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Abstract 

Freshwater ecosystems can serve as model systems that reveal insights into biological invasions. In this article, we summarize nine 
lessons about aquatic invasive species from the North Temperate Lakes Long-Term Ecological Research program and affiliated projects. 
The lessons about aquatic invasive species are as follows: Invasive species are more widespread than has been documented; they are 
usually at low abundance; they can irrupt from low-density populations in response to environmental triggers; they can occasionally 
have enormous and far-reaching impacts; they can affect microbial communities; reservoirs act as invasive species hotspots; ecosystem 

vulnerability to invasion can be estimated; invasive species removal can produce long-term benefits; and the impacts of invasive species 
control may be greater than the impacts of the invasive species. This synthesis highlights how long-term research on a freshwater 
landscape can advance our understanding of invasions. 
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face. However, there are an estimated 117 million lakes worldwide 
(Verpoorter et al. 2014 ), placing the grand challenge of addressing 
the issue of aquatic invasive species in perspective (Lodge et al. 
2006 ). Finally, it is clear that invasive species and their impacts 
cannot be considered in isolation from other interacting drivers of 
environmental change, such as climate change, land-use change, 
hydrologic alterations, and nutrient pollution (Rahel and Olden 
2008 , Strayer 2010 , Carpenter et al. 2011 ). 

Given both the scope and the impacts of freshwater species in- 
vasions, there is a pressing need to develop an integrated under- 
standing of their spread, establishment, biotic interactions, and 
ecosystem consequences (Strayer 2010 , Ricciardi et al. 2013 ) in 
order to inform and guide their management (Lodge et al. 2006 ). 
Such an integrated understanding will not emerge from any sin- 
gle approach or type of study. Rather, insights emerge from a 
combination of approaches: experimental manipulations, long- 
term studies, cross-system comparisons, theory, and modeling. In 
this article, we summarize nine lessons about freshwater inva- 
sive species that have emerged over the past two decades from 

the North Temperate Lakes Long-Term Ecological Research (NTL- 
LTER) program. One component of the NTL-LTER program is long- 
term monitoring of a series of lakes going back to 1981 (Magnu- 
son et al. 2006 , Carpenter et al. 2007 ). We note that the NTL-LTER 
program is much more than long-term sampling of 11 lakes. It 
is a question-driven program that integrates multiple approaches 
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s a result of human activities, trade, and transport, species are
ncreasingly establishing populations outside of their native range
Elton 1958 , Lockwood et al. 2013 , Seebens et al. 2017 ). Introduced
pecies can subsequently spread, with large consequences for the
ecipient ecosystems (Strayer 2010 , Ricciardi et al. 2013 ). Intro-
uced species have resulted in ecological disruption, the loss of
iodiversity, economic impacts, and reduced human well-being
Vitousek et al. 1996 , Ricciardi and MacIsaac 2000 , Pejchar and
ooney 2009 , Strayer 2010 ). Hereafter, we consider a species that
as established outside of its historical geographic range and that
xerts (or, at least, has the potential to exert) undesired ecological
r economic impacts to earn the label of invasive species . 
Species invasions have proven to be especially problematic

n freshwater ecosystems for several reasons (Ricciardi and
acIsaac 2000 , Cox and Lima 2006 , Havel et al. 2015 , Moorhouse
nd Macdonald 2015 , Gallardo et al. 2016 ). First, freshwater sys-
ems are already strongly degraded as a result of human activ-
ties, especially changing land-use and pollution owing to their
ownstream position within watersheds (Carpenter et al. 1998 ,
udgeon et al. 2006 , 2011 ). Second, many freshwater systems are
atches of habitat embedded in a sea of land. Such low levels
f habitat connectivity leads to geographic isolation and a high
egree of endemism, such that freshwater ecosystems are biodi-
ersity hotspots (Dudgeon et al. 2006 , Reid et al. 2019 ), especially
iven that freshwater habitats are a tiny fraction of the Earth’s sur-
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Table 1. Nine lessons about invasive species from research affiliated with the North-Temperate Lake Long-Term Ecological Research 
(NTL-LTER) program in a lake-rich region, Wisconsin, in the United States. 

Lesson References 

Invasive species are more widespread than has been documented Vander Zanden et al. 2017 
Invasive species are usually at low abundance Hansen et al. 2013c 
Invasive species can irrupt from low-density populations in response to environmental triggers Spear et al. 2021b 
Invasive species can occasionally have enormous and far-reaching impacts Walsh et al. 2016a 
Invasive species can affect microbial communities Rohwer et al. 2023a 
Impoundments act as invasive species hotspots and stepping stones Johnson et al. 2008 
Invasive species vulnerability assessments can inform management Vander Zanden and Olden 2008 
Invasive species removal can produce ecosystem shifts and long-term benefits Lathrop et al. 2013 , Perales et al. 2021 
The impacts of invasive species control may be greater than the impacts of invasive species Mikulyuk et al. 2020b 

Figure 1. Map showing (a) the Yahara Lake District and (b) the Northern Highlands Lake District, both part of the North Temperate Lakes Long-Term 

Ecological Research (NTL-LTER) site, and (c) the broader regional context of the upper Great Lakes region of North America, including the Laurentian 
Great Lakes. 
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or understanding environmental change. Long-term sampling of
he core NTL-LTER lakes has undoubtedly provided insights into
reshwater species invasions and into the role of invasive species
s agents of ecosystem change at decadal time scales. In addi-
ion, insights have come from several spatially extensive cross-
ake studies that have elucidated broadscale patterns by virtue of
heir spatial coverage. It also includes whole-ecosystem experi-
ents that can help reveal mechanistic relationships (Carpenter
t al. 1995 ). We note that NTL-LTER investigators have also led
any closely affiliated spinoff projects that are intellectually

inked to the NTL-LTER program. In the present article, we sum-
arize insights from this body of work in the form of nine key

essons about the ecology and management of invasive species
table 1 ). Our lessons apply across different stages of the biological
nvasion process (Vander Zanden and Olden 2008 )—how aquatic
nvasive species arrive, survive, and affect ecosystems, as well as
heir management. Several of these insights challenge conven-
ional assumptions about invasive species and have direct impli-
ations for managing freshwater biodiversity and ecosystems. 
tudy system 

n this article, we focus on research from the past two decades
n the ecology of aquatic invasive species conducted as part of
he NTL-LTER research program and affiliated projects. This site
f the US Long Term Ecological Research Network was launched
n 1981. Originally, the core study lakes consisted of seven lakes
n the Northern Highlands Lake District (NHLD) in northern Wis-
onsin, in the United States (figure 1 ). In 1994, four additional
akes from the Yahara Lake District (YLD) in Madison, Wiscon-
in, were added. Together, these two lake districts span a geo-
raphic and land-use gradient that is broadly representative of
he lake-rich upper Great Lakes region that includes the states of
isconsin, Michigan, and Minnesota (figure 1 ). Both lake districts
ere glaciated during the most recent Wisconsin glaciation (Mar-
in and Hanson 1965 ). The moraines and glacial debris deposited
y the receding glaciers created an irregular and undulating land-
cape that resulted in an astounding number of lakes. The Wis-
onsin Department of Natural Resources maintains a registry of
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nland waterbodies, which lists nearly 15,000 lakes, and the adja-
ent glaciated regions of Minnesota and Michigan include many
housands more. 
The NHLD is known for having one of the highest densities of

