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Abstract
Tepotinib is approved for the treatment of patients with non-small-cell lung can-
cer harboring MET exon 14 skipping alterations. While edema is the most preva-
lent adverse event (AE) and a known class effect of MET inhibitors including 
tepotinib, there is still limited understanding about the factors contributing to its 
occurrence. Herein, we apply machine learning (ML)-based approaches to pre-
dict the likelihood of occurrence of edema in patients undergoing tepotinib treat-
ment, and to identify factors influencing its development over time. Data from 
612 patients receiving tepotinib in five Phase I/II studies were modeled with two 
ML algorithms, Random Forest, and Gradient Boosting Trees, to predict edema 
AE incidence and severity. Probability calibration was applied to give a realistic 
estimation of the likelihood of edema AE. Best model was tested on follow-up 
data and on data from clinical studies unused while training. Results showed 
high performances across all the tested settings, with F1 scores up to 0.961 when 
retraining the model with the most relevant covariates. The use of ML explain-
ability methods identified serum albumin as the most informative longitudinal 
covariate, and higher age as associated with higher probabilities of more severe 
edema. The developed methodological framework enables the use of ML algo-
rithms for analyzing clinical safety data and exploiting longitudinal informa-
tion through various covariate engineering approaches. Probability calibration 
ensures the accurate estimation of the likelihood of the AE occurrence, while 
explainability tools can identify factors contributing to model predictions, hence 
supporting population and individual patient-level interpretation.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Edema is recognized as the most prevalent AE and a known class effect of MET 
inhibitors, including tepotinib. Current efforts aim to understand the efficacy of 
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INTRODUCTION

Drug-disease models play a pivotal role in quantitative 
understanding of the trajectory of disease pathophysiol-
ogy and the effects of drug treatment. These empirical 
or mechanistic models, often requiring the abstraction 
of data into dynamical systems, have proven to be valu-
able tools in drug development and therapeutic research.1 
However, their ability to mathematically describe com-
plex datasets is highly dependent on the availability, qual-
ity, and quantity of data, and on the assumptions made 
by the modeler.2 In parallel, the recent digital healthcare 
revolution has significantly expanded the opportunities 
to collect diverse, multimodal, high-dimensional data, in-
cluding clinical information, multi-omics data, electronic 
health records, and imaging data, enabling advancements 
in precision medicine.3-5 While this presents new op-
portunities to enhance drug development efficiency and 
improve patient care, it also poses a new challenge for tra-
ditional modeling approaches. Indeed, extracting mean-
ingful insights from such vast volumes of diverse data has 
become increasingly difficult.

In this context, machine learning (ML) approaches 
have emerged as promising in advancing understanding 
in drug and disease in the context of drug development, 
while complementing and enhancing conventional ap-
proaches like pharmacometrics models.6 ML models are 
universal, nonlinear, function approximation tools capa-
ble of learning patterns from empirical data by exploiting 
highly dimensional input spaces, that is, potentially incor-
porating a large number of covariates within the model.7,8 
Moreover, no assumptions on data distributions or on the 

biological process driving the studied phenomena must be 
a priori taken, as ML models are fully data driven. Such 
characteristics neatly distinguish ML algorithms from 
other non-mechanistic models and traditional statistical 
approaches.9 Many ML applications have already proven 
effective in modeling the occurrence of events or clinical 
outcomes along with baseline covariate values. However, 
there is still not a shared unified pipeline for ML applica-
tion on longitudinal clinical data.

