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Abstract 

Little is known about the relationships between human genetics and the airway microbiome. Deeply sequenced 
airway metagenomics, by simultaneously characterizing the microbiome and host genetics, provide a unique 
opportunity to assess the microbiome-host genetic associations. Here we performed a co-profiling of microbiome 
and host genetics with the identification of over 5 million single nucleotide polymorphisms (SNPs) through deep 
metagenomic sequencing in sputum of 99 chronic obstructive pulmonary disease (COPD) and 36 healthy individu-
als. Host genetic variation was the most significant factor associated with the microbiome except for geography 
and disease status, with its top 5 principal components accounting for 12.11% of the microbiome variability. Within 
COPD individuals, 113 SNPs mapped to candidate genes reported as genetically associated with COPD exhibited 
associations with 29 microbial species and 48 functional modules (P < 1 × 10−5), where Streptococcus salivarius exhibits 
the strongest association to SNP rs6917641 in TBC1D32 (P = 9.54 × 10−8). Integration of concurrent host transcriptomic 
data identified correlations between the expression of host genes and their genetically-linked microbiome features, 
including NUDT1, MAD1L1 and Veillonella parvula, TTLL9 and Stenotrophomonas maltophilia, and LTA4H and Hae-
mophilus influenzae. Mendelian randomization analyses revealed a potential causal link between PARK7 expression 
and microbial type III secretion system, and a genetically-mediated association between COPD and increased relative 
abundance of airway Streptococcus intermedius. These results suggest a previously underappreciated role of host 
genetics in shaping the airway microbiome and provide fresh hypotheses for genetic-based host-microbiome interac-
tions in COPD.
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Introduction
Chronic obstructive pulmonary disease (COPD) is a 
leading cause of morbidity and mortality worldwide and 
is manifested by persistent airway inflammation lead-
ing to irreversible airflow limitation and impaired lung 
function [1–3]. Human genetic variation is implicated in 
COPD, with the alpha-1 antitrypsin deficiency caused by 
the rare genetic variants in SERPRINA1 being the current 
best described genetic abnormality, accounting for 1–2% 
of the COPD individuals [4]. Recent large-scale genome-
wide association studies (GWAS) have revealed additional 
genetic loci associated with lung function [5, 6], provid-
ing insights into the genetic basis of COPD. Through the 
hitherto largest multi-ancestry GWAS meta-analysis of 
lung function comprising of 588.452 individuals, Shrine 
et al. identified 1020 genetic associations from 559 genes 
enriched in 29 pathways, delineating a comprehensive 
landscape for variants, genes, proteins and pathways 
genetically implicated in COPD6.

Mounting evidence has revealed a diverse airway 
microbial ecosystem or microbiome associated with 
COPD characteristics [7–12]. The airway microbiome 
interacts with host response, the disruption of which 
contributes to COPD pathogenesis [13–15]. Multi-omic 
approaches have been increasingly applied to char-
acterize interactions between the airway microbiome 
and host response in COPD. By characterizing the 16S 
rRNA gene-based microbiome and host transcriptome 
in 574 COPD individuals, Ramsheh et al. identified asso-
ciation between increased Moraxella over Prevotella 
and upregulation of pro-inflammatory genes over genes 
promoting epithelial defence [16]. Through analyz-
ing paired microbiome and metabolomic data in milder 
stage COPD, Madapoosi et  al. showed combined fea-
tures of microbiome and metabolome in association with 
lung function and clinical symptoms [17]. In addition to 
environmental factors such as smoking and medication 
use that impact the microbiome [18], host genetic varia-
tion can be an inherent factor shaping the individualized 
microbial community [19–26]. Despite evidence show-
ing human genetic association of the microbiota in body 
sites such as gut and oral cavity [26, 27], there is a paucity 
of knowledge regarding whether the airway microbiome 
is associated with human genetics and how the genetic-
microbiome interactions may be implicated in COPD.

Metagenomics have been increasingly applied to char-
acterization of the airway microbiome with its capacity 
in elucidating microbial functional potentials. Through 
metagenome and metatranscriptome sequencing of 
upper and lower airway of COPD individuals, Sulaiman 
et  al. showed enrichment of oral commensals in COPD 
lower airways is associated with upregulation of inflam-
matory and tumorigenesis markers [28]. Through a 

combined metagenome, metabolome, host transcrip-
tome and proteome characterization of 99 COPD and 36 
healthy individuals, our previous study has revealed the 
role of Lactobacillus-driven tryptophan metabolism and 
indole-acetic acid, whose depletion results in increased 
neutrophilic inflammation through IL-22 signaling [13]. 
In comparison to the gut microbiome, the predomi-
nantly high host-to-microbe ratio in airway specimens 
poses a unique challenge to obtain sufficient information 
for the microbiota, often necessitating a deep sequenc-
ing strategy to achieve adequate microbial coverage 
after excluding the bulk of human host reads. This limi-
tation, however, may be accompanied with a benefit, as 
the bulk of the human reads, which were discarded dur-
ing the microbiome analysis as a common practice, can 
be recycled to obtain concurrent information on human 
genetic variations. In this regard, the co-characterization 
of microbial-host genetic information through airway 
metagenomics could open up a unique opportunity to 
assess the association between the airway microbiome 
and host genetics.

Here, we hypothesize that host genetic variation may 
be associated with the diversity and taxonomic and func-
tional features of the airway microbiome in COPD, and 
such microbiome-host genetic associations can be cap-
tured by airway metagenomic data. By re-analyzing the 
deeply sequenced sputum metagenomes from 99 COPD 
individuals and 36 healthy controls (> = 30G sequences 
per sample) from our previous study [13], we assessed 
the associations between host genetic variations and the 
airway microbiome in COPD (Table S1, Fig. 1). We first 
identified the associations between host single nucleo-
tide polymorphisms (SNPs) and the taxonomic and func-
tional features of the microbiome. Through integrative 
analysis with concurrent host transcriptomic profiles, we 
identified the microbiome-host genetic associations that 
were further transcriptionally linked. We then employed 
a summary-based Mendelian randomization analysis 
to identify host genes exhibiting a potential causal asso-
ciation with the microbiome, followed by a bidirectional 
two-sample Mendelian randomization analysis to refine 
the causal associations between the microbiome and host 
genetics. Collectively, these results demonstrates the pos-
sibility in analyzing the airway microbiome-host genetic 
associations through deep metagenomics, providing evi-
dence for host genetic variations that may influence the 
airway microbiome in COPD.