akes in the world (Martin and Hanson 1965 , Kratz et al. 1997 ,
agnuson et al. 2006 ). The lakes in the region vary widely with
egard to geological setting, water chemistry, morphology, trophic
tate, and biotic composition (Magnuson et al. 2006 , Carpenter
t al. 2007 ). The NHLD was subject to intensive clearcut logging in
he late nineteenth century. Today, the region is largely covered by
econd growth forest, and lakeshore residential development and
isturbance of riparian zones are extensive and a major driver of
nvironmental change. Lakes in the NHLD today are characterized
y forested watersheds, low dissolved ion and nutrient concentra-
ions (low conductivity), and high water quality. 
The YLD is located at the southern glacial boundary of the
isconsin glaciation (figure 1 ), and the lakes in this region were

ormed as the result of morainal damming. The land in the YLD
atershed was cleared for agriculture in the midnineteenth cen-
ury, and the urbanized area of Madison has expanded continu-
usly ever since. The lakes in the YLD have agricultural and ur-
anized watersheds, high dissolved ion concentrations, and high
utrient levels. Agricultural and urban nutrient runoff lead to nui-
ance algal blooms and poor water quality. 
Both lake districts have been affected by the introduction of

onnative species from a broad range of taxa (Vander Zanden
nd Maxted 2008 , Escobar et al. 2018 ). Nonnative species introduc-
ions date back to the late 1800s, when common carp ( Cyprinus car-
io ) were purposefully introduced into the YLD lakes. More recent
xamples include Eurasian watermilfoil ( Myriophyllum spicatum ),
hich established and spread in the region during the 1970s, zebra
ussel ( Dresseina polymorpha ) in the 1990s and 2000s, and spiny
ater flea ( Bythotrephes cederstroemi ) in the 2000s (Vander Zanden
nd Maxted 2008 ), all presumably accidental introductions. 
An important feature of our two lake districts and the study

egion generally is its proximity to the Laurentian Great Lakes
figure 1 ). The Great Lakes have acted as a beachhead for the ar-
ival of invasive species that have subsequently undergone sec-
ndary spread to inland waters (Rothlisberger and Lodge 2013 ).
he construction of the St. Lawrence Seaway in the 1950s opened
he Great Lakes to oceanic vessels from around the world, and
allast water transport is responsible for many high-impact inva-
ive species into the lakes (Mills et al. 1994 , Ricciardi and MacIsaac
000 , Holeck et al. 2004 ). The Great Lakes are among the most in-
aded freshwater ecosystems in the world, with at least 184 non-
ative species (Mills et al. 1993 , 1994 , Ricciardi and MacIsaac 2000 ).
uman activity (bait buckets, recreational boating) has facilitated
he gradual spread of a subset of these species from the Great
akes to inland waters (Bossenbroek et al. 2001 , Vander Zanden
nd Olden 2008 , Rothlisberger et al. 2010 , Kelly et al. 2013 ). These
econdary invasions from the Great Lakes have affected the ecol-
gy and economies of inland lakes and provide a model landscape
or understanding invasive species arrival, spread, and impact,
ielding lessons and insights that can be broadly applied. 

esson 1: Invasive species are more 

idespread than has been previously 

ocumented 

istribution and geographic range are among the most fun-
amental features of any species’s ecology. Landscape-level or
roadscale studies of species, including invasives, often present a
map of the species’s geographic range. The geographic range rep-
resents the geographic area occupied by a species (Brown 1995 ,
Gaston and Blackburn 2000 , Gaston 2003 ) but does not convey crit-
ical finer-scale information about species occurrence and preva-
lence within the range—in other words, the amount and spatial
distribution of potential habitat and habitat occupancy within
that range (Thiele et al. 2010 , Latzka et al. 2016 , Vander Zanden
et al. 2017 ). 

The distinction between geographic range and prevalence and
occurrence within the range is particularly important when con-
sidering species that inhabit discrete habitats such as lakes
(Latzka et al. 2016 , Vander Zanden et al. 2017 ). Lakes are well-
defined habitat patches embedded within a predominantly ter-
restrial landscape and are therefore convenient, mostly isolated
units in which one can assess and track invasions. Perhaps not
surprisingly, there are numerous invasive species databases that
document invasive species occurrences (Simpson et al. 2009 ).
Aquatic invasive species occurrence records are also collected and
maintained by many natural resource management agencies. For
the state of Wisconsin, the Wisconsin Department of Natural Re-
sources maintains an inventory of waterbodies known to contain
aquatic invasive species ( https://apps.dnr.wi.gov/lakes/invasives/
AISByWaterbody.aspx). These data are updated regularly and are
an important information source and management tool. 

Knowledge of invasive species’ locations and their overall
prevalence is critically important for informing lake management
decisions (Bobeldyk et al. 2015 , Vander Zanden et al. 2017 ). Imag-
ine two hypothetical invasive species with similar invaded ranges,
but one is much more widely distributed within that range. If all
else is equal, the management and prevention strategies are likely
to be very different; managing the less prevalent species may aim
for containment within current lakes, whereas the strategy for the
more prevalent species would entail shielding remaining unin-
vaded lakes (Drury and Rothlisberger 2008 ). At a more basic level,
efforts to reduce or stop the spread of invasive species require in-
formation about where those species occur. 

The existing inventory of invaded waterbodies for the state of
Wisconsin provides an opportunity to evaluate how well a re-
gional occurrence database reflects actual invasive species oc-
currence. Wisconsin’s infested waterbody data set is populated
with invasive species presence records from diverse information
sources, including citizen science, biological monitoring, inciden-
tal reports from biologists and scientists, and records from inva-
sive species research projects. More recently, there have been for-
mal surveys aimed at detecting invasive species, although these
are a small portion of the total records (Latzka 2015 ). Given the
approximately 15,000 lakes in Wisconsin, an ongoing census of all
lakes would be impossible. Because the list represents confirmed
occurrences, one might expect that false presence measures (oc-
currence records where, in fact, the species is absent) would be
infrequent. On the other hand, this is a presence-only database;
therefore, we would expect that some invasive species occur-
rences have not been detected or reported and are, therefore, not
included (Latzka 2015 , Vander Zanden et al. 2017 ). Given the het-
erogeneous data sources, we might also expect gaps and biases as-
sociated with the available data. For example, small and inacces-
sible lakes may not be well represented, and lesser-known invasive
species may be less thoroughly reported (Dickinson et al. 2010 ). 