In this study, a framework to apply ML approaches to 
the prediction of longitudinal clinical end points is pro-
posed. The framework is presented via an application 
on the case study of tepotinib, a highly selective, potent, 
orally available, reversible, type Ib adenosine triphosphate 
(ATP)-competitive, small molecule inhibitor of the mes-
enchymal–epithelial transition factor (MET).10 Tepotinib 
inhibits hepatocyte growth factor (HGF)-dependent and 
-independent MET tyrosine kinase signaling by blocking 
MET phosphorylation, and showed antitumor activity 
in multiple tumor models derived from diverse cancer 
types.11,12 The antitumor activity of tepotinib is particu-
larly pronounced in tumors with oncogenic alterations of 
MET, such as MET exon 14 (METex14) skipping and high-
level MET amplification. Based on results from the Phase 
II VISION (NCT02864992) clinical trial,13-16 tepotinib is 
approved in multiple regions for the treatment of patients 
with non-small-cell lung cancer (NSCLC) with METex14 
skipping alterations, representing ~3–4% of this type of 
cancer.

Previous clinical studies have revealed edema as the 
most prevalent adverse event and a known class effect 
of MET inhibitors including tepotinib.17,18 However, the 

dose modifications in reducing this AE, exploring its relationship with potential 
prognostic factors.
WHAT QUESTION DID THIS STUDY ADDRESS?
Are there baseline and time-varying factors to support the identification of higher 
likelihood of edema occurrence in patients receiving tepotinib treatment?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This study assesses 54 covariates as predictors of edema using ML. Explainability 
tools investigate the relationship between input covariates and predicted out-
comes. The identified drivers align with the existing knowledge of the investi-
gated AE behavior.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
This study presents a framework to apply ML and explainability algorithms on 
longitudinal clinical data, ensuring a correct estimation of the probability of oc-
currence of the predicted events. Findings from the presented use case showcase 
the potential of the framework to enhance insights in clinical pharmacology and 
increase confidence in safety model outcomes.
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links between the participants' clinical history, the time 
and duration of tepotinib treatment, and the occurrence 
of edema remain unclear, and understanding the effect of 
dose modifications to mitigate such adverse event is the 
object of ongoing investigations.

The objectives of this study were twofold. First, ML mod-
els were tested to predict the occurrence of edema grade 
in patients undergoing tepotinib treatment. To this aim, a 
framework to apply classical ML approaches to the specific 
task of edema prediction was designed. In doing so, two ML 
models belonging to the family of classification trees algo-
rithm, namely Random Forest (RF) and Gradient Boosting 
Trees (GBT), were applied and benchmarked. Classification 
trees are known to outperform more complex models, in-
cluding neural networks, when used for prediction tasks 
on structured tabular data such as those collected for the 
present study.19 However, they are not able to intrinsically 
account for the longitudinal dimension characterizing clini-
cal data. To overcome this limitation, different ways of intro-
ducing the temporal dimension into the model via covariate 
engineering were evaluated. The performances of the best 
predictive model were verified on longer term follow-up 
data, and on data for a different set of patients. Finally, the 
model was retrained including the entire dataset and only 
on a reduced set of the most relevant input covariates.

The second objective of the study was the identifica-
tion of the factors predicting edema occurrence and evolu-
tion over time. The Shapley Additive exPlanations (SHAP) 
method was used to investigate the role different factors 
have toward a specific estimation of edema occurrence 
obtained via the best predictive model, both at population 
and patient level. The use of this approach overcomes the 
lack of explainability of ML models, which approximate 
complex nonlinear functions from data in a not straight-
forwardly interpretable manner.20,21

METHODS

Clinical data

Data from 612 patients enrolled in five Phase I/II clini-
cal studies with tepotinib were collected (NCT01014936, 
NCT01832506, NCT01988493, NCT02115373, VISION –  
NCT02864992). The patients in the dataset received tepo-
tinib monotherapy at doses of 30–1400 mg, once daily, in-
cluding different patterns of dose modifications and with the 
recommended clinical dose of 500 mg (equivalent to 450 mg 
active moiety) once daily administered to 481 of them.