Results
Host genetic variations obtained from the airway 
metagenomic data
The metagenomic sequencing data yielded an average 
of 1.83 × 108 high-quality reads per sample, of which an 
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average proportion 91.6% reads are from human host 
(average ~ 8.4x coverage of human genome) and subject 
to SNP calling (Fig. S1a). A set of 5,471,650 high qual-
ity SNPs were generated. Two of the 135 samples were 
outliers in principal component analysis and excluded 
from downstream analyses (Fig. S1b), likely due to their 
markedly higher missing rate of SNPs compared with 
the remaining samples (see Methods, Fig. S1c). Density 
plot showed an even distribution of the SNPs across 22 
autosomes with no clear regional preferences (Fig. S1d). 
When plotting the number of SNPs as a function of the 
number of individuals sharing a SNP29, we observed a 
rapid decreasing trend of the number of SNPs with the 
increase of individuals sharing a SNP (Fig. S2), indicat-
ing a reasonable genetic variability across individu-
als in our cohort. The common variants (minor allele 
frequency > 0.05) were associated with lung function 
measurement (FEV1/FVC) both among all individu-
als (n = 133) and within COPD patients (n = 97) using 
a linear mixed model. Among all individuals, 60 SNPs 
were identified in association with FEV1/FVC involv-
ing 10 genomic loci mapped to 6 genes (P < 1 × 10−5, as 

suggestive significance, Table S2). Within COPD individ-
uals, 73 SNPs were identified in association with FEV1/
FVC involving 14 gene loci mapped to 5 genes (Fig. 2a, 
Table S2). Annotation of these 5 genes in existing func-
tional databases (Open Targets Genetics, GWAS Cata-
log, and GWASATLAS) revealed two genes (AGPS and 
PTGDR) as genetically associated with lung function [29].

We performed additional genetic association analyses 
using COPD/healthy and FEV1% predicted as traits. No 
SNPs were identified as associated with the binary trait 
of COPD/healthy (P < 1.0 × 10−5). Among all individu-
als, 292 SNPs were identified in association with FEV1% 
predicted involving 22 genomic loci mapped to 18 genes 
(Table S2, P < 1.0 × 10−5), with SNP rs16836069 mapped 
to gene CSMD2 reaching genome-wide significance 
(P < 5.0 × 10−8). Within COPD individuals, 51 SNPs were 
identified in association with FEV1% predicted involving 
11 genomic loci mapped to 6 genes (P < 1.0 × 10−5). No 
SNPs reached genome-wide significance.

We also performed genetic association analyses with 
key demographic and clinical parameters, including 
inflammatory endotype features (sputum neutrophil, 

Fig. 1  The overall workflow integrating airway metagenomics and host transcriptomics to elucidate airway microbiome-host genetic associations 
in COPD. Shown are 1) major hypothesis to be tested in the study, 2) the detailed procedure of each step of analysis, 3) the summary statistics 
of each step, and 4) the potential most promising microbiome-host associations of interest found in each step
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eosinophil percentages), severity (Global Initiative for 
Chronic Obstructive Lung Disease [GOLD] status), and 
inhaled corticosteroid (ICS) usage and smoking sta-
tus (Table S2). For neutrophil, 1308 SNPs involving 85 
loci mapped to 43 genes were identified (P < 1 × 10−5), 
where rs74555247 (mapped to SFMBT1) and rs1003669 
(mapped to OXR1) reached genome-wide significance 
(P < 5 × 10−8). For eosinophil, 1550 SNPs involving 114 
loci mapped to 70 genes were identified (P < 1 × 10−5), 
where rs75059289, rs115876665, rs2277122 (mapped to 
ABCC10), rs356041 (mapped to PITPNM3), rs75177701 
(mapped to PIEZO2) reached genome-wide significance 
(P < 5 × 10−8). For GOLD status, 131 SNPs involving 15 
loci mapped to 8 genes were identified (P < 1 × 10−5). 
For ICS usage, 215 SNPs involving 16 genomic loci 
mapped to 18 genes were identified (P < 1 × 10−5), For 
smoking, 149 genes involving 16 genomic loci mapped 
to 14 genes were identified (P < 1 × 10−5). None of the 

SNPs associated with GOLD, ICS and smoking reached 
genome-wide significance (P < 5 × 10−8).

Host genetic variations are associated with the airway 
microbial diversity
Permutational multivariate analysis of variance (PER-
MANOVA) revealed a significant association between 
host genetic variations and the microbiome composition 
among all individuals (P = 0.001), and within COPD or 
healthy individuals, respectively (Fig. 2b). When plotting 
the top 20 principal components (PCs) for host genetics, 
we found that the slope of the curve generally leveled off 
after the first PC, suggest the first PC (PC1) could be rela-
tively informative (Fig. S3). Among all individuals, host 
genetic PC1 was ranked the third among all demographic 
and clinical features tested in association with the micro-
biome following site and disease status (COPD or health), 
accounting for 3.46% of the microbiome variation. When 

Fig. 2  The relationships between host genetics and airway microbial diversity. a Manhattan plots of host genetic variants associated with lung 
function in COPD patients. The red line represents the P-value of 1.0 × 10−5. Two loci with the significance of genetic association above this 
threshold and previously identified to be COPD-associated were marked by their gene names (AGPS and PTGDR). b Barplots for the associations 
of the host genetics and other demographic and clinical variables with the airway microbiome in all the samples and within COPD or healthy 
individuals as assessed by PERMANOVA. The significant associations (P < 0.05) are highlighted in red. c, d Correlation of the first principal component 
of host genetic data (x-axis) with (c) microbial alpha diversity, and (d) the first principal coordinate of the airway microbiome beta diversity (y-axis). 
The green and red bars are histograms showing the distribution of the X and Y axis
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considering the top 5 host genetic PCs, 12.11% of the 
microbiome variance can be explained. Within COPD or 
healthy individuals, host genetic PC1 exhibited the great-
est association with the microbiome among all features 
except for clinical site (Fig. 2b, P = 0.005 and P = 0.008). 
A significant correlation was observed between host 
genetic PC1 and both microbial alpha (richness, R = 0.18, 
P = 0.040, Fig.  2c) and beta diversity (the first princi-
pal coordinate using Bray-Curtis dissimilarity matrix, 
R = 0.25, P = 0.0035, Fig.  2d), indicating a close asso-
ciation between host genetics and the airway microbial 
diversity.

We also performed an additional PERMANOVA by 
using microbiome PC1 (explaining 23.3% of the taxonomic 
diversity) and demographic and clinical variables to asso-
ciate with the host genetic profiles. Among all 133 indi-
viduals, clinical site was most significantly associated with 
host genetic profile (R2 = 0.009, P = 0.001), followed by 
microbiome PC1 (R2 = 0.008, P = 0.001) and disease status 
(COPD/healthy, R2 = 0.008, P = 0.032, Fig. S4). Microbiome 
PC1 was ranked the third and second in association with 
host genetics in COPD and healthy individuals, respec-
tively. These results further support the close associa-
tion between the airway microbiome and host genetic 
variation.