Invasive species prevalence from the infested waterbody list
was compared with results from multiyear invasive species field
surveys using a stratified random design and statistical weight-
ing (Schade and Bonar 2005 , Latzka 2015 , Vander Zanden et al.
2017 ). The researchers surveyed 458 lakes for the presence of a

https://apps.dnr.wi.gov/lakes/invasives/AISByWaterbody.aspx
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uite of aquatic invasive species. The lake selection involved strat-
fying according to conductivity, presence or absence of a pub-
ic boat launch, and lake size. From the infested waterbody list,
he percentage of lakes for which one or more of six target in-
asive species (rusty crayfish, spiny water flea, dreissenid mus-
el, Chinese mystery snail, banded mystery snail, Eurasian wa-
ermilfoil) presence was summarized. Occurrence records from
he existing infested waterbody list indicate that about 8% of
isconsin lakes contain one or more of these six target invasive

pecies (1189 lakes were listed as containing one or more of these
pecies, out of 14,364 total lakes; Latzka 2015 ). The randomized
eld surveys of lakes indicated invasive species prevalence was
uch higher. Of 458 lakes surveyed, 338 contained one or more

nvasive species (Latzka 2015 ). Applying statistical weighting to
he strata, it was estimated that 39% of Wisconsin lakes harbor
t least one of these aquatic invasive species. This estimate is
early five times higher than inferences based strictly on existing
ccurrence records (Latzka 2015 ). This difference was greater for
oorly known species (e.g., Chinese mystery snails) than for high-
mpact species, such as zebra mussels. Considering that the state
f Wisconsin has a strong infrastructure for collecting and docu-
enting invasive species occurrences, our results suggest that at
road spatial scales, knowledge of aquatic invasive species dis-
ribution is poor (Bobeldyk et al. 2015 ). The degree of underes-
imation is likely to vary widely among regions and species. Al-
hough, of course, targeted surveys can characterize distributions
or localized regions, collecting such information at broad spa-
ial scales is likely to be prohibitive. Our understanding of the
asic macroecology of invasive species—foundational to invasive
pecies management—will continue to be limited by a paucity of
ccurrence data (Vander Zanden et al. 2017 ). 

esson 2: Invasive species are usually at 
ow abundance 

uch of our understanding of biological invasions is dichotomous
n nature, with a strong emphasis on invasive species occurrence
r presence or absence (lesson 1). For example, there has been a
trong focus in invasion biology on predicting which species are
ikely to be invasive and cause ecological or economic harm (Kolar
nd Lodge 2002 ) and predicting sites that are vulnerable or likely
o be invaded. Invasive species monitoring and databases gener-
lly focus on occurrence and not abundance. Although it is self-
vident that invasive species abundance will vary among sites and
hrough time, we know surprisingly little about spatial patterns of
nvasive species abundance. Spatial patterns of invasive species
bundance are the subject of lesson 2. 
A core tenet of ecology is that most species at a given site occur

t low abundance, whereas only a handful are abundant. These
o-called species-abundance distributions are described as right
kewed or log normal. Fewer studies have examined the abun-
ance distribution of a single species across sites, although the
ame pattern holds; a given species is typically rare and achieves
igh abundance at only a few locations (Preston 1948 , Brown 1995 ,
rown et al. 1995 ). Little work has addressed whether this basic
attern also holds true for invasive species (Labra et al. 2005 ).
ansen and colleagues (2013 a) explicitly examined the abun-
ance distributions of aquatic invasive species and found that
hey are often present at low abundance and infrequently reach
igh abundance (figure 2 ). The overall abundance distribution pat-
erns were similar to those of native species, which were exam-
ned in the same study. This finding was somewhat surprising,
iven the common views that invasive species typically take over
nd that invasive species are sometimes even defined as species
hat typically reach high abundance. This finding challenges the
onventional wisdom that invasive species show fundamentally
ifferent ecological patterns than native species and that inva-
ives tend to be abundant where they occur (Hansen et al. 2013 a,
ander Zanden et al. 2017 ). 
Given the obvious interest in understanding invasive species ef-

ects, a key question is how local invasive species abundance is re-
ated to ecological or economic impact. As a general rule, invasive
pecies impacts tend to increase with abundance. But the rela-
ionship between abundance and impact can take multiple forms
Yokomizo et al. 2009 , Jackson et al. 2015 ), and it is possible for in-
asive species to produce strong impacts even at low abundance.
ndeed, in some cases, the negative effects of invasive species may
e highest at low or moderate densities (Kornis et al. 2014 , Bradley
t al. 2019 ). Unfortunately, the form of this abundance–impact re-
ationship is rarely known (Sofaer et al. 2018 ). Taken together, it is
he spatial distribution of the invasive species, the spatial pattern
f abundance, and the form of the abundance–impact relation-
hip that determine the overall impact of a species at the land-
cape scale. Variation in these details can result in vastly differ-
nt cumulative impacts of invasive species when considered at
road scales (Thiele et al. 2010 , Latzka et al. 2016 ). Understand-
ng the landscape-level impacts of aquatic invasive species in-
olves knowing where an invasive occurs, where it is abundant,
nd where it is impactful. These factors tend not to be well un-
erstood for most species (Vander Zanden et al. 2017 ). Given these
nowledge gaps, understanding invasive species abundance, how
t varies across the landscape, and the relationship between abun-
ance and impact is critical for prioritizing and managing aquatic
nvasive species. 
Given that invasive species frequently occur at low levels of

bundance, there is a need for improved methods to detect low-
bundance populations. Environmental DNA (eDNA) has boomed
n popularity and shows promise for improving the sensitivity
nd efficiency of species detection in aquatic systems (Jerde et al.
011 , Goldberg et al. 2016 ). The utility of eDNA for detecting low-
bundance populations of nonnative species may be useful al-
hough highly context dependent. eDNA monitoring of two low-
ensity, nonnative species in NTL-LTER and nearby lakes yielded
ixed detection efficiencies, likely driven by variable eDNA shed-
ing rates of the target species and physical characteristics of the
tudy system (Dougherty et al. 2016 , Walsh et al. 2019 ). Consider-
tion of the life history and density of target species should guide
he timing and sampling effort to improve detection using eDNA
nd traditional detection methods (De Souza et al. 2016 ). Detect-
ng extremely low-density populations in large search areas—
ven with advanced technologies—will likely to continue to be
hallenging (Walsh et al. 2018b ). 

esson 3: Environmental triggers may 

ause low density populations of invasive 

pecies to irrupt 
opulations of nonnative species may persist for long periods at
ow abundance, with self-sustaining reproduction but inconspic-
ous impacts on the recipient ecosystems. These low-abundance
opulations can undergo population irruptions, often suddenly,
fter persisting at low levels for decades (Spear et al. 2021b ).
he discovery of a nonnative zooplankter, the spiny water flea
 Bythotrephes cederstroemi ), in the YLD’s Lake Mendota helps to
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Figure 2. Frequency histogram showing spatial variation in invasive species abundance. To illustrate, we use the example of invasive round goby 
(Neogobius melanostomus; catch per unit effort, CPUE; the number of individuals captured per minute backpack shocking) from 60 Wisconsin 
streams. This plot helps to illustrate lessons 2, 3, and 4. Lesson 2 is that the frequency distribution of abundance for round goby is highly right skewed; 
that is, at most sites, the population occurs at low abundance. Lesson 3 is that, given that round goby are typically found at low abundance, we could 
imagine that there are additional sites in which round goby are present but were not detected in the field survey (i.e., were below the detection 
threshold). These detected and undetected low abundance populations create potential for population irruptions of this invasive species in response 
to environmental change or other possible triggers. Lesson 4 is that the invasive is at high abundance at a small number of sites (i.e., the right tail of 
the distribution). Given that ecological and economic impact increases with abundance, we expect high levels of impact to occur at the small number 
of high-abundance sites. 
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llustrate this lesson. Spiny water flea appeared in Lake Mendota
t remarkably high densities in fall of 2009. At first, it was as-
umed that the species had very recently been introduced. But
ubsequent analysis of sediment cores and museum specimens
evealed that this population had likely persisted below the de-
ection limit for at least a decade prior to its irruption and subse-
uent detection. Despite routine zooplankton monitoring in this
ake, a sleeper population had gone undetected for years until en-
ironmental conditions (in this case, an anomalously cool sum-
er) allowed it to flourish and establish a massive egg bank that
ontinued to sustain a high abundance of spiny water flea going
orward (Walsh et al. 2016b ). 
Sleeper populations of invasive species may irrupt when a