Adverse events were coded according to the Medical 
Dictionary for Regulatory Activities version 23.0 (MedDRA 
23.0). Their severity was graded using the National Cancer 
Institute Common Terminology Criteria for Adverse Event 

version 4.0 (NCI-CTCAE v4.0) toxicity grades.22 Table  1 
shows details of the study designs, together with a sum-
mary of the worst edema grade observed in patients during 
tepotinib treatment within the clinical study.

Figure S1 shows the proportion of patients reaching each 
grade as worst case over fixed sized temporal windows of 
84 days each. Data from only ~5% of patients were available 
after 1260 days from the beginning of the treatment. In the 
first 1260, grade 1 was found in at least 20% of patients avail-
able in each window; the same applied to grade 2, except 
for the first window where such proportion was closer to 
15%. The proportion of available patients having grade 3 was 
stable over time and lower than 10%. These data describe 
edema as a frequent adverse event, as more than half of all 
patients experienced it during the entire treatment duration.

However, edema events were measured with limited fre-
quency over time; no edema was reported in 45.15% of avail-
able safety visits throughout the entire dataset, and grade 1 
was reported in 29.35%. Grade 2 was reported in 21.68% of 
safety visits, while grade 3 and grade 4 were reported in <4% 
and 0.01%, respectively. Given the extremely low representa-
tiveness of grades 3 and 4 in the dataset, during the modeling 
phase, grades 2, 3, and 4 were aggregated into a single class 
representing edema of grade 2 or higher severity. Transitions 
from the edema grades reported at a safety visit and grades 
reported at the following one are shown in Figure S2.

A total of 54 covariates, 34 of which are time-varying, 
were available as input for the edema prediction models 
(Table S1). Missing values in time-invariant covariates have 
been imputed to the most frequent value in the case of cat-
egorical or ordinal variables, and to the median value in 
case of continuous ones. Time-varying covariates have been 
imputed via the last observation carried forward method. 
Missing baseline values (i.e., most recent measurement of 
the covariate prior to first dosing for each patient) have been 
imputed with first observation carried backward.

Covariate engineering of longitudinal data

To identify how to better leverage the longitudinal dimen-
sion of the input data, additional inputs were designed by 
processing the time-varying covariates. To incorporate 
the temporal evolution of input data into the models, the 
following distinct covariate engineering approaches were 
tested:

•	 Actual values at visit: the time-varying covariates 
measured during a safety visit are used without 
manipulations.

•	 Multiple visits: for each time-varying covariate, the 
last three values and their corresponding timestamps 
are flattened into a vector, eventually padded with the 
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baseline value when the number of available visits is 
lower than three. The obtained encoded vector is con-
catenated to the remainder of the covariates.

•	 Multiple windows: average values were computed on 
three temporal windows – from 1 to 7 days before the 
visit, 8–21 days, and 22–42 days. Number and size of the 
windows were determined based on the distribution of 
the frequency of the safety visits. Averaged values of 
each of the time-varying covariate were therefore con-
catenated to the remainder covariates and used as input 
for the different models.

•	 Long-/short-term windows: mean and standard devia-
tion of time-varying covariates were estimated in two 
windows: one with data from 1 to 14 days before the 
actual visit date, and another with data from start of 
treatment to 15 days before the visit. The two windows 
showed short- and long-term covariate variability pat-
terns, respectively.

•	 Baseline plus delta: both the baseline value and the dif-
ference from baseline computed at the safety visit day 
were included.

In addition to the engineered time-varying covariates, 
model input also included the collected time-invariant co-
variates. The current edema grade of each patient was also 
included in the input spaces; note that the model target is 

the edema grade at the following safety visit. Treatment 
exposure was accounted for by calculating the cumu-
lative tepotinib dose administered in the time interval 
[

t0, t − 15 days
]

, that is, from start of treatment to 15 days 
prior to the visit date, and the one administered in the in-
terval 

[

t − 14 days, t
]

, that is, from 14 days prior to the visit 
date up to the current visit date. This approach allows for 
the consideration of long-term and short-term cumulative 
exposure of tepotinib, the latter being also representative 
of dose modifications. Most of such modifications were 
made in response to the emergence of adverse events, par-
ticularly edema. Hence, treatment exposure serves as both 
input for the treating physician and the model, while also 
acting as an effector mechanism. This dual role makes in-
terpreting its influence both highly relevant and complex. 
Finally, the time elapsed between the current safety visit 
and the subsequent visit was included as an input, as it 
can inform the forecasting horizon of the models, given 
that this period is irregular over time and across patients.