Host genetic variations are associated with COPD 
microbiome features
Given the association between host genetic backgrounds 
and the airway microbial diversity, we sought to assess 
the relationships between individual SNPs and the airway 
microbiome features in COPD individuals. We chose to 
focus on a subset of microbiome species and functional 
modules that were reasonably abundant and important in 
the disease context (significantly different between COPD 
and controls). For each of the selected microbiome species 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
functional modules (a total of 158 microbiome features, 
including 52 species and 106 KEGG modules, see Meth-
ods), we performed an association analysis with the con-
current host genetic variants using a general linear mixed 
model. A total of 12,198 candidate SNPs were identi-
fied with associations with all 158 microbiome features 
(P < 1.0 × 10−5, as suggestive significance), involving 3188 
loci mapped to 2131 genes (Table S3). Of them, 276 SNPs 
involving 45 loci mapped to 30 genes reached genome-
wide statistical significance (P < 5.0 × 10−8, Table S3). Of 
the 2131 genes, 113 genes were known candidate genes 
reported in previous GWAS studies in association with 
lung function or COPD (P < 5.0 × 10−8, Table S4), and were 
selected for further investigation to facilitate interpreta-
tion. The SNPs from these genes collectively exhibited 171 

associations with 29 microbiome species and 48 KEGG 
modules (Table S4). Of them, the most significant asso-
ciation was found between Streptococcus salivarius and 
rs6917641 most proximal to TBC1D32 (P = 9.54 × 10−8). 
This was followed by associations between Xanthomonas 
euvesicatoria and two SNPs, rs563696052 and rs368423146 
in the intronic region of ERC2 (P = 1.02 × 10−7) and 
SLC1A2 (P = 1.60 × 10−7), respectively, and the associa-
tion between Moraxella catarrhalis and rs74066259 in the 
intronic region of SMIM2 (P = 2.28 × 10−7).

For KEGG modules, the strongest association was found 
between the assimilatory nitrate reduction (M00537) 
and rs7166844 in the intronic region of SLC27A2 
(P = 1.20 × 10−7), followed by associations involving ribose 
transport system (M00212, associated with rs6461680 
mapped to CARD11), two modules related to second-
ary metabolism (M00418 and M00022, associated 
with rs7166844 mapped to SLC27A2 and rs5803203 to 
ENOX1, respectively), and two modules related to bacte-
rial two-component system (M00511) and transport sys-
tem (M00592), respectively. Among host genes, SLC27A2 
exhibited significant associations with the greatest number 
of 6 microbiome features, followed by ENOX1 associated 
with 4 microbiome features. Genetic association analy-
sis using an expanded set of 517 species (relative abun-
dance> 0.0001) and all 461 functional modules revealed a 
total of 164,236 SNPs associated with 6126 genes, among 
which 486 genes were candidate genes previously reported 
as genetically associated with COPD (P < 5.0 × 10−8, Table 
S5). Of them, 402 associations between 269 microbiome 
species, 55 functional modules, and 267 host genes reached 
genome-wide significance (P < 5.0 × 10−8, Table S6).

We also assessed association between airway micro-
biome and SNPs previously found to be associated 
with lung function or COPD with genome-wide sig-
nificance (P < 5.0 × 10−8). In this regard, we have com-
prehensively searched public literatures and databases 
(GWAS catalog, Open Targets Genetics, GWAS Atlas) 
regarding GWAS studies for COPD and lung function. 
A total of 1427 SNPs from 19 datasets in GWAS cata-
log database derived from 10 studies associated with 
lung function measurements using genome-wide sig-
nificance P-value 5 × 10−8 as cutoff were incorporated 
for further analysis [5, 29–37] (Table S7). We then 
associated these SNPs with microbiome taxa and func-
tional modules in our dataset. Among the selected 52 
microbiome taxa and 106 functional modules, 4 asso-
ciations were identified involving 3 SNPs (mapped to 
FOLH1B, WDR18 and TMEM163) and 4 microbiome 
features (P < 1.0 × 10−5, Table S7). Among all 517 micro-
biome taxa (identified using relative abundance cutoff 
0.0001) and 461 functional modules, 50 associations 
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were identified involving 21 SNPs and 40 microbi-
ome features (P < 1 × 10−5, Table S7). Four associations 
involving SNP rs11666499 mapped to LIMASI and Aci-
netobacter species reached genome-wide significance 
(P < 5 × 10−8, Table S7).

Lactobacillus salivarius and Lactobacillus oris were 
identified as potential beneficial microorganisms 
mechanistically involved in COPD in our previous 
study based on the same cohort [13]. For Lactobacillus 
salivarius, a total of 76 SNPs involving 14 loci mapped 
to 11 genes were identified (Table S8), with rs7913363 
(mapped to BBP1, PDCD4, and SHOC2) being the 
most significant (P = 2.57 × 10−7). For Lactobacillus 
oris, a total of 168 SNPs involving 17 loci mapped to 
9 genes were identified (Table S8), with rs6996846 
(mapped to AF131215.5 and AKSMO) being the most 
significant (P = 2.24 × 10−6). None of these genes, how-
ever, were previously reported to be genetically associ-
ated with COPD.

Among SNPs associated with lung function, none were 
found to be significantly associated with microbiome 
features in our dataset (Tables S2, S4). In addition, none 
of these SNPs or genes associated with inflammatory 
endotype or clinical traits overlapped with those associ-
ated with the microbiome features (Tables S2, S4). On 
the other hand, at the transcriptomic level, among all 113 
host genes involved in microbiome-host genetic associa-
tions, 46 genes were found to be associated with sputum 
neutrophil, 3 genes associated with sputum eosinophil, 
25 genes associated with GOLD status, 8 genes asso-
ciated with ICS, and 1 gene associated with smoking 
(FDR < 0.05, Table S4). These results suggest a possibly 
greater impact of these clinical factors on the microbi-
ome-host gene associations at the transcriptomic than 
the genetic level. Collectively, these results suggest the 
genetic associations between COPD-associated human 
genes and the airway microbiome taxonomic and func-
tional features that could imply possible microbiome-
host interactions.

The airway microbiome‑host genetic associations were 
transcriptionally linked
We next analyzed concurrent airway host transcriptomic 
data to assess any genetically associated microbiome fea-
tures and host genes that were further correlated at the 
transcriptional level. Among the 122 microbiome-host 
genetic associations, 27 significant correlations were identi-
fied between the transcriptional level of 24 host genes and 
12 microbiome species and 10 KEGG modules (Spearman 
correlation, P < 0.05, Table 1). The most significant correla-
tions were found between Veillonella parvula and NUDT1 
(rho = 0.48, FDR = 1.26 × 10−4) and MAD1L1 (rho = 0.40, 
FDR = 2.72 × 10−3), both proximal to rs62442525 that 

exhibited genetic association with V. parvula (Fig. 3a-c). This 
was followed by correlations of Stenotrophomonas malt-
ophilia-TTLL9 (Fig. 4a, Fig. S5, rho = 0.40, FDR = 3.08 × 10−3, 
rs9967912), Treponema denticola-RWDD1 (Fig.  4b, 
rho = 0.37, FDR = 7.76 × 10−3, rs6568956), Rothia muci-
laginosa-MAST2 (Fig.  4c, rho = 0.33, FDR = 8.35 × 10−3, 
rs79257400), Prevotella intermedia-BACR1 (rho = 0.34, 
FDR = 5.73 × 10−2, rs7204848), and Haemophilus influen-
zae-LTA4H (rho = 0.30, FDR = 6.21 × 10−2, rs56396137). 
Of note, a non-significant positive correlation was also 
found between S. salivarius and TBC1D32 (rho = 0.23, 
FDR = 8.60 × 10−1, rs6917641, Table 1, Table S4) that exhib-
ited the strongest genetic association. Among microbial 
functional modules, the most significant correlation was 
between ERRFI1 and EHEC/EPEC pathogenicity signature 
(Fig.  4d, Fig. S5, M00542, rho = − 0.29, FDR = 2.03 × 10−2), 
followed by KLHL42 and microbial tyrosine degradation 
(Fig. 4e, M00044, rho = 0.29, FDR = 2.65 × 10−2), and PARK7 
and EHEC/EPEC pathogenicity signature (Fig. 4f, M00542, 
rho = − 0.28, FDR = 1.95 × 10−2). These results suggest that 
the airway microbiome-host genetic associations can be fur-
ther correlated at the transcriptional level, providing a pos-
sible explanation for host genetic variations influencing the 
microbiome.