hange in the environment triggers an abrupt shift in invasive
pecies abundance and impact. Although the early stages of any
opulation expansion account for some inherent lags between a
pecies introduction and an outbreak to high abundance (Crooks
nd Soulé 1999 , Crooks 2005 ), it may be common that an envi-
onmental trigger causes an abrupt shift in abundance or impact.
riggers may include shifts in food-web dynamics, such as when a
rey is added or a predator removed from the system, or the com-
letion of an interrupted mutualism when a coevolved species
s later introduced (Spear et al. 2021b ). Triggers may also be en-
ironmental drivers that cross a threshold, either gradually (e.g.,
lobal warming) or stochastically (e.g., a heavy rain event). These
riggers remove previous population constraints and allow abrupt
population growth, causing a low-abundance and possibly unde-
tected sleeper population to become a full blown, invasive nui-
sance. Examples of sleeper populations have been documented
from around the world (Spear et al. 2021a ). In the northern Wad-
den Sea (Germany), nonnative cordgrass ( Spartia anglica ) persisted
at low densities since the 1920s despite cold water temperatures.
In the past few decades, however, the earlier onset of spring has
caused water temperatures to more often exceed the critical tem-
perature thresholds for successful germination and photosynthe-
sis, increasing cordgrass production and spread (Loebl et al. 2006 ).
As another example, on Macquarie Island (Australia), prey-limited
cats ( Felis catus ) received a resource boost from introduced rabbits,
allowing the cats’ numbers to grow and their diet to expand to in-
clude native birds (Courchamp et al. 1999 ). A growing list of exam-
ples support the idea that low-abundance (and undetected) pop-
ulations may be widespread across the landscape, representing a
stockpile of potential sleeper populations awaiting environmental
triggers. In an era defined by global environmental change, this
potential buildup may represent a major challenge for invasive
species management. Many practical questions remain: How of-
ten do low-abundance populations irrupt? Are invasive species ir-
ruptions sometimes only temporary? Do certain species or ecosys-
tem traits associate with certain triggers? Can we manage sleeper
populations by increasing resilience and other forms of ecosys-
tem management that reduce the risk of triggers? How can we
improve the detection of low-abundance populations before they
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rrupt? Can we distinguish new invasions as a recent introduc-
ion from irruption from a sleeper population? This work high-
ights the potential for unaccounted-for invasion debt in the form
f widespread but low-abundance populations of invasive species
n landscapes. Whether this invasion debt eventually manifests
s costly ecological impacts will be determined not so much by
fforts to stop invasive species spread but, rather, by the stressors
nd conditions in those ecosystems that trigger sleeper popula-
ion outbreaks (Spear et al. 2021b ). 

esson 4: Invasive species impacts can 

ccasionally be enormous and far reaching 

essons 2 and 3 were focused on the left side of the species-
bundance histogram shown in figure 2 . For lesson 4, we shift
ur focus to the right side of the abundance histogram—that is,
he long tail of the abundance distribution. Note that, in figure 2 ,
he invasive round goby occurs at high abundance in a very small
raction of the surveyed sites. This spatial pattern of species abun-
ance (lesson 2) is fundamentally important to our understand-
ng of invasive species impacts at the landscape scale (Thiele et al.
010 , Latzka et al. 2016 , Vander Zanden et al. 2017 ). An invasive
pecies’s impact generally increases as a function of abundance,
lthough the abundance–impact relationship can take on sev-
ral possible forms, including linear, sigmoidal, and threshold re-
ponses (Yokomizo et al. 2009 , Jackson et al. 2015 , Latzka et al.
016 ). Nevertheless, a key implication is that the small fraction
f ecosystems in which invasives become very abundant are the
cosystems in which we expect that the level of impacts will be
igh and, moreover, that highly affected systems are expected to
e relatively uncommon (Latzka et al. 2016 , Vander Zanden et al.
017 ). 
To illustrate the enormous impacts that are possible when in-

asive species reach high densities, we consider again the exam-
le of the invasive spiny water flea. This zooplankton species was
eported in inland lakes of the region starting in the early 2000s.
he levels of abundance were generally low, and no notable im-
acts were reported (although invaded lakes were not well studied
t the time). In fall of 2009, the spiny water flea was detected in
n NTL-LTER core sampling lake, Lake Mendota, Wisconsin. The
opulation reached enormous densities, at times exceeding 1000
ndividuals per cubic meter. Annual average densities exceeded
00 individuals per cubic meter, which were the highest densities
eported for North America (Walsh et al. 2016a ). The spiny water
ea invasion of Lake Mendota represented the long tail (right side)
f the abundance distribution (figure 2 ). 
The ecological impacts of spiny water flea in Lake Mendota
ere striking. Spiny water fleas are predatory on other zooplank-
on, including Daphnia pulicaria (hereafter, Daphnia ), which is a key-
tone grazer that supports clear water by grazing on algae. Fol-
owing the spiny water flea invasion, overall predation pressure
n zooplankton more than doubled (Walsh et al. 2017 ). Daphnia
iomass declined by over 90%, the algal biomass increased, and
he water clarity decreased by 1 meter (Walsh et al. 2016a , 2017 ). 
The water clarity in the Madison lakes supports recreational

nd aesthetic ecosystem services that are valued highly by citi-
ens in the region (e.g., the average willingness to pay for improved
ater quality was US$353 in 2001 per household; Stumborg et al.
001 , Walsh et al. 2016a ). Many past efforts to improve water qual-
ty have centered on reducing the input of nutrients that fertil-
ze algae growth (Lathrop et al. 1998 , Lathrop 2007 , Lathrop and
arpenter 2014 ). In the late 1980s, a food-web biomanipulation
as attempted to improve the water quality in Lake Mendota. Pis-
ivorous fishes walleye ( Sander vitreus ) and northern pike ( Esox lu-
ius ) were stocked at high levels. This effort to shift the food web
o piscivore dominance happened to correspond with a major die-
ff of zooplanktivorous lake herring ( Coregonus artedii; Vanni et al.
990 , Kitchell 1992 , Rudstam et al. 1993 ). The consequence was
 sharp increase in Daphnia and an increase in water clarity of
pproximately 1 meter (Lathrop et al. 2002 ). The low zooplank-
ivore, high Daphnia ecosystem state persisted in Lake Mendota
or several decades thereafter but was undone by the spiny water
ea, which reverted Lake Mendota to an ecosystem state similar
o that before the biomanipulation (Walsh et al. 2017 ). 
Given that there are limited management options for an inva-