Machine learning modeling framework

A schematization of the workflow used to train and validate 
the models is presented in Figure 1. Data were divided into 
train (accounting for data from 80% of patients) and test 

F I G U R E  1   ML modeling framework. Data are divided into training and test sets. On a safety visit at the generic day t , new values of the 
time-varying covariates are measured for a patient. These values are used together with the time-invariant covariates and treatment effect 
features as input for the ML supervised model. Five alternative covariate engineering approaches were adopted to explicitly account for the 
past measurements of the time-varying covariates as further inputs for the model. Additional inputs can be generated to account for the time 
since the first dose administration at t  and the temporal interval between the visit day t  and the following safety visit day at time t + 1. The 
supervised model was then trained to forecast the expected edema adverse event grade for the patient at t + 1. The probability of having a 
given severity grade is also estimated for each patient at each safety visit day. The trained model was then applied to the test data to quantify 
its predictive performance with regard to precision, recall, F1 score, and with visual predictive checks. Finally, SHAP was used to assess the 
role of the input covariates toward specific predictions obtained. SHAP, Shapley Additive exPlanations.

Train model to predict:
� Expected grade
� Probability by grade

Performance check:
� Visual Predictive Checks
� Precision, recall, F1

Covariate importance:
� Global/population
� Local/personalized
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sets (data from the remaining 20% of patients). Train data 
collected for each patient at each safety visit, preprocessed 
with the covariate engineering techniques previously de-
scribed, were used as input to train the ML model. The aim 
of such a multiclass classification model was to predict the 
expected edema by grade at the following safety visit for the 
given patients. Different ML algorithms belonging to the 
family of classification trees algorithms were benchmarked. 
Classification trees build a tree-like model of decisions and 
their possible consequences. They linearly partition the co-
variate space and then fit a simple constant model in each of 
the partitioned regions. Two tree-based models were tested 
– RF and GBT. RF is an ensemble method that combines 
multiple classification trees to produce a more accurate and 
stable prediction.23 A random subset of the input covariates 
and a separate subset of the training data were used to create 
each tree. The final prediction was the most frequent among 
the predictions of all the trees. This reduces the risk of over-
fitting and stabilizes the model as final output is based on 
the consensus of several trees. In GBT, classification trees 
were trained sequentially using a stage-wise approach.24 At 
each stage, the model attempts to reduce the overall predic-
tion error by minimizing the residual error estimated on the 
preceding trees. GBTs are interdependent, in contrast to RF 
where trees are trained individually, making the model more 
prone to overfitting. The XGBoost implementation of the al-
gorithm was used in this study to train the GBT model.25

All models were trained using stratified grouped k-fold 
cross-validation.26 To account for the imbalance of the 
edema grades in the classification target, precision, recall, 
and weighted and macro F1 scores were used as quantita-
tive metrics to evaluate model performances.27 Probability 
calibration via Isotonic Regression was used to ensure 
that confidence scores predicted by the classifier – in this 
case, one of the RF or GBT models – were matching the 
true empirical frequencies of edema grades.28 Practically, 
the cross-validation procedure previously described was 
used to obtain unbiased predictions for all the data. Then, 
the unbiased predictions within each fold were used to 
train the Isotonic Regression. Further details on proba-
bility calibration and Isotonic Regression are provided in 
Supplementary Materials S1.