To further explore any potential causal associations 
between the host gene expression and microbiome fea-
tures, we integrated the lung gene expression quantitative 
trait loci (eQTL) and gene splicing quantitative trait loci 
(sQTL) data from Genotype-Tissue Expression (GTEx) 
database, and performed a summary-data-based Men-
delian randomization (SMR) analysis using the summary 
data sets of the above significant microbiome-host gene 
pairs, with host genes as exposure and microbiome fea-
tures as outcome. The eQTL analysis revealed significant 
associations between microbial type III secretion sys-
tem (M00332), enteropathogenic and enterohemorrhagic 
Escherichia coli (EHEC/EPEC) pathogenicity signature 
(M00542) and PARK7 (Fig. 5a-b, Fig. S6, PSMR = 1.72 × 10−3 
and PSMR = 1.63 × 10−3, Table S9), and between hydroxy-
propionate-hydroxybutylate cycle (M00375) and NARS2 
(Fig.  5c, Fig. S6, PSMR = 2.90 × 10−3, Table S9). The sQTL 
analysis identified significant associations between 
PARK7 and M00332 (Fig. S7, PSMR = 3.71 × 10−3 and 
PSMR = 3.69 × 10−3) and M00542 (PSMR = 3.01 × 10−3 and 
PSMR = 2.99 × 10−3, Table S9). These results support the 
possibility that host genetic variation could influence the 
airway microbial functions through transcription or splic-
ing activities.

Mendelian randomization revealed potential 
microbiome‑COPD associations
To further explore any genetically mediated causal rela-
tionships between COPD and the airway microbiome, 
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we performed a two-sample bidirectional Mendelian 
randomization (MR) analysis. We selected 13 quali-
fied SNPs as instrumental variables (IVs) (P < 5.0 × 10−8, 
r2 < 0.02, clumping window = 5000 kb) from the study 
of Ishigaki et al. that includes an eastern Asian popula-
tion of 3315 cases and 201,592 controls [38]. Eleven of 
these 13 qualified SNPs were implemented in our MR 
analysis after extracting the IVs from outcome GWAS 
summary data and removing the palindromic SNPs. 
The F-statistics of IVs are all greater than 10 (range: 
31.3–71.2), indicating no evidence of instrument bias 
(Table S10). MR analyses were performed using COPD 

as exposure and the 158 microbiome features (52 spe-
cies and 106 modules) as outcomes.

A causal association was found between COPD and 
increased relative abundance of Streptococcus inter-
medius (Fig.  6a, Table  2, OR (95 CI): 2.53 (1.38, 4.70); 
P = 0.0028) using the inverse-variance weighted (IVW) 
method. This finding was also supported by the weighted 
median and weighted mode methods (Table  2, OR (95 
CI): 3.42 (1.54, 7.64); P = 0.0029; OR (95% CI): 4.31 (1.17, 
15.83); P = 0.048). Forest plots of causal effects using a 
single SNP showed that none of them was extremely sig-
nificant for association between exposure and outcome 

Table 1  Correlations between the host gene expression and the genetically associated airway microbiome taxa and modules in 
COPD patients

MR Mendelian randomization, IVW inverse variance weighted, beta beta coefficient, se standard error, OR Odds ratio, CI Confidence interval

*FDR-adjusted P-value< 0.05

Microbiome taxa and modules SNP Chr Major allele Minor allele P-value Gene Spearman P-value FDR Rho

Veillonella parvula rs62442525 7 G A 3.20E-06 NUDT1 1.11E-06 1.26E-04* 0.483

Veillonella parvula rs62442525 7 G A 3.20E-06 MAD1L1 7.59E-05 2.72E-03* 0.401

Stenotrophomonas maltophilia rs9967912 20 A C 4.00E-06 TTLL9 1.80E-04 3.08E-03* 0.402

Treponema denticola rs6568956 6 A C 5.46E-06 RWDD1 3.67E-04 7.76E-03* 0.371

Rothia mucilaginosa rs79257400 1 C G 1.90E-06 MAST2 1.52E-03 8.35E-03* 0.331

Prevotella intermedia rs7204848 16 A G 9.14E-07 BCAR1 1.17E-03 5.73E-02 0.335

Haemophilus influenzae rs56396137 12 A G 2.09E-06 LTA4H 6.76E-03 6.21E-02 0.304

Haemophilus influenzae rs4352337 3 G A 5.03E-06 KBTBD12 8.91E-03 7.20E-02 0.294

Campylobacter concisus rs4683647 3 C T 6.00E-06 ATP1B3 1.11E-02 7.84E-01 0.265

Neisseria mucosa rs6557999 8 A G 8.85E-06 PTK2B 1.99E-02 8.05E-01 −0.246

Streptococcus salivarius rs6917641 6 A G 9.54E-08 TBC1D32 3.57E-02 8.60E-01 0.228

Streptococcus pneumoniae rs147224807 5 T G 4.13E-06 AFF4 2.95E-02 8.89E-01 −0.242

Treponema denticola rs6568956 6 A C 5.46E-06 RSPH4A 3.91E-02 4.75E-01 0.220

Xanthomonas euvesicatoria rs111818593 12 A G 2.54E-06 MRPS35 3.13E-02 3.84E-01 −0.234

Ralstonia insidiosa rs34568075 6 A – 3.70E-06 TBC1D32 3.82E-02 9.14E-01 0.224

M00542: EHEC/EPEC pathogenicity 
signature

rs34823376 1 G A 4.70E-06 ERRFI1 5.75E-03 2.03E-02* −0.289

M00044: Tyrosine degradation rs12311799 12 G A 8.18E-06 KLHL42 5.17E-03 2.65E-02* 0.289

M00542: EHEC/EPEC pathogenicity 
signature

rs34823376 1 G A 4.70E-06 PARK7 8.25E-03 3.14E-02* −0.277

M00375: Hydroxypropionate-hydroxy-
butylate cycle

rs150193199 11 G C 9.19E-06 NARS2 3.08E-03 4.67E-02* −0.317

M00338: Cysteine biosynthesis rs545977123 11 G C 1.38E-06 EPS8L2 7.78E-03 5.54E-02 −0.28

M00332: Type III secretion system rs34823376 1 G A 6.20E-06 ERRFI1 3.14E-03 5.98E-02 −0.31

M00218: Fructose transport system rs17121175 1 C A 9.00E-06 NFIA 2.56E-02 9.02E-02 −0.234

M00332: Type III secretion system rs34823376 1 G A 6.20E-06 PARK7 6.98E-03 9.86E-02 −0.284

M00512: CckA-CtrA/CpdR (cell cycle 
control) two-component regulatory 
system

rs17824678 12 G A 4.63E-06 MSRB3 2.30E-02 1.19E-01 0.244

P02010: ABC transporters rs146351733 11 A – 4.04E-06 PDGFD 4.00E-02 1.63E-01 −0.215

M00540: Benzoate degradation rs1741618 20 T A 4.35E-06 EEF1A2 4.33E-02 3.71E-01 −0.215

M00511: PleC-PleD (cell fate control) 
two-component regulatory system

rs5746415 22 A G 2.86E-07 CECR2 2.78E-02 5.10E-01 −0.236
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(Fig.  6b). The leave-one-out sensitivity analysis dem-
onstrated that the associations were not driven by any 
specific SNPs (Fig. S8). No horizontal pleiotropy and no 
heterogeneity was found between the individual SNPs 
(Table S11). When analyzing in the opposite direction, no 
association was found between COPD and airway micro-
biome features using either of the MR methods (Table 2). 
These findings suggest a potential causal association 
between COPD and increased airway S. intermedius 
mediated through host genetics.

