental data sets.

In practice, the projection images in cryo-EM suffer from small random shifts. Hence, a 

more accurate generative model reads

Y = TsRξIπ + ε,

where T s is a small random shift by s; compare with (II.1). In future work we intend 

to extend our framework to take shifts into account. A recent study [26] shows that non-

uniform distributions of translations makes MRA easier. We may take this issue into account 

in the future. Meanwhile, we have shown that our algorithm is robust against small shifts.

More importantly, our algorithm considers a discrete set of viewing directions. Yet, 

more realistically, cryo-EM micrographs contain projections sampled from a continuous 

distribution of viewing directions. We hope to extend our algorithm to the continuous case in 

the future. To apply the proposed techniques to experimental data, it is necessary to handle 

effects of the contrast transfer functions (CTF) and of colored noise as well.

In [20], [47], it was shown that the number of classes that can be demixed in 1-D hMRA is, 

approximately, L, where L is the length of the signals. Our experiments indicate that we 

can demix 40 − 50 classes. How this number depends on the size of the image or number of 

sPCA coefficients is left for future study.
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APPENDIX A GRADIENT OF THE OBJECTIVE FUNCTION

In this section we give the gradient of our objective function (III.13) in Euclidean space. For 

complex variables a, we treat them as a matrix, and define the gradient ∂F / ∂a as the only 

matrix g = g(a, π) satisfying

ℜ Tr g∗y = DF(a, π)[y],

(A.1)

where y is a matrix with the same size as a, ℜ Tr g∗y  is an inner product, and DF(a, π)[y]
is the directional derivative of F  at a along y. As the objective function is a summation 

of least squares, the gradient of the objective function is the summation of the gradient of 

least squares terms. Hence, we only need to compute gradients for the following 3 groups of 

terms:

∑
i = 1

K
πia0, q

i − m0, q

2
,

(A.2)

∑
i = 1

K
πiak, q1

i ak, q2
i − pk, q1, q2

2
,

(A.3)

∑
i = 1

K
πiak1, q2

i ak2, q2
i ak1 + k2, q3

i − b k1, k2, q1, q2, q3

2
.

(A.4)

We call (A.2), (A.3) and (A.4) the first-, second- and third-order terms according to the order 

of moments they contain.

A. First-order terms

Let

ℳq(a, π) = ∑
i = 1

K
πia0, q

i − m0, q .

Then, for real variables πi we can easily get
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∂ ℳq(a, π) 2
∂πi

= 2ℜ ℳq(a, π)a0, q
i .

(A.5)

For complex variables a0, q
i , we have

∂ ℳq(a, π) 2

∂a0, q
i = 2ℳq(a, π)πi .

(A.6)

For ak′, q′
i  with k′ ≠ 0 or q′ ≠ q we always have

∂ ℳq(a, π) 2

∂ak′, q′
i = 0,

(A.7)

as they do not appear in the term. In the following subsections, we ignore the gradient with 

respect to such variables.

B. Second-order terms

Let

P(a, π): = Pk, q1, q2(a, π) = ∑
i = 1

K
πiak, q1

i ak, q2
i − pk, q1, q2 .

Then, for πi, similar to the last subsection, we have

∂ P(a, π) 2
∂πi

= 2ℜ P(a, π)ak, q1
i ak, q2

i .

(A.8)

For ak, q
i , there are two cases. If q1 = q2, then

∂ P(a, π) 2

∂ak, q1
i = 4ℜ P(a, π) ak, q1

i πi .

(A.9)

If q1 ≠ q2 then we have

∂ P(a, π) 2

∂ak, q1
i = 2P(a, π)ak, q2

i πi,
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(A.10)

and

∂ P(a, π) 2

∂ak, q2
i = 2P(a, π)ak, q1

i πi,

(A.11)

C. Third-order terms

Let

ℬ(a, π) : = ℬk1, k2, q1, q2, q3(a, π)

= ∑
i = 1

K
πiak1, q2

i ak2, q2
i ak1 + k2, q3

i − b k1, k2, q1, q2, q3 .

Then, firstly we have

∂ ℬ(a, π) 2
∂πi

= 2ℜ ℬ(a, π)ak1, q2
i ak2, q2

i ak1 + k2, q3
i .

(A.12)

Next, again we consider two cases. If k1 = k2 and q1 = q2, then

∂ ℬ(a, π) 2

∂ak1, q1
i = 4ℬ(a, π)ak1, q1

i ak1 + k2, q3
i πi,

(A.13)

∂ ℬ(a, π) 2

∂ak1 + k2, q3
i = 2ℬ(a, π) ak1, q1

i 2πi .