The last step of the methodology deals with model ex-
plainability. Here, SHAP29 values were used to examine 
the influence of the input covariate on the output obtained 
at the patient level for each prediction visit. Furthermore, 
by aggregating the SHAP values computed across all the 
patient's data, a population-level evaluation of the rele-
vance of the input covariate in the resulting predictions 
was generated.30 Details on computation of SHAP values 
are provided in Supplementary Materials S1.

Practically, the framework hereby presented was applied 
in two steps. First, only data from Cohort A of the VISION 

study (NCT02864992) up until February 2021, along with 
data from the remainder of the studies, were used. This 
reduced dataset was employed to determine which com-
bination of ML algorithms and covariate engineering ap-
proaches would provide the best performance on the task 
of edema grade prediction. The resulting model was used 
to obtain predictions for the test set and on previously ex-
cluded data, that is, the follow-up data for VISION Cohort 
A from February 2021 to November 2022, as well as data for 
patients in Cohort C of the same study. The performances 
obtained on such data were used to evaluate the model's 
generalization capability; its ability to provide accurate pre-
dictions for longer term follow-up data, and for a different 
set of patients than that on which the model was trained.

In a second step, the best model was retrained using 
data from all available patients, divided again into train 
and test sets. SHAP was then used to identify the 10 most 
important predictors for model-based predictions. A final 
model was subsequently trained using only these 10 pre-
dictors, and a comprehensive investigation of its perfor-
mance and contributing factors was carried out.

RESULTS

Best model identification

To determine the best algorithm and covariate engineering 
approach to predict edema occurrence and grade, the five 
different input spaces obtained after covariate engineering 
were used as input to both RF and GBT, yielding a total 
of 10 different model settings. Only data up to February 
2021 and without VISION Cohort C patients were used to 
generate the train and the test set. After model training, 
performances of the different settings have been assessed 
via the mean cross-validation error obtained over the five-
fold for the best combination of hyperparameters for each 
model. Table 2 shows the mean F1 score and the corre-
sponding standard deviation for all the settings.

Although RF performs better than GBT for the specific 
task of edema prediction, there were no significant differ-
ences in the F1 score across the models trained with co-
variates resulting from different engineering approaches. 
Therefore, the RF model that utilized the multiple visit 
approach for time-varying covariates was deemed the best 
compromise between model performance, longitudinal 
data exploitation, and easiness of result interpretation.

The performances of the selected model were further 
assessed on the VISION Cohort A data collected from 
February 2021 to November 2022 and on data from VISION 
Cohort C. No changes were observed in evaluation metrics 
when the model was used for predicting edema occurrence 
and grade in the patients from Cohort C, with the weighted 
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F1 score estimated as 0.944. The F1 score reached 0.994 
for follow-up data from Cohort A. Such an increase in 
the metric is mostly to be attributed to the fact that stable 
edema conditions were assessed for 74 of the 94 patients, 
for whom follow-up data were available.

Final model on extended dataset

The RF model using the actual value at the visit for time-
varying covariates was retrained using data from all avail-
able patients. Generalization performances were assessed 
on the previously unused test set, resulting in a weighted 
F1 score of 0.959. Effects of calibration via Isotonic 
Regression on such model are shown in Figures  S3, S4. 
Then, SHAP values were used to determine the 10 most 
relevant predictors for this model. Finally, a last model 
was trained using only such predictors, leading to a 
weighted F1 score of 0.961. Precision and recall values for 
this model are reported in Table S2, showing consistent 
results across the different output classes. As increased 
age was previously found to be associated with increasing 
risk of edema,10 the performances of the model have been 
verified within the different age terciles, showing consist-
ent results across them (weighted F1 score equal to 0.969, 
0.975, and 0.938 for the three terciles, respectively).