Discussion
Here, through a microbiome-host co-profiling based on 
the airway metagenomic sequencing data, we reported 
the associations between the airway microbiome and 
host genetic polymorphisms in COPD. We acquired 
over 5 million high-quality SNPs and validated some 
of the SNPs in relation to genes previously reported as 

associated with lung function, demonstrating the possi-
bility in obtaining biologically interpretable host genetic 
information from airway metagenomic data [39]. Impor-
tantly, host genetic variation exhibited a greater associa-
tion with the airway microbiome than all other clinical 
and demographic factors that we have surveyed, except 
for geography and disease status, suggesting that it could 
be a critical but overlooked intrinsic factor shaping the 
airway microbiome.

We identified genetic associations between human 
genes and specific airway microbial taxonomic and 
functional features in COPD individuals. Among all 
candidate genes, the strongest association was found 
between S. salivarius and rs6917641 located in the 
intronic region of TBC1D32, a gene previously reported 
to be genetically associated with a broad range of respir-
atory disorders including emphysema, asthma, and rhi-
nitis [5, 40, 41]. S. salivarius was found to be increased 

Fig. 3  The correlation between the airway microbiome taxa and its genetically associated host genes at the transcriptomic level in COPD 
patients. a Regional manhattan plot showing the associations between Veillonella parvula and the host genetic variants in MAD1L1 and NUDT1. 
The mapped genes are marked in red and the top lead SNP is colored in purple. The red line represents the P-value of 1.0 × 10−5. b, c Scatterplots 
for the significant correlation between the normalized abundance of Veillonella parvula (x-axis) and the expression of NUDT1 and MAD1L1 (y-axis) 
in COPD patients. The green and red bars are histograms showing the distribution of the X and Y axis
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in COPD in particular in GOLD I patients [42] and was 
recently reported to have a multi-functional role in 
promoting inflammation leading to allergic rhinitis [43] 
and inducing experimental pulmonary hypertension 
[44]. Of note, the same host gene was also genetically 
associated with Ralstonia insidiosa (P = 3.7 × 10−6), 
an opportunistic lung pathogen [45]. TBC1D32 was 
involved in ciliary function and Sonic hedgehog sign-
aling [46, 47], both implicated in COPD pathogenesis. 
Genetic alteration of this gene might therefore lead to 
cilia and epithelial dysfunction and inflammation in 
COPD and broader airway diseases through elevation 
of pathogenic members of the airway microbiota. From 
the host perspective, SLC27A2, a long-chain fatty acid 
transporter that is involved in host neutrophil degranu-
lation [48], was found to be genetically associated with 
a diverse microbial metabolic functionality, includ-
ing nitrate and sulfate reduction, toluene degradation, 
methanogenesis, and inositol transport, implying a 

possible role of this gene interacting with the microbial 
metabolisms through neutrophil activities.

Through integrating host transcriptomics, we further 
identified multiple genetically associated host genes and 
microbiome features that were correlated at the tran-
scriptomic level. Notably, these microbiome-host gene 
associations were both supported at the genetic and 
transcriptomic level, implying that genetic variation of 
the host genes may potential influence the airway micro-
biome through their expression activities. For instance, 
Veillonella parvula, which was found to activate airway 
inflammation and impair the bronchial epithelial activi-
ties [49, 50], was genetically linked and transcriptionally 
correlated with NUDT1 and MAD1L1. Given the func-
tion of MAD1L1 in reducing telomerase activity, the 
co-altered microbial-host features could synergistically 
result in the reduced proliferation of epithelial cells and 
contribute to emphysema [51]. In addition, Haemophi-
lus influenzae, a key player in COPD airway microbiota, 

Fig. 4  Additional correlations between the airway microbiome features and their genetically associated host genes at the transcriptomic level 
in COPD patients. a-c Scatterplots for the significant correlations of three microbiome species-level taxa Stenotrophomonas maltophilia, Treponema 
denticola, Rothia mucilaginosa with the expression of TTLL9, RWDD1, and MAST2, respectively, in COPD patients. d-f Significant correlations of two 
microbiome functional modules tyrosine degradation (M00044), and EHEC/EPEC pathogenicity signature (M00542), with the expression of KLHL42, 
ERRFI1 and PARK7. The green and red bars are histograms showing the distribution of the X and Y axis
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was found to be genetically and transcriptionally associ-
ated with LTA4H encoding leukotriene A4 hydrolase that 
can be converted to neutrophil attractant leukotriene B4 
in promoting emphysema [52]. This provides a plausible 
explanation on persistence of neutrophilic inflammation 
in COPD individuals colonized with H. influenzae [53, 
54]. Stenotrophomonas maltophila, an airway pathogen 
associated with COPD and other chronic airway dis-
eases, was found to be associated with TTLL9, a tubu-
lin tyrosine ligase gene important for airway epithelial 
cilia function [55]. It is possible that genetic alteration of 
this gene may lead to airway cilia dysfunction leading to 
susceptibility of infection of this pathogenic bacterium. 
Likewise, RSPH4A, another gene involved in airway cilia 

function [56], was associated with Treponema denticola, 
an oral bacterium with a pro-inflammatory role [57]. On 
the other hand, Rothia mucilaginosa, an airway bacte-
rium recently reported to have an anti-inflammatory role 
[58], was associated with MAST2 encoding microtubule-
associated serine/threonine kinase whose dysfunction is 
involved in pulmonary vascular remodeling [59], together 
indicating a possible link between airway vascular struc-
tural changes, inflammation and microbial dysbiosis in 
COPD.