ive zooplankton once it has established, a key question was how
his loss of water quality could be alleviated through other means.
he obvious approach for improving water clarity in the YLD is a
eduction of external phosphorus loading. Notably, NTL-LTER re-
earch provided the basis for understanding the relationship be-
ween phosphorus loading and water clarity before and after the
piny water flea invasion. From this, it was estimated that the clar-
ty of the water before introduction of the spiny water flea could
e attained with a 70% reduction in external phosphorus loading.
rograms aimed at nutrient reduction have been implemented in
he Lake Mendota watershed for decades, although phosphorus
oading has remained approximately constant. Using published
stimates of the cost of various nutrient reduction strategies, it
as estimated that a 70% reduction in phosphorus loading would
ost between US$86.5 million and US$163 million (Walsh et al.
016a ), which corresponds with the willingness to pay estimate
rom Stumborg and colleagues (2001 ). 
The spiny water flea example illustrates how species invasions

an sometimes produce wholesale shifts in ecosystem state (e.g.,
ascading impacts that extend to the base of the food web and
ater quality), highlighting the potential for invasive species to
roduce exceptionally high levels of impact in specific situations.
t also provides an example of how invasive species impacts can be
xpressed in terms of ecosystem services; in this case, two differ-
nt methods converged to produce an estimate of approximately
S$100 million of economic impact for the Lake Mendota spiny
ater flea invasion. This impact is for a single invasive species in
 single lake. But as was noted earlier, the high levels of abundance
nd adverse impacts of spiny water flea documented in Lake Men-
ota appear to be the exception. Spiny water fleas are at low to
oderate levels of abundance elsewhere and appear not to have
roduced notable impacts on water clarity in other invaded lakes.
n a Minnesota lake, simultaneous invasions of spiny water fleas
nd zebra mussels produced a net zero effect on water quality
Rantala et al. 2022 ). Trout Lake, in the NHLD, is a possible excep-
ion to the above; spiny water fleas invaded in 2014 and produced
 decrease in water clarity (Martin et al. 2022 ), although notably, in
he last few years, the spiny water flea population in Trout Lake
as collapsed, and the impact on water quality appears to have
eversed, which is consistent with the concept of a boom–bust dy-
amic (Strayer et al. 2017 ). 
The spiny water flea invasion of Lake Mendota illustrates that

nvasive species can sometimes have profound impacts on ecosys-
ems. But this situation appears not to be the norm, and in many
ases, abundance is low and impacts are minimal (see lesson 2).
e speculate that the Lake Mendota ecosystem was especially
rimed for spiny water flea impacts. In Lake Mendota, planktiv-
rous fishes were at low abundance, and Daphnia , a favored prey,
as at high abundance and played an important role in maintain-

ng water clarity (a role that was revealed by the spiny water flea
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nvasion). The combination of these factors may have promoted
oth spiny water flea establishment and large ecological impact
n this ecosystem (Walsh et al. 2016b ). 

esson 5: Invasive species can affect 
icrobes 

quatic microbes are complex, interconnected communities that
hange over space and time. Microbial communities respond to
ake physiochemical characteristics (Somers et al. 2019 , Paver
t al. 2020 ), land-use change and eutrophication (Rozmarynowycz
t al. 2019 , Kraemer et al. 2020 ), and seasonal change (Ávila et al.
017 , Zhu et al. 2019 ). In Lake Mendota, microbial communities
xhibit strong seasonal patterns (Shade et al. 2007 , Rohwer et al.
023a ). Given the central role of microbes in regulating biogeo-
hemical processes (Cotner and Biddanda 2002 ), a key knowledge
ap has been how species invasions affect microbes (cyanobacte-
ia and heterotrophic bacteria) and associated microbe-mediated
rocesses. 
Species invasions can affect the seasonal dynamics and abun-

ance of harmful microbes such as cyanobacteria. Looking to Lake
endota as an example, the phytoplankton follow the traditional
lankton Ecology Group model for a eutrophic lake: a spring di-
tom bloom followed by a summer dominated by cyanobacteria,
ith diatoms reemerging in fall (Carey et al. 2016 ). These over-
ll patterns did not shift following spiny water flea invasion in
009, but the spring diatom bloom increased in magnitude and
ersisted for longer (Walsh et al. 2018a ). Some minor compo-
ents of the spring bloom, such as green algae, increased along-
ide diatoms, whereas others, such as cryptophytes, remained
onstant (Rohwer et al. 2023b ). The most notable change in the
pring phytoplankton communities was an earlier seasonal on-
et of cyanobacteria. Historically, the clearwater phase denoted
 transition between a diatom-dominated and cyanobacteria-
ominated community. However, after the spiny water flea in-
aded, cyanobacteria began appearing at the start of clearwater
hase, and after the zebra mussels invaded, they began appearing
efore clearwater phase (Rohwer et al. 2023a ). 
The spiny water flea invasion did not change the overall sum-
er cyanobacteria biomass, but the cyanobacteria’s diversity in-
reased, perhaps in response to a narrowing grazing pressure from
educed zooplankton diversity (Rohwer et al. 2023a ). Although the
ake Mendota zebra mussel invasion (2015) did not lead to shifts
n summer cyanobacteria abundance, composition, or diversity,
hifts in summer cyanotoxins were observed. Absolute concen-
rations of the hepatotoxin microcystin increased in early sum-
er, and the duration that toxins were observed in the lake was
xtended by 53 days (Rohwer et al. 2023a ). This illustrates the
omplex implications of microbial change; cyanotoxin production
hanged even though cyanobacteria did not. 
The Spiny water flea and zebra mussel invasions also affected

he heterotrophic microbial community. With the exception of the
acteroidota phylum, most bacterial responses were distinct be-
ween closely related taxa and were specific to certain seasons
Rohwer et al. 2023a ). Overall, the two invasions differed in their
easonal impacts. The spiny water flea had the greatest effects
n bacteria in spring and clearwater, whereas the zebra mussels
ad a more even impact across seasons, with the exception of late
ummer, when very few bacteria changed in abundance (Rohwer
t al. 2023a ). This was notable because late summer is also the
onsistently toxic period of the lake, and the cyanotoxin phenol-
gy did change in response to the zebra mussels. 
The microbial loop, by recycling nutrients and carbon, serves
to connect the food web with biogeochemical cycles. Therefore,
microbes can link changes in the food web with changes in phys-
iochemical processes. For example, the spiny water flea triggered a
trophic cascade that increased and lengthened the spring diatom
bloom (Walsh et al. 2018a ). This resulted in higher organic matter
deposition early in the growing season, which was degraded by
bacteria. This consumed hypolimnetic oxygen, such that anoxia
onset began 2 weeks sooner following stratification (Rohwer et al.
2023b ). Although the roles of individual microbes are often poorly
understood, the impact of changes in the microbial community
can be far reaching, affecting lake-management-level concerns
such as toxins and fish habitat. 

Lesson 6: Impoundments act as invasive 

species hotspots and stepping stones 

Not all ecosystems are equally vulnerable to species invasion. In
the present article, we highlight NTL-LTER work showing that im-
poundments (lentic waterbodies resulting from dam building) are
more likely than natural lakes to support one or more aquatic
invasive species. In a survey of 1080 waterbodies in Wisconsin,
five aquatic invasive species—the zebra mussel, the spiny wa-
ter flea, the rusty crayfish, the rainbow smelt, and the Eurasian
watermilfoil—were 2.4 to 7.8 times more likely to occur in im-
poundments than in natural lakes (Johnson et al. 2008 ). Among
189 waterbodies surveyed for the three most common invaders,
impoundments were also significantly more likely to support mul-
tiple aquatic invasive species concurrently (Johnson et al. 2008 ).
Impoundments can similarly serve as a source population for
aquatic invasive species to spread into nearby natural lakes and
aquatic habitats (Liew et al. 2016 , Anas and Mandrak 2021 , Comte
et al. 2021 , Hedden et al. 2021 , Pfauserová et al. 2021 ). 