To characterize the influence of tepotinib exposure on 
the model, the latter was retrained by excluding the cu-
mulated dose in the interval 

[

t − 14 days, t
]

, the cumulated 
dose in the interval 

[

t0, t − 15 days
]

, or both. Results of this 
ablation study are reported in Table 3. For models including 

current edema grade as input to the model, only limited 
fluctuations of the F1 score were observed. When the cur-
rent edema grade was not included, the exclusion of both 
the exposure-derived features was associated with only a 
slight reduction of the F1 score, potentially suggesting that 
exposure effect may have been accounted for by the model 
based on its (nonlinear) relationship with other input fea-
tures, such as albumin.10 Moreover, when accounting only 
for the 

[

t − 14 days, t
]

 dose, only a moderate increase of the 
F1 score was found with respect to the previous case of ex-
cluding both exposure descriptors, while the model includ-
ing only the 

[

t0, t − 15 days
]

 dose attained a similar F1 score 
to that including both exposure-derived features.

Figure  2 displays the 10 most predictive inputs used 
to train the final model, presented in descending order, 
and their relationship to the output. Consistently with 
the above sensitivity analysis, past current edema grade 
was found to be the most influential input, particularly if 
a same grade persisted to the following safety visit. The 
exposure-derived features were also informative for the 
model probability predictions. Albumin was found as the 
most informative time-varying covariate, especially for 
predicting edemas of grades 2+.

Figure 3 illustrates the contribution of the input vari-
ables toward the predicted probability of edemas of grades 
2+. The analysis reveals that the current edema grade is 
the most informative input, as patients with a history of 
edemas of grades 2+ are considered highly likely to ex-
perience the same grade in the future. Interestingly, albu-
min once again emerges as the most informative among 
the longitudinal covariates, with lower levels associated 

Covariate engineering Random Forest Gradient boosting

Actual values 0.890 (0.026) 0.876 (0.019)

Multiple visits 0.917 (0.017) 0.880 (0.012)

Multiple windows 0.927 (0.010) 0.879 (0.017)

Long-/short-term statistics 0.929 (0.012) 0.886 (0.019)

Baseline plus delta 0.924 (0.016) 0.885 (0.016)

T A B L E  2   Mean weighted F1 
scores and the corresponding standard 
deviations (in parenthesis) computed 
over the cross-validation folds obtained 
via the different covariate engineering 
approaches tested.

Mean cross-
validation F1 score 
for models including 
current edema grade 
(standard deviation)

Mean cross-validation 
F1 score for models 
excluding current 
edema grade (standard 
deviation)

Both exposure-derived features 0.957 (0.007) 0.596 (0.073)

Only cumulated dose since t − 14 0.958 (0.009) 0.561 (0.118)

Only cumulated dose until t − 15 0.960 (0.007) 0.604 (0.093)

No dose-derived features 0.944 (0.026) 0.550 (0.119)

T A B L E  3   Sensitivity analysis to the 
presence of the exposure-derived features 
and to the inclusion of the current edema 
grade in the inputs of the best model 
(Random Forest using as input for the 
time-varying covariates the actual values at 
visit engineering approach). Mean values 
and standard deviations (in parenthesis) of 
the weighted F1 score computed over the 
cross-validation folds are shown.
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with an increase in the predicted probability of edemas of 
grades 2+. Moreover, age impact on predictions appears 
to have an evident pattern, with older subjects associated 
with an increased probability of edemas of grade 2+.

Figure  4 illustrates the relationship between albu-
min, age, the 

[

t − 14 days, t
]

 cumulated dose normalized 

over 14 days, and their corresponding SHAP values for 
predicting the likelihood of edemas of grades 2+. For 
lower albumin levels, positive SHAP contributions be-
tween 0 and 0.5 are consistently assigned, signifying an 
increased risk of developing edema of grade 2+. Notably, 
very low albumin values are predominantly associated 

F I G U R E  2   Global input importance 
via mean SHAP values. Ranking of the 
model input for the most influential to 
the less influential for the model. The 
y-axis indicates the average change in 
the predicted probability of edema by 
grade, on average across the entire test set. 
SHAP, Shapley Additive exPlanations.