Through SMR analysis, we further observed a poten-
tial causal link between the expression of PARK7 and 
two metagenomic functional modules in type III secre-
tion system essential for bacterial virulence. PARK7 is an 

Fig. 5  The correlation between the airway microbiome functional modules and its genetically associated host genes at the transcriptomic 
level in COPD patients. Regional manhattan plots on the left show the associations between three KEGG modules (M00332, M00542, M00375, 
a-c with the host genetic variants in PARK7 and NARS2. The mapped genes are marked in red and the top lead SNP is colored in purple. The 
red line represents the P-value of 1.0 × 10−5. Scatterplots in the middle show the significant correlation of the three KEGG modules (x-axis) 
and the expression of host genes PARK7 and NARS2 (y-axis). The plots on the right show the corresponding genetic loci from SMR analysis. The gray 
dots in the top mannattan plots show P-values for SNPs associated with KEGG modules. The bottom plots represent the eQTL P-values of SNPs 
from the GTEx study for probe ENSG00000116288 tagging PARK7 and ENSG00000137513 tagging NARS2. The genes (PARK7 and NARS2) that passed 
SMR and HEIDI tests are highlighted in red
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antioxidant gene that acts as a stabilizer of the transcrip-
tion factor Nrf2 to facilitate its effects [60]. The deficiency 
of PARK7 was found to impact the gut microbiota [61] 
and impair bacterial clearance in sepsis [62], suggesting it 
may have a role in shaping the homeostasis of the micro-
bial community. Genetic alteration may lead to decreased 
expression of PARK7 and elevation of bacterial viru-
lence potentials, which could interact with each other in 
together promoting COPD oxidative stress [63]. Through 
these integrative analyses, we were able to step-by-step 
refine the hypotheses for the interaction between the air-
way microbiome and COPD host genetic variations.

To further explore potential causality between the 
airway microbiome and host genetic variations, we 
performed a bidirectional MR analysis between the 
microbiome features and COPD. We found an increase 
in the relative abundance of airway Streptococcus inter-
medius that could be determined genetically in COPD. 

S. intermedius is a part of the Streptococcus milleri group 
and is considered as a commensal member of the air-
way microbiota, while it can also act as an opportunis-
tic pathogen causing purulent infection and abscess in 
the lung [64]. COPD has been reported as a risk factor 
for S. intermedius overgrowth [65], while the elevation of 
S. intermedius can in turn lead to COPD exacerbations 
[66]. In light of our findings, it is plausible that S. inter-
medius may proliferate in response to the altered lung 
microenvironment in COPD and contribute to the self-
perpetuating COPD-dysbiosis cycle that predisposes to 
exacerbations and disease progression [67].

Despite novel relationships identified between the 
airway microbiome and COPD host genetics, several 
important limitations are noted. First, the participants 
are of eastern Asian ancestry and, as a pilot study, the 
cohort size is small. Therefore, the results can only 
be viewed as hypothesis-generating that remain to be 

Fig. 6  Mendelian randomization for a potential causal relationship between COPD and Streptococcus intermedius. a The scatterplot showing 
the SNP effects on COPD versus the relative abundance of S. intermedius, with the slope of each line corresponding to the estimated MR effect using 
each method. b Forest plot showing the MR-estimated effect sizes for COPD on S. intermedius for individual SNPs and their combinations

Table 2  Bidirectional MR results for the relationship between COPD and the relative abundance of Streptococcus intermedius 

MR Mendelian randomization, IVW Inverse variance weighted, beta Beta coefficient, se Standard error, OR Odds ratio, CI Confidence interval

Directionality MR methods Number of 
SNPs

F-statistic beta se OR (95% CI) P-value

Effect of COPD on S. intermedius IVW 11 42 0.93 0.31 2.53 (1.38,4.70) 0.0028

Weighted median 11 42 1.23 0.41 3.42 (1.54,7.64) 0.0029

Weighted mode 11 42 1.46 0.65 4.31 (1.17,15.83) 0.048

Simple mode 11 42 1.34 0.73 3.82 (0.90,16.30) 0.095

MR-Egger 11 42 2.20 1.77 9.03 (0.28,294.23) 0.25

Effect on S. intermedius on COPD IVW 14 31 0.0076 0.01 1.00 (0.99,1.03) 0.42

Weighted median 14 31 0.013 0.013 1.01 (0.99,1.04) 0.33

Weighted mode 14 31 0.015 0.02 1.02 (0.98,1.06) 0.46

Simple mode 14 31 0.016 0.021 1.02 (0.97,1.06) 0.47

MR-Egger 14 31 0.021 0.038 1.02 (0.95,1.10) 0.59
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validated in larger populations with different genetic 
backgrounds and ethnicities, using other conven-
tional genotyping approaches such as SNP arrays, and 
through in  vivo and in  vitro experiments. Compared 
with American and European populations, genetic 
investigations on Asian COPD populations remain 
under-represented, which could have affected the per-
formance of genotyping and imputation accuracy [68]. 
Second, despite a deep metagenomic sequencing, the 
coverage of the human genome remains moderate 
(~10x), which could have affected the SNP calling per-
formance [69]. Third, a comprehensive assessment of 
environmental factors for the COPD individuals such 
as indoor (i.e. biofuel use, occupational pollution) and 
outdoor (PM2.5 concentration) pollution is lacking, 
which could have led to an overestimation on the rela-
tive importance of host genetics on the microbiome. 
Fourth, due to heterogeneity of COPD, inflammatory 
endotype, severity, and other clinical factors such as 
ICS usage and smoking could potentially impact our 
results, as they were associated with the transcrip-
tional level of genes involved in microbiome-host 
genetic association. Due to the small sample size, it is 
currently impossible to subdivide COPD individuals 
according to these factors and perform microbiome-
host genetic sub-analysis. Further larger-scale studies 
are warranted to more explicitly assess the impact of 
clinical factors on microbiome-host genetic associa-
tions. Fifth, principal component analysis (PCA) was 
conducted to assess the overall genetic variability and 
its associations with microbiome alpha and beta diver-
sity. There are limitations in the application of PCA to 
genetics data, including the modest proportion of vari-
ation it explains and the lack of biological interpret-
ability for the PCs. Although imperfect, PCA remains 
a reasonable approach applied in existing microbiome-
genetic studies [70–73]. And by using a ‘bi-directional’ 
PERMANOVA, our results further support the close 
association between the airway microbiome and host 
genetics. Last, despite the implementation of MR anal-
ysis which was designed for causal inferences, the pre-
cise causality between microbiome and host genetics 
cannot be established and warrants further investiga-
tions through experimental and mechanistic studies.

In summary, our study demonstrates the feasibility 
in uncovering host genetic associations of the airway 
microbiome through microbiome-host co-profiling 
using deeply sequenced metagenomics. Results of this 
study suggest a previously underappreciated role of 
host genetics in shaping the airway microbiome and 
provide fresh hypotheses for host genetic-micro-
biome interactions that could contribute to COPD 
pathogenesis.