(A.14)

Otherwise, we have

∂ ℬ(a, π) 2

∂ak1, q1
i = 2ℬ(a, π)ak2, q2

i ak1 + k2, q3
i πi,

(A.15)

∂ ℬ(a, π) 2

∂ak2, q2
i = 2ℬ(a, π)ak1, q1

i ak1 + k2, q3
i πi,

(A.16)
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∂ ℬ(a, π) 2

∂ak1 + k2, q3
i = 2ℬ(a, π)ak1, q1

i ak2, q2
i πi .

(A.17)
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Fig. 1. 
Flow chart of Algorithm 1 for 2-D classification using rotationally invariant features.
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Fig. 2. 
Examples of class averages (the right column) and rotated noisy images (the first three 

columns) for the E. coli 70S ribosome volume. SNR = 1/50.
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Fig. 3. 
First column (left to right): Groundtruth images before sPCA. Second column: 
Groundtruth images after sPCA. Third column: examples of noisy observations. Fourth 
column: recovered images by our algorithm, rotated and permuted to align with groundtruth 

images.
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Fig. 4. 
Recovery results for different SNR. The first to fourth rows of images are groundtruth 

images, noisy images, groundtruth images after sPCA, and recovered images, respectively. 

The first to third rows of numbers are SNR, relative sPCA error compared to groundtruth 

images (the first row), and relative estimation error compared to groundtruth images after 

sPCA (the third row), respectively. From left to right, the numbers of coefficients chosen by 

sPCA are 172, 88, 60, 45, 41, 33, 20 and 13.
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Fig. 5. 
First column: Groundtruth images before sPCA. Second column: Groundtruth images after 

sPCA. Third column: examples of noisy observations. Fourth column: recovered images 

by our algorithm, rotated to align with groundtruth images. The rows: The first two rows are 

images with π = 0.15 and the last two rows are images with πi = 0.05.
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Fig. 6. 
Comparison of our algorithm (MRA) with EM in terms of relative estimation error and 

computation time. Images are generated from 5 classes with uniformly random in-plane 

rotations. Contrary to MRA, EM needs to assume the rotations are selected from a discrete 

set. Here, we see the accuracy/computation time trade-off of EM for SNR = 1/50. Left panel: 

for each discretization value (i.e., number of uniformly sampled angles) and algorithm, each 

point represents the relative estimation error compared to groundtruth images after sPCA for 

one of the classes. Right panel: integers indicate the number of EM iterations. The CPU time 

is measured in seconds.
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Fig. 7. 
Comparison of our algorithm (MRA) with EM in terms of relative estimation error and 

computation time. The 10 classes are distributed nonuniformly according to (IV.7) and 

SNR = 1/100. Left panel: for each discretization value and algorithm, each point represents 

the relative estimation error compared to groundtruth images after sPCA for one of the 

classes. Right panel: integers indicate the number of EM iterations. The CPU time is 

measured in seconds.
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Fig. 8. 
Recovery results of the TrpV1 data. First column: Groundtruth images before sPCA. 

Second column: Groundtruth images after sPCA. Third column: examples of noisy 

observations. Fourth column: recovered images by our algorithm, rotated to align with 

groundtruth images.
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Fig. 9. 
Recovery results of the yeast mitochondrial ribosome data. First column: Groundtruth 

images before sPCA. Second column: Groundtruth images after sPCA. Third column: 
examples of noisy observations. Fourth column: recovered images by our algorithm, 

rotated to align with groundtruth images. The rows: The first two rows are images with 

π = 0.15. The last two rows are images with πi = 0.05.
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TABLE I

CPU TIME COST (IN SECONDS) OF DIFFERENT STEPS FOR EXPERIMENTS ON E. COLI 70S RIBOSOME WITH UNIFORM AND NON-

UNIFORM DISTRIBUTION (CORRESPONDING TO Figure 3 AND 5).

Step╲Distribution Uniform Non-uniform

Computing sPCA 252.2s 259.7s

Computing mixed invariants 16.3s 17.5s

Optimization 428.2s 7157.3s
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TABLE II

RELATIVE ESTIMATION ERROR COMPARED TO GROUNDTRUTH IMAGES AFTER SPCA AND TOTAL VARIATION ERROR OF 

EXPERIMENTAL RESULTS WITH VARYING DISTRIBUTION π = π1, π2 ; errori REPRESENTS THE RELATIVE ERROR ON IMAGE 

i = 1, 2.

π1 0.1 0.2 0.3 0.4 0.5

distTV 0.0025 0.0007 0.0022 0.0009 0.0014

error1 3.59% 5.01% 1.59% 3.60% 3.95%

error2 2.01% 4.66% 0.91% 4.08% 4.63%
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