F I G U R E  3   SHAP values – 
contribution of the inputs toward the 
predicted probabilities of edemas of grade 
2+. List of the eight most influential 
inputs with respect to the predicted 
probabilities of edemas of grades 2+. 
Each point on the plot is a SHAP value 
for a covariate at a specific patient visit. 
The position on the y-axis indicates the 
covariate importance and on the x-axis the 
impact on the predicted probability. Color 
represents the value of the covariate. 
SHAP, Shapley Additive exPlanations.
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with higher grades of edema, particularly grade 2+. On 
the other hand, for higher albumin levels the correspond-
ing SHAP values are mostly negative and ranging from 0 
to −0.5, suggesting a reduced risk of edema of grade 2+. 
The association between age greater than 70 years and 
an increased likelihood of edemas of grades 2+ was also 
confirmed. Additionally, for all ages, higher SHAP values 
were assigned to patients who experienced edemas, par-
ticularly of grade 2+. Finally, within low ranges of cumu-
lated dose in the interval 

[

t − 14 days, t
]

 normalized over 
14 days, higher SHAP values were assigned to samples 
corresponding to edemas of grades 2+. This could reflect 
the tendency to adjust administered doses in those cases 
where the risk of edema was identified.

DISCUSSION

Edema is known to be the most prevalent adverse event, 
and a known class effect of MET inhibitors17,18,31 indi-
cating that the underlying pathology may be related to a 
target-mediated effect.10 The MET ligand, HGF, and the 
MET/PI3k/Akt pathway could play a role in regulating 
endothelial permeability.32,33 Blocking the HGF/MET 
signaling axis may result in compromised endothelial bar-
rier integrity, leading to fluid retention and edema.

A wider understanding of the relationships between 
clinical covariates and the occurrence of edema is of prac-
tical importance in the evaluation and management of 
risk for treatment-emergent edema during pharmacother-
apy with MET inhibitors.

This study was aimed at formalizing a framework to 
apply ML algorithms on longitudinal clinical data and 

testing it on the case of edema occurrence in patients from 
five Phase I/II clinical studies receiving tepotinib mono-
therapy at doses of 30–1400 mg, once daily. However, 
some ML algorithms, including those benchmarked in the 
present study, are not explicitly designed to handle lon-
gitudinal time-varying covariates. To overcome this lim-
itation, five different covariate engineering approaches 
were evaluated to embed temporal dimensions into model 
input. The analysis framework was further completed by 
applying ML explainability tools to enable an understand-
ing of the relationship between the input covariates and 
predicted outcomes.

The results indicated high predictive performances, 
with the best model correctly predicting edema grades 
in 94–98% of patients' visits. The high performances are 
mostly driven by the current edema status, the inclusion 
of which as model input was motivated by the under-
lying premise that in clinical practice, the presence of 
adverse events is known, and serves as a foundation for 
any decision, such as dose modification. The presence of 
such input is ensuring high model performances when 
predicting persistence of a given edema grade. The sen-
sitivity analysis to the inclusion of this input revealed a 
decline in the mean cross-validation F1 score of ~0.350 
when it was removed as a candidate predictor. However, 
the use of Isotonic Regressions ensures the estimations 
of correctly calibrated probabilities. For instance, while 
low predicted probabilities, for example, for edemas of 
grade 2+, might lead to a classification error, they can still 
provide valuable details on existing risk of occurrence of 
an adverse event (Figure S5). Moreover, sensitivity anal-
ysis together with the SHAP importance highlighted in-
teresting patterns with respect to the exposure-related 