Methods
Patients and samples
The characterization of the metagenomes (with proper 
reagent controls) and host transcriptomes for this 
cohort has been described previously [13]. Briefly, 
induced sputum samples were collected from patients 
with stable COPD (n = 72) and age-matched healthy 
controls (n = 18) in the First Affiliated Hospital of 
Guangzhou Medical University, Guangzhou, China, 
and patients with stable COPD (n = 27) and healthy 
controls (n = 18) in Shenzhen People’s Hospital in 
Shenzhen, China, respectively. For Shenzhen cohort, 
the two groups are generally age-matched, with healthy 
controls being non-significantly younger than the 
COPD individuals (P = 0.061). All COPD patients met 
the diagnostic criteria according to GOLD [74]. All 135 
individuals were subject to deep sputum metagenomic 
sequencing, and 130 sputum samples were subject to 
concurrent host transcriptomic profiling. For COPD 
patients, the inclusion criteria were: (1) age > 40 years; 
and (2) confirmed diagnosis of COPD according to the 
GOLD guideline (post-bronchodilator forced expira-
tory volume in 1 s [FEV1]/forced vital capacity [FVC] 
ratio < 0.7). The exclusion criteria were: (1) physician-
diagnosis of asthma or significant respiratory disease 
other than COPD; (2) COPD exacerbation within 
4 weeks of enrollment; (3) history of lung surgery and 
tuberculosis; (4) diagnosis of cancer; (5) blood trans-
fusion within 4 weeks of enrollment; (6) diagnosis 
of autoimmune diseases; (7) enrollment in a blinded 
drug trial; and (8) short-term antibiotic usage within 
4 weeks of enrollment. Informed consent was obtained 
from all patients. This study was approved by the eth-
ics committee of the two centers (reference no. 2017–
22 and KY-LL-2020294-01). All participants provided 
informed consent. All raw sequencing data were depos-
ited for strictly controlled access only (see data and 
code availability), to protect the privacy of the donor 
genotyping information which is highly confidential.

Quality control of sputum samples
Quality control of the sputum was performed upon 
collection. Specifically, sputum plugs were separated 
from saliva, and were diluted with 0.1% dithiothreitol 
solution and filtered through a 48 μm nylon-mesh fil-
ter following a standardized sputum processing pro-
tocol [75, 76]. The numbers of total cells, leucocytes, 
and squamous epithelial cells were recorded. Sputum 
specimens with a squamous epithelial cell to leucocyte 
ratio < 1:2.5 were regarded as with minimal contami-
nations from oropharyngeal materials and eligible for 
subsequent experiments [77].
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Multi‑omic sequencing and analyses
DNA was extracted from quality-controlled sputum plugs 
using the Qiagen DNA Mini kit and was deep-sequenced 
using Illumina NovaSeq platform (2 × 150 bp, targeted 
≥30G sequences per sample). Four reagent controls 
(DNA extraction blanks) were used for sequencing, two 
for Guangzhou and two for Shenzhen cohorts respec-
tively. The results for the reagent controls were described 
previously [13]. Bacterial species identified in at least two 
of four reagent controls with relative abundance greater 
than 0.001 were excluded from downstream analyses. 
The cell and supernatant isolation was performed on the 
remaining sputum using a two-step method with a PBS 
wash step followed by a dithiothreitol step and cytospins 
according to a standardized sputum processing protocol 
[75, 76]. RNA was extracted from sputum cells using the 
Qiagen RNase Mini kit for mRNA-sequencing using Illu-
mina NovaSeq platform (2 × 150 bp).

The characterization of the airway metagenomes and 
the host transcriptomes was described previously [13]. 
Briefly, raw metagenomic reads were processed using 
the Sunbeam pipeline [78], in which quality control was 
performed using Cutadapt (v.2.5) [79], reads were fil-
tered using Komplexity [78], and host reads were fil-
tered by mapping to human genome GRCh38 using 
BWA(v.0.7.17) [80]. For both the actual sputum samples 
and negative reagent controls, taxonomic profiling was 
performed using Kraken 2 (v.2.0.8) [81]. Bacterial species 
with relative abundance> 0.001 and identified in at least 
two of four reagent controls were regarded as potential 
contaminants and filtered out from subsequent analyses, 
as described previously [13]. A total of 33 species-level 
taxa were removed during this step (Table S12), consti-
tuting an average of 0.019% of the abundance of all taxa 
from the actual samples [13]. For host transcriptome, raw 
reads were quality-filtered using Cutadapt (v.2.5) [79] 
and aligned to the human genome GRCh38 using Hisat2 
(v.2.1.0) [82]. RSEM (v.1.3.3) [83] was used to generate 
the gene expression count table.

WGS alignment and SNP calling
The human host reads from the metagenomic data were 
subject to genotyping. Specifically, the Genome Analysis 
Toolkit’s (GATK v4.1) [84] BaseRecalibrator was used 
to create recalibration tables and to screen for known 
SNPs in the BAM files from dbSNP (v138). Base Qual-
ity Score Recalibration (BQSR) was used for subsequent 
base quality recalibration and removal of read pairs 
with improperly aligned segments. The genetic variants 
were generated using GATK’s HaplotypeCaller. GVCFs 
containing SNPs created from HaplotypeCaller were 
then combined (CombineGVCFs), genotyped (Geno-
typeGVCFs), selected (SelectVariants), variant score 

recalibrated (VariantRecalibrator), and filtered (Apply-
VQSR) in GATK. For the GATK VariantRecalibrator 
process, we used our variants as inputs and four standard 
SNP sets to train the model: (1) dbSNP builds 138 SNPs; 
(2) 1000 Genome phase 3 high confidence SNPs; (3) 1000 
Genomes Project SNPs from Omni 2.5 chip; (4) Hap-
Map3.3 SNPs. The sensitivity threshold was set as 99.9% 
for SNPs for the variant selection. A set of 26,165,582 raw 
SNPs were obtained after applying the filtration.

Quality control and imputation
The below inclusion thresholds were applied for qual-
ity control of the variants using PLINK (v.2.0) [85]: (1) 
genotype calling rate > 95%; (2) minor allele frequency 
(MAF) > 0.05; (3) Hardy-Weinberg equilibrium (HWE) 
P > 0.0001 and finally obtain 1,082,482 high-quality vari-
ants. The genomic coordinates were converted from 
GRCh38 to GRCh37 using Crossmap (v.0.5.4) and the 
high-quality variants were imputed using BEAGLE (v.5.2) 
[86], with the 1000 Genomes phase 3 Project as a refer-
ence panel (ne = 20,000, window = 100, seed = − 99,999). 
The variants with imputation information> 0.7 were 
retained and further filtered to keep variants with 
MAF > 0.05 using PLINK (v.2.0) [85]. Ultimately, a set 
of 5,471,650 high-quality SNPs were retained. Two 
COPD individuals were identified as notable outliers in 
the principal coordinate analysis based on SNP dosage 
information and excluded from downstream analyses. 
The SNP missing rate of these two samples were signifi-
cantly higher than all other samples (14.85% for Z031 
and 10.97% for K013V0, compared with 1.2% ± 1.2 for 
the remaining samples), which could be partly due to 
their lower ratio of reads passing quality control (61.9 
and 76.3%, compared with 83.9% ± 7.3% for the remaining 
samples) and reads mapping to the human genome (35.4 
and 46.8%, compared with 77.3% ± 12.0% for the remain-
ing samples).

Functional mapping and annotation
Gene annotation was performed using SNP2GENE in 
FUMAGWAS (http://​fuma.​ctglab.​nl/) [87]. The P-value 
threshold was set with 1.0 × 10−5, r2 threshold to define 
independent significant SNPs and lead SNPs were set as 
0.6 and 0.1 respectively. The genetic data of East Asian 
populations in 1000G phase 3 were viewed as reference 
data to conduct LD analyses. The maximum distance 
between LD blocks to merge into a genomic locus was 
250 kb. We used the positional mapping method and 
maps variants to genes based on physical distance within 
a 10 kb window [87] The mapped genes were further 
annotated in databases including Open Targets Genet-
ics (https://​genet​ics.​opent​argets.​org/), GWAS Cata-
log (https://​www.​ebi.​ac.​uk/​gwas/), and GWASATLAS 

http://fuma.ctglab.nl/
https://genetics.opentargets.org/
https://www.ebi.ac.uk/gwas/
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(https://​atlas.​ctglab.​nl/) [88–90] to assess whether the 
genes were reported to be genetically associated with 
COPD in previous studies.