The status of impoundments as hotspots for invasive species
likely owes to both an increased likelihood of species arrival and
introduction and high levels of environmental suitability (Havel
et al. 2005 ). In terms of arrival, impoundments are more likely
to be accessible to humans and to have more extensive hydro-
logical connections, both of which increase exposure to invader
propagules. In the Wisconsin study, for instance, impoundments
were 68% more likely to be accessible and had 4.3 times more boat
landings (a measure of access and boating intensity) and a water-
shed 44.6 times larger than natural lakes (Johnson et al. 2008 ).
The physical and biological characteristics of impoundments can
also increase environmental suitability. In contrast to most natu-
ral lakes, impoundments tend to be younger in age and have lower
species richness, leading to more available niches and weaker bi-
otic resistance to species introductions. Impoundments also tend
to be more disturbed (i.e., artificial fluctuations in water levels)
and more productive (Havel et al. 2005 , Johnson et al. 2008 ), both
of which are conducive to invasive species establishment (Davis
et al. 2000 , Kolar and Lodge 2001 , Strayer 2010 ). 

Looking forward, an important challenge is to understand
the degree to which impoundments function as invasion hubs
or stepping stones that facilitate secondary spread into natu-
ral lakes. Using a spatial analysis that incorporated typical dis-
tances traveled by Wisconsin boaters, Johnson and colleagues
(2008 ) found that the construction of impoundments increased
the number of natural lakes that are vulnerable to introduc-
tions from nearby invaded systems (see also Havel et al. 2015 ).
Impoundments may also act as evolutionary stepping stones;
because of their high salinity compared with natural lakes,
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mpoundments near coastal environments offer intermediate
abitats to facilitate colonization by marine taxa that subse-
uently adapt to freshwater (Lee 2002 , Havel et al. 2005 ). Similarly,
he tropical cladoceran Daphnia lumholtzi has spread rapidly in im-
oundments across the midwestern USA and, more recently, in
outh America (Nunes et al. 2021 ). It often shows higher densities
n or near impoundments and can persist at colder temperatures,
ossibly highlighting adaptive change. These observations under-
core the importance of examining how human habitat modifi-
ation (in this case hydrologic alterations) may facilitate invasive
pecies spread, and the broader issue of the interactive effects of
hese two important drivers of environmental change (Didham
t al. 2005 , 2007 ). 

esson 7: Ecosystem vulnerability to 

nvasion can be estimated 

iven the ongoing spread of invasive species and their potential
o produce impacts, resource management agencies have invested
eavily in programs and strategies aimed at stopping or slowing
nvasive species spread. Moreover, there is recognition that un-
erstanding ecosystem vulnerability to species invasion can help
uide and inform decisions about allocating limited management
ffort and resources for “stop the spread” campaigns (Vander
anden and Olden 2008 ). This matter is highly relevant in lake-
ich regions that are being invaded by multiple invasive species,
uch as the NTL-LTER study region (Vander Zanden and Olden
008 ). As such, NTL-LTER has addressed conceptual and practical
spects of ecosystem vulnerability to invasive species. 
Two broad factors determine the vulnerability of an ecosys-

em to invasive species: those necessary for a species to arrive
nd those required to survive (Leung and Mandrak 2007 , Vander
anden and Olden 2008 ). Arrival gets at the transport and intro-
uction of invasive species propagules (Riccardi 2006 , Hulme 2009 ,
avel et al. 2015 ). Given that there are many possible pathways
nd vectors that can lead to species introduction, this tends to be
ighly species specific. For inland lakes, lakeshore homeowners
nd the lake-to-lake movement of recreational boaters in partic-
lar are important vectors for invasive species spread (Rothlis-
erger et al. 2010 , Kao et al. 2021 , Ashander et al. 2022 ). Variables
uch as the presence or number of boat launches, lake size, and
he degree of residential lakeshore development are indicative of
he risk of introduction and are predictors of invasions (Johnson
t al. 2008 , Olden et al. 2011 ). Furthermore, in the multilake in-
asive species field surveys described in lesson 1, we noted that
akes lacking road access and residential development were also
ompletely free of invasive species (Latzka 2015 ). This further sup-
orts the notion that human activities are a key driver of invasive
pecies occurrence (Strayer 2010 , Havel et al. 2015 ). In contrast,
urvival relates to a species’s fundamental niche and whether an
cosystem provides suitable habitat for a given species (Jeschke
nd Strayer 2008 , Vander Zanden and Olden 2008 , Kulhanek et al.
011 ). This environmental matching is critical; repeated intro-
uctions of a species into an environment that is outside of
he fundamental niche of that species will not result in species
stablishment. 
NTL-LTER researchers have used a variety of modeling ap-

roaches to identify vulnerable systems and forecast the spread
f aquatic invasive species in the region. Mercado-Silva and col-
eagues (2006 ) developed a statistical model predicting the pres-
nce or absence of the rainbow smelt in lakes in the species’s
ative range in Maine, which was assumed to be saturated. The
tudy subsequently used the model to identify suitable lakes in
ther regions, identifying 553 environmentally suitable lakes for
he rainbow smelt in Wisconsin. Similar analyses have been de-
eloped for other invasive species of management concern in the
tudy region. Papes and colleagues (2016 ) used maximum entropy
odeling to identify Wisconsin lakes that are environmentally
uitable for Chinese mystery snail. Dissolved calcium concentra-
ions were the basis for identifying environmentally suitable lakes
or the zebra mussel (Papes et al. 2011 ). Olden and colleagues
2011 ) estimated the likelihood of introduction and establishment
or the invasive rusty crayfish. Mikulyuk and colleagues (2020a )
eveloped a model predicting both occurrence and abundance for
he invasive Eurasian watermilfoil. All of the above studies devel-
ped statistical associations between the occurrence of known in-
asive species populations and environmental factors and subse-
uently used this as a basis for identifying the degree of ecosystem
ulnerability and risk of future invasion in uninvaded systems
Vander Zanden and Olden 2008 ). In practice, measuring invasive
pecies abundance across a lake-rich landscape is resource inten-
ive and often intractable. Models for predicting invasive species
bundance from environmental conditions can be useful for iden-
ifying locations likely to have high abundance and are, therefore,
ost likely to be affected by invasive species (Kulhanek et al. 2011 ,
ikulyuk et al. 2020a ). 