F I G U R E  4   Interactions between covariate values and corresponding SHAP values. Scatterplot of the covariate value against its 
corresponding SHAP value for albumin, age, and cumulated dose over 2 weeks prior to the time at which prediction is performed. Each 
point corresponds to a specific patient visit. Points are colored based on the edema grade at the following safety visit. SHAP, Shapley 
Additive exPlanations.
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features. Referencing Figure 3, lower values of the dose 
[

t − 14 days, t
]

 are associated with a decreased probability 
of edema of grades 2+ at subsequent visits. As a decrease 
in such covariate would be a consequence of a dose reduc-
tion or of a temporary treatment interruption, this sug-
gest that the latter are an effective approach to mitigate 
edema. Conversely, dose 

[

t0, t − 15 days
]

 is influenced by 
the fact that the longer a patient remains on treatment, 
the higher the cumulative long-term dose. Figure  3 in-
dicates that patients with higher cumulative doses have 
a lower probability of experiencing edema of grade 2+, 
suggesting that these patients are undergoing a longer 
duration of treatment without severe adverse effects. The 
exclusion of the exposure-related features seems to affect 
the model classification performances only marginally, 
as shown in Table  3. However, they were identified as 
among the most important inputs in the SHAP analyses. 
The combination of the two results suggests that other co-
variate(s) included in the model might act as surrogate(s) 
of the exposure, informing the model about its role even 
in the case in which dose-related variables are excluded 
from its input. This might, for example, be true for serum 
albumin as treatment-emergent hypoalbuminemia was 
already reported for several MET inhibitors, including te-
potinib, and a relationship to tepotinib plasma concentra-
tions has been previously described.10,34,35 Furthermore, 
SHAP analysis revealed an association between lower 
levels of albumin and an increased predicted probability 
of edemas of grades 2+. This is consistent with previous 
findings which highlighted a trend indicating a positive 
relationship between the magnitude of decrease in serum 
albumin and the maximum severity of edema.10 Indeed, 
albumin has a physiological role of maintaining oncotic 
pressure, hence is potentially a factor for edema patho-
genesis. Advanced age was also found as predictive of 
edemas of grade 2+, in agreement with current knowl-
edge of the investigated adverse event behavior, for which 
age is known to be a risk factor independently from drug 
exposure.36,37 Finally, the time until the next visit, used 
to inform the model about the forecasting horizon, was 
also informative. However, this input should be seen as 
a factor reflecting the deteriorating status of patients, as 
changes in medical condition could prompt clinicians to 
schedule short-term (re-)assessment visits.

One of the primary challenges encountered in this 
study's classification setting was the unbalanced represen-
tation of different edema grades in the data. To overcome 
this issue, the model was set up to produce a probability 
for each edema grade of any new patient instance. When 
dealing with unbalanced data, such probabilities can be 
small, which is not a problem as long as they are accu-
rate. Given that ML models are prone to poor estimation 
of class probabilities, probability calibration through 

Isotonic Regression was employed to obtain reliable prob-
ability estimators. Probability calibration has recently 
been applied to other case studies in the biomedical and 
clinical research settings, for example, to identify optimal 
dosing in phase I/II38 or to predict mortality rates in pa-
tients with diffuse large B-cell lymphoma.39 Furthermore, 
the evaluation of model performance through metrics, 
such as precision or recall, can be viewed not as a part of 
the ML modeling itself, but rather as part of the decision-
making component. The cost associated with type I and II 
errors might indeed be defined in different ways by deci-
sion makers and clinical practitioners, without requiring 
any change to the statistical setting of the ML model.

In conclusion, even in cases where the reduced num-
ber of data points might preclude the use of complex Deep 
Learning models like, for example, Recurrent Neural 
Networks, the methodology hereby presented enables 
the exploitation of longitudinal data within ML models, 
furthering progress in model-informed precision medi-
cine5 by complementing analyses conducted with other 
mechanism-informed and non-mechanistic models in 
pharmacometrics and traditional statistical approaches. 
Future research may focus on the use of models explicitly 
able to exploit the longitudinal dimension of clinical data, 
such as recurrent neural networks or Neural Ordinary 
Differential Equations, for which however a larger set 
of input observations would be needed to ensure proper 
model training.
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