Association between host genetics, lung function 
and the microbiome
Genome wide association studies (GWAS) of lung func-
tion measurement (FEV1/FVC) was performed in COPD 
individuals only (n = 97) and in all individuals (n = 133) 
using a general mixed linear model, adjusting for site, age, 
sex, BMI, smoking status, the top 10 principal compo-
nents (PCs) [91] of the genotype data generated by using 
SNP dosage in PLINK (v.2.0) [85] and kinship matrix 
between individuals generated in GEMMA (v.0.98.5) 
[92]. The P-values of the genome-wide association were 
adjusted using the wald test in GEMMA (v.0.98.5) [92].

The associations between the first PC of the host 
genetic variations and the microbiome beta diversity 
(based on Bray-Curtis distance at the species level) were 
assessed with permutational multivariate analysis of 
variance (PERMANOVA) [93] in all samples (n = 133) 
and within COPD (n = 97) and control (n = 36) group 
respectively using vegan [94] in R (v.4.2.0). Correlations 
between the first PC of host genetic data and first PC 
and richness of the airway microbiome data were per-
formed with spearman correlation in R (v.4.2.0) in all the 
samples (n = 133). The associations between microbiome 
taxonomic and functional features and host SNPs were 
assessed using a general mixed linear model with adjust-
ment for site, age, sex, BMI, smoking status, the top 10 
principal components (PCs) [91] of the genotype data, 
and kinship matrix between individuals in GEMMA 
(v.0.98.5) [92].

For taxonomic features, the microbiome species-
level taxa enriched in COPD (FDR < 0.05, n = 6) or in 
healthy individuals (n = 25) as well as those with aver-
age relative abundance> 0.005 in COPD (n = 21) were 
selected, resulting in a total of 52 species. For functional 
features, the KEGG modules significantly enriched in 
COPD (FDR < 0.05, n = 70) and health (n = 36) were 
selected, resulting in a total of 106 modules. Together, 
these resulted in a total of 158 microbiome features for 
downstream analyses. The taxonomic relative abun-
dances were arcsin square root transformed followed 
by z-score normalization and the abundances of the 
KEGG modules were z-score normalized. The P-values 
of the genome-wide association were adjusted by wald 
test in GEMMA (v.0.98.5) [92]. Host gene expression 
count was TPM-transformed. Spearman correlations 

were investigated between TPM values of host genes 
and normalized abundances of the microbiome features. 
Regional Manhattan plots were made in FUMAGWAS 
(http://​fuma.​ctglab.​nl/) [87].

Summary‑based Mendelian randomization (SMR) analysis
SMR analysis was performed to identify the expression 
and the alternative splicing level of host genes associated 
with the airway microbiome features in COPD [99]. Lung 
expression quantitative trait loci (eQTL) summary statis-
tics were obtained from the GTEx eQTL summary data-
set (version 8) [95]. As genetic variations may function 
as a regulator of gene-splicing events, the lung-splicing 
quantitative trait loci (sQTL) summary statistics (GTEx 
version 8) were also implemented in the SMR analysis. 
The statistical significance level was set to P < 0.0033 and 
P < 0.0042 respectively based on multiple testing cor-
rections for the number of the SMR analysis (n = 15 for 
microbiome species-level SMR and n = 12 for module-
level SMR, respectively). The heterogeneity in dependent 
instruments (HEIDI) test was conducted to assess hetero-
geneity in the association statistics by identifying the pres-
ence of any underlying single causal genetic variant from 
linkage in SMR analysis. The non-significant probes for 
heterogeneity (PHEIDI ≥ 0.05) were retained [96].The SMR 
locus plots were generated by using the code in https://​
yangl​ab.​westl​ake.​edu.​cn/​softw​are/​smr/#​SMRlo​cuspl​ot19.

Mendelian randomization (MR) analysis
A systematic two-sample MR analysis was applied to 
assess whether COPD can be potentially linked to the 
airway microbiome through host genetic variations [97]. 
Candidate instrumental variables (IVs) for COPD were 
selected at the P < 5 × 10−8 significance according to the 
study of Ishigaki et al. (2020) that includes 3315 cases and 
201,592 controls of East Asian ancestry [98]. SNPs asso-
ciated with COPD were clumped using extract_instru-
ments in TwoSampleMR (v.0.3.4) [99] to retain only 
independent SNPs. The linkage disequilibrium (LD) 
threshold was set as r2 < 0.02 and a clumping window of 
5000 kb [100, 101]. To assess the strength of the selected 
SNPs, the following equation was used to calculate the F 
statistics [102]:

where N represents the effective GWAS sample size 
[103]. The PVE refers to the proportion of variance in 
phenotype explained by a given SNP [104]:

F = PVE × (N − 2)/(1− PVE)

(PVE) = 2 ∗ betaˆ2 ∗MAF ∗ (1−MAF) / 2 ∗ betaˆ2 ∗MAF(1−MAF)+ (se(beta))ˆ2 ∗ 2 ∗ N ∗MAF ∗ (1−MAF)

https://atlas.ctglab.nl/
http://fuma.ctglab.nl/
https://yanglab.westlake.edu.cn/software/smr/#SMRlocusplot19
https://yanglab.westlake.edu.cn/software/smr/#SMRlocusplot19
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where N is the sample size, se is the standard error of 
effect size for the genetic variant of interest, beta repre-
sents effect size for the genetic variant of interest, and 
MAF is the minor allele frequency for the genetic vari-
ant of interest. An F-statistic≥10 indicates no strong 
evidence of weak instrument bias. For multiple IVs, we 
computed the mean F statistic across IVs [102, 103]. 
A total of 158 microbiome-GWAS summary data sets 
including those for the above mentioned 52 microbial 
species and 106 functional modules were used as out-
comes. The inverse variance weighted (IVW) method was 
employed to estimate the effect size. Four additional MR 
methods were employed, including weighted median, 
MR-Egger, weighted mode, and simple mode. Three 
types of sensitivity analyses were performed, including 
the heterogeneity test, pleiotropy test, and leave-one-out 
analysis. The heterogeneity was quantified by Cochran’s 
Q statistic. The intercept of the MR-Egger regression 
test was performed to provide an estimate of the degree 
of directional pleiotropy [42]. The leave-one-out analysis 
was performed to evaluate whether the significant results 
were driven by a single SNP [105]. To explore whether 
the airway microbiome may causally impact COPD 
through host genetics, a reverse MR analysis was per-
formed with airway microbiome as exposure and COPD 
as outcome. All analyses were conducted using TwoSam-
pleMR (v.0.3.4) [99] in R (v.4.2.0). A STROBE-MR check-
list was included in Table S13.
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