esson 8: Invasive species removal can 

roduce ecosystem shifts and long-term 

enefits 

iven the impacts and societal concern over invasive species, a
reat deal of effort has been invested in developing approaches
or invasive species control (Escobar et al. 2018 ). Complete erad-
cation of an invasive population is sometimes the goal but can
e exceptionally difficult and costly (Myers et al. 2000 ). Neverthe-
ess, eradication can be achieved in isolated habitats such as is-
ands or ponds, and the long-term benefits of localized eradica-
ion in certain circumstances can be quite clear (Myers et al. 2000 ,
ones et al. 2016 ). What is much less well known is under what cir-
umstances invasive species control can produce meaningful and
asting environmental or economic benefits and to what extent
he benefits outweigh the costs (Epanchin-Niell and Wilen 2012 ,
reen and Grosholz 2021 ). A general concern is that the benefits
f invasive species control may be transient, in that it alleviates
ndesired impacts in the short term, but the invasive species pop-
lation simply rebounds when control efforts cease (Zipkin et al.
009 ). We still know little about under what conditions invasive
pecies control is likely to produce long-term benefits. 
Ecologists have learned a great deal about the potential for

cosystems to undergo transitions between alternative ecosystem
tates and the general nature of abrupt ecosystem shifts (Scheffer
t al. 2001 , Scheffer 2009 , Carpenter 2003 ). A central question
s whether invasive species removal can shift an ecosystem
nto an alternative (preferred) ecosystem state and, importantly,
hether the new state is persistent over time (Scheffer et al.
001 , Hansen et al. 2013b ). If so, it would not only indicate the
otential for abrupt ecosystem shifts but also that even short-
erm invasive species removal could produce persistent benefits
Ratajczak et al. 2018 ). 
In the present article, we summarize insights from two ecosys-

em experiments indicating that short-term invasive species
emoval can produce rapid ecosystem shifts and lasting benefits
Perales et al. 2021 ). The first was in Lake Wingra, Wisconsin,
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Figure 3. Changes in Lake Wingra in response to invasive carp removal. (a) A carp exclosure experiment in Lake Wingra showing much clearer water 
within the 1-hectare exclosure, in stark contrast with the turbid conditions in the lake (Lathrop et al. 2013 ). Photograph: Mike DeVries, 7 July 2007. 
(b) Median summer (June–August) water clarity (the vertical lines show the minimum and maximum values) measured by Secchi disk in Lake Wingra 
over the period 1995–2020. The dashed vertical line indicates the March 2008 carp removal. (c) Macrophyte abundance in Lake Wingra based on rake 
fullness in 2007, before carp removal. (d) Macrophyte abundance in Lake Wingra based on rake fullness in 2022, following carp removal. The shift to 
the clearwater state corresponded with a sharp increase in macrophyte cover and biomass. 
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 140-hectare, shallow lake (with a maximum depth of 3.8 meters)
ithin the YLD. As an urban lake, it receives significant amounts
f nutrient-rich stormwater runoff and has experienced frequent
lgal blooms and impaired recreational value. The lake has
bundant Eurasian watermilfoil and a substantial population of
ommon carp ( Cyprinus carpio ). The common carp is known to re-
uspend bottom sediments and nutrients during feeding, thereby
ncreasing algal blooms and turbidity. It is widely accepted that
he presence of the common carp can maintain an ecosystem
n a turbid state through a series of reinforcing feedback loops
Bajer and Sorensen 2015 ). It was therefore hypothesized that
harply reducing common carp through a removal program
ould trigger a positive feedback and an ecosystem shift to a
learwater, macrophyte-dominated state (Lathrop et al. 2013 ). 
As a first step, a 1-hectare carp exclosure was installed in Lake
ingra in 2005 (Lathrop et al. 2013 ). The following year, water clar-

ty increased within the exclosure relative to the surrounding lake
figure 3 a), and the native aquatic plants responded positively to
his increase in clarity. Building from these promising results, a
ommercial fisher was hired to remove carp through the ice in
arch of 2008. The fisher removed 23,600 kilograms of carp. In

he following years, the water in Lake Wingra was notably clearer
figure 3 b; Magnuson et al. 2023 ), and beach closings due to al-
gal blooms became less frequent. Aquatic plants (both native and
nonnative Eurasian watermilfoil) increased in terms of cover, ex-
panding into deeper waters (figure 3 c and 3 d). This study revealed
that a one-time removal of the invasive common carp shifted this
lake from a turbid to a clearwater or macrophyte-dominated state
(Lathrop et al. 2013 ). Moreover, this new ecosystem state has per-
sisted for approximately 15 years. A key question is why the com-
mon carp population did not simply rebound following this short-
term removal. One hypothesis is that predation by native fishes
such as bluegill ( Lepomis macrochirus ) on juvenile common carp
and carp eggs has prevented the population of carp from rebound-
ing (Bajer et al. 2012 ). 

The second ecosystem experiment involved the removal of the
invasive rusty crayfish ( Faxonius rusticus ) from Sparkling Lake, in
the NHLD. This clearwater 64-hectare lake was invaded by the
rusty crayfish in the early 1980s. This aggressive invasive cray-
fish reached high levels of abundance and produced declines in
native sunfish and native virile crayfish ( Faxonius virilis ; Hansen
et al. 2013 c). Intensive rusty crayfish removal using crayfish traps
began in 2001 (Hein et al. 2006 , 2007 ). In conjunction, fisheries
managers placed limits on the recreational harvest of gamefishes
known to consume adult crayfish. Over 8 years of rusty crayfish
removal, catch rates of rusty crayfish declined by more than 95%,
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hereas native crayfish and sunfish gradually rebounded. The
usty crayfish removal led to a shift in state that was ecosystem-
ide (Hansen et al. 2013 b, 2013c ). A key question was whether
he system exhibited alternative stable states (i.e., multiple stable
quilibria possible under identical conditions, sensu May 1977 ) or,
lternatively, that the shift was the result of a simple threshold re-
ponse. Time-series models were not able to clearly resolve these
wo possibilities (Hansen et al. 2013 c). Nevertheless, the desirable
ow rusty crayfish state has persisted for nearly 15 years after the
essation of the rusty crayfish removal (Perales et al. 2021 ). From
 practical perspective, a key finding is that intensive crayfish re-
oval produced a desirable ecosystem shift and that this shift
as remarkably persistent over time. 
Although efforts to control nuisance invasive species are on the

ise, it is rare that invasive species control is coupled with long-
erm data collection and used to test basic ideas about alternative
table states and abrupt ecosystem shifts (Strayer et al. 2006 ). As
 result, our understanding of the long-term ecosystem effects
f invasive species and the benefits and consequences of inva-
ive species control is limited. The long-term data of NTL-LTER
rovided a critical context for ecosystem experiments designed
o improve our understanding of how ecosystems respond to
anagement. In both examples in the present article, invasive
pecies removal produced dramatic ecosystem shifts that per-
isted. These examples show that invasive species removal can
e a valuable strategy for ecological restoration. Of course, inva-
ive species removal projects will not always produce persistent
cosystem-wide shifts. A key question is under what conditions
uch shifts occur. 

esson 9: Impacts of invasive species 

ontrol may be greater than the impacts of 
nvasive species 

nvasive species removal can greatly reduce invasive species
bundance and induce desirable ecosystem changes that are per-
istent (Perales et al. 2021 ). However, it is essential to consider in-
asive species removal in a broader ecosystem context. Invasive
pecies removal can produce indirect, cascading food-web effects
Zavaleta et al. 2001 ), and the use of pesticides in control can pro-
uce nontarget effects. Given that invasive species control could
ave unanticipated consequences and could pose a risk to ecosys-
ems and nontarget organisms, it is important to consider when
nd whether the benefits of invasive species control outweigh the
isks and potential harm. 
The use of herbicides to control aquatic invasive plants in

akes is a common practice in North America (Nault et al. 2018 ).
ake-wide chemical treatments can result in long exposure times
nd have been linked to unintended lethal and sublethal effects
n lake biota. For example, large-scale 2,4-D treatments were
onducted in Lake Ellwood, Wisconsin, to control the hybridized
urasian watermilfoil ( Myriophyllum spicatum ) annually over 10
ears (Schleppenbach et al. 2022 ). Although chemical treatment
educed plant abundance, it was also linked to a decline in zoo-
lankton and recruitment failures of important gamefish, such
s the largemouth bass ( Micropterus salmoides ) and the bluegill
 Lepomis macrochirus ). After treatments ceased, the recruitment of
ame fish and zooplankton abundance rebounded. In other stud-
es, large-scale herbicide treatment led to a decrease in water clar-
ty and declines in native aquatic plant species (Wagner et al. 2007 ,
ault et al. 2014 , Kujawa et al. 2017 , Nault et al. 2018 ). 
A large, cross-lake synthetic study of lakewide herbicide treat-
ents to control invasive Eurasian watermilfoil in Wisconsin

akes showed a link between lakewide herbicide treatment and
eclines in aquatic plant abundance and shifts in community
omposition (Mikulyuk et al. 2020b ). Notably, the effects of her-
icide treatment were larger and more negative than those asso-
iated with the Eurasian watermilfoil itself—the invasive species
hat was the target of the treatment (Mikulyuk et al. 2020b ). This
esult highlights the trade-offs involved and the need to carefully
onsider both the impacts and the benefits of invasive species
ontrol, especially when using methods that have negative effects
n nontarget organisms. 
Although there are certainly cases of invasive species being

uccessfully eradicated from an aquatic system, the examples
re rare. Managers typically attempt eradication in circumstances
here conditions are favorable—for example, species that are
onspicuous or in small, isolated ecosystems. There is also im-
etus to attempt eradication early in the invasion process to
alt establishment and spread of new colonists (Vander Zan-
en et al. 2010 ). Most often, however, invasive species control
rojects are intended to minimize undesired local impacts. In the
ase of controlling invasive aquatic plants, the benefits of inva-
ive species control are often short term. In the above example
here herbicide treatment harmed the fishery (Schleppenbach
t al. 2022 ), it was initially hoped that, following the initial treat-
ent, the managers could shift to small-scale herbicide and me-
hanical control. Unfortunately, the invasive Eurasian watermil-
oil population rebounded, exceeding the capacity of small-scale
ntervention. 
A key conclusion is that there is no one-size-fits-all approach

o invasive species control. Although all large-scale ecosystem in-
erventions should consider the potential costs and benefits, not
ll management actions pose the same degree of risk. The above
ighlights the need for risk analysis frameworks that weigh mul-
iple factors—the magnitude of invasive species impact, the price
ag for control, and the potential for unexpected or nontarget im-
acts (Vander Zanden et al. 2010 ). Another key lesson is that the
romise of silver bullet solutions should be approached with skep-
icism. Lessons emerging from invasive species control successes
nd failures call on us to test, verify, and adapt, using data-driven
trategies that acknowledge uncertainty. 

onclusions 

he overarching goal of this article was to synthesize key in-
ights and lessons pertaining to aquatic invasive species that have
merged from the NTL-LTER program. Although the signature
ong-term data collection of this LTER site was a component for
he research we have summarized, these insights reflect a combi-
ation of long-term studies, ecosystem experiments, comparative
tudies, and modeling. This study is an example of how broad and
ynthetic insights emerge through integration of insights derived
rom multiple approaches. 

re there general lessons to be derived from the 

tudy of invasive species in lakes? 
e aimed to summarize lessons that have potential to be general

n nature and have broad applicability. Moreover, much of this
ork is rooted in basic ecological concepts such as species dis-
ribution and spatial patterns of abundance. We recognize that
he insights and lessons summarized in the present article derive
xclusively from research conducted in lakes in one geographic
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egion. A key question is to what extent these lessons are appli-
able to other contexts and ecosystem types. Other lake districts
ill undoubtedly differ with regard to which invasive species
re spreading, the specific pathways and vectors of spread, and
cosystem attributes that affect ecosystem vulnerability. So
lthough the details may unfold differently in other lake districts,
ur hope is that this article touches on concepts and ideas that
re still of interest. More broadly, streams and terrestrial habitats
end to be more open systems than lakes. Terrestrial habitats
lso tend to have fewer distinct boundaries than lakes do. For
xample, in dealing with lakes, a binary classification of invasive
pecies (i.e., presence or absence) has proven to be a useful, albeit
mperfect, construct. In more open ecosystem types, the concept
s less readily applied, although in many cases, it may still be
pplied—for example, if we consider habitat patches in terrestrial
cosystems (Thiele et al. 2010 ). 

caling up, heterogeneity, and landscape ecology 

everal of our lessons, specifically lessons 1–4, were tightly in-
erconnected; we considered spatial patterns of invasive species
ccurrence and found that invasive species tend to be more
idespread than has typically been documented. We also con-
idered the spatial patterns of invasive species abundance and
ound that invasive species often occur at relatively low abun-
ance. Of course, this is not always the case, and under certain
ircumstances, where invasive species reach high levels of abun-
ance, they can have dramatic impacts and produce ecosystem-
ide shifts. A key finding is that invasive species abundance and

mpact are spatially heterogeneous. We should not expect invaded
cosystems to be universally affected. 

nvasives in a changing world 

t is critical to recognize that ecosystems are not static and that
cosystems are currently undergoing change as a result of cli-
ate change, as well as other anthropogenic drivers (O’Reilly
t al. 2015 ). Temperature is a critically important dimension of
 species’s niche (Magnuson et al. 1979 , Magnuson and Destasio
996 ). In response to climate warming, the range of certain inva-
ive species is expected to shift northward, enabling further ex-
ansion into new areas or expanding the number of suitable sys-
ems in a region (Rahel and Olden 2008 , Thomas 2010 ). In lakes,
limate change may result in a shift in the depths at which suit-
ble thermal habitat occurs, pushing some species into deeper
aters that may or may not be habitable, depending on oxygen
evels (Kraemer et al. 2021 ). Warming could also reduce the suit-
bility of ecosystems to certain invasive species, leading to a re-
uction in the species’s invaded range (Walsh et al. 2020 ). For oth-
rs, warming could trigger existing sleeper populations to irrupt.
ow invasive species respond to climate change will be highly
pecies specific; we simply highlight that ecosystem states are not
tatic; rather, they are undergoing change stemming from multi-
le drivers of global environmental change (O’Reilly et al. 2015 ). 
Species introductions are undoubtedly a major driver of en-

ironmental change for inland water ecosystems. Given the ge-
graphic isolation and distinct boundaries of many aquatic sys-
ems, the introduction or irruption of a nonnative species can
ave huge effects and can produce abrupt ecological shifts. For
his reason, lakes provide useful model systems for studying biotic
hange, and examining these changes in lakes can help us better
nderstand the drivers and consequences of ecological change in
 general sense. This work not only has environmental manage-
ent implications but highlights our still-evolving understanding
of the distribution, abundance, impact, and management of inva-
sive species in ecosystems. Our work also highlights the critical
challenge in ecology of scaling up from detailed work done on
a small number of local sites to a landscape or a region (Lodge
et al. 1998 ). Ecosystems are remarkably heterogeneous, and how
ecosystems respond to a driver is highly context dependent. Ef-
forts to scale up local ecosystem-specific work to broader spatial
scales will continue to be an important goal in understanding the
spread and impact of invasive species. 
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