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mRNA-based vaccines and therapeutics are gaining popularity and usage across a wide range of conditions. One of the crit-

ical issues when designing such mRNAs is sequence optimization. Even small proteins or peptides can be encoded by an

enormously large number of mRNAs. The actual mRNA sequence can have a large impact on several properties, including

expression, stability, immunogenicity, and more. To enable the selection of an optimal sequence, we developed

CodonBERT, a large language model (LLM) for mRNAs. Unlike prior models, CodonBERT uses codons as inputs, which

enables it to learn better representations. CodonBERT was trained using more than 10 million mRNA sequences from a

diverse set of organisms. The resulting model captures important biological concepts. CodonBERT can also be extended

to perform prediction tasks for various mRNA properties. CodonBERT outperforms previous mRNA prediction methods,

including on a new flu vaccine data set.

[Supplemental material is available for this article.]

mRNA vaccines have emerged as a high-potency, fast-production,
low-cost, and safe alternative to traditional vaccines (Pardi et al.
2018, 2020; Zhang et al. 2019; Jackson et al. 2020b). mRNA vac-
cines are currently being developed for a broad range of human
viruses and bacteria, including SARS-CoV-2, influenza, Zika,
chlamydia, and more (Maruggi et al. 2017; Pardi et al. 2017;
Jackson et al. 2020a; Pilkington et al. 2021). They are also being in-
vestigated as potential treatments for several diseases, including
lung cancer, breast cancer, and melanoma (Miao et al. 2021;
Lorentzen et al. 2022).

The expression level of a vaccine directly affects its potency,
ultimate immunogenicity, and efficacy (Schlake et al. 2012). The
higher the level of expression of the antigenic protein encoded
by themRNA sequence, the smaller amount of the vaccine is need-
ed to achieve the desired immune response, which can make the
vaccine more cost-effective and easier to manufacture (Pardi
et al. 2018). Consequently, using a lower dose can help reduce
reactogenicity (Ahmad et al. 2022) and maintain the immune re-
sponse over a longer period (Leppek et al. 2022), leading to better
safety and efficacy.

A human protein with an average length of 500 amino acids
can be encoded by roughly 3500 different codon sequences.
Although only one of those is encoded in the virus or DNA of in-
terest, this is not necessarily the optimal sequence for a vaccine.
The classical method to find the optimalmRNA sequence is codon
optimization, which selects the most optimal codon for each ami-
no acid using the codon bias in the host organism (Mauro and
Chappell 2014). This method has been widely applied, including

for optimizing recombinant protein drugs, nucleic acid therapies,
gene therapy, mRNA therapy, and DNA/RNA vaccines (Al-Hawash
et al. 2017; Webster et al. 2017; Mauro 2018). However, codon op-
timization alone does not consider several key properties that im-
pact protein expression (Parret et al. 2016). For instance, RNA
structural properties (e.g., stem loops and pseudoknots) have
been shown to play a major role for noncoding RNAs (such as
riboswitches or aptamers) (Groher et al. 2018; Schmidt et al. 2020).

Although mRNA sequence heavily influences cellular RNA
stability (Agarwal and Shendure 2020; Agarwal and Kelley 2022),
secondary structure can also impact mRNA stability in solution
and modulate protein expression (Mauger et al. 2019; Leppek
et al. 2022; Nieuwkoop et al. 2023; Zhang et al. 2023). For example,
replacing a codon with a synonymous codon can alter the local
base-pairing interactions and affect nearby structural motifs
(Groher et al. 2019; Li et al. 2021). Thus, optimizing each codon
independently is not sufficient to generate highly expressed
proteins.

Pretraining a large languagemodel (LLM) based on large-scale
unlabeled text, followed by fine-tuning, has been widely adopted
for natural language processing (Peters et al. 2018; Radford et al.
2018; Devlin et al. 2019). Recently, this concept has been scaled
to biological sequences (protein, DNA, and RNA) (Bepler and
Berger 2021; Ji et al. 2021; Rives et al. 2021; Akiyama and
Sakakibara 2022; Chen et al. 2022). Such models can be used to
embed nucleotides and use these embeddings for downstream
supervised learning tasks. However, as we show, such LLMs may
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not be ideal for predicting protein expression owing to their focus
on individual nucleotides and noncoding regions. More recent
work, such as cdsBERT (Hallee et al. 2023), addresses the issue of
codon awareness for a protein language model.

To address these limitations, we developed CodonBERT, an
LLM that extends the BERT model and applies it to the language
of mRNAs. CodonBERT uses a multihead attention transformer ar-
chitecture framework. The pretrained model can also be general-
ized to a diverse set of supervised learning tasks. We pretrained
CodonBERT using 10 million mRNA coding sequences (CDSs)
spanning an evolutionarily diverse set of organisms. Next, we
used it to perform several mRNA prediction tasks, including pro-
tein expression and mRNA degradation prediction. As we show,
both the pretrained and the fine-tuned version of the models
can learn new biology and improve on current state-of-the-art
methods for mRNA vaccine design.

To assess generalization of our CodonBERTmodel, we collect-
ed a novel hemagglutinin flu vaccine data set. Different mRNA
candidates that encode the influenza hemagglutinin antigen
(i.e., with fixed untranslated regions and a variable coding region)
were designed, synthesized, and transfected into cells. The protein
expression levels corresponding to these mRNA sequences were
measured and used as labels for a supervised learning task.
CodonBERT leads to better performance than existing methods.

Results

We developed a LLM, CodonBERT, for mRNA analysis and
prediction tasks. CodonBERT was pretrained using 10 million
mRNA sequences derived frommammals, bacteria, and human vi-
ruses. All sequences were hierarchically labeled using 14 categories
as shown in Figure 1A. CodonBERT takes the coding region as
input, using codons as tokens, and outputs an embedding that
provides contextual codon representations. The embeddings pro-
vided by CodonBERT can be combined with additional trainable
layers to perform various downstream regression and prediction

tasks, including the prediction of protein expression and mRNA
degradation.

A schematic representation of CodonBERT’s architecture is
provided in Figure 1B. We pretrained CodonBERT with two tasks:
masked language model (MLM) learning and sequence taxonomy
prediction (STP). The MLM task learns the codon representation,
interactions between codons, and relationships between codons
and sequences. The STP task aims to directly model the sequence
representation and understand the evolutionary relationships be-
tween mRNA sequences. In short, a pair of mRNA sequences,
which is randomly sampled from either the same or different cat-
egories, is codon-tokenized, concatenated, and randomly masked.
The masked inputs are further encoded with codon-, position-,
and segment-based embeddings and fed into a stack of transformer
layers using a multihead attention network with residual connec-
tions. CodonBERT is self-supervised and relies on masked token
prediction and taxonomic sequence prediction for optimizing
parameters (Methods).

Pretrained representation model

To assess our pretrained CodonBERT model, we built a held-out
data set by randomly leaving out 1% of mRNA sequences for
each category and trained the model with the remaining sequenc-
es. As illustrated in Supplemental Figure S1, during the pretraining
phase, the model performance on two tasks (MLM and STP) sub-
stantially improves on both the training and evaluation sets. For
example, the entropy loss of the MLM task (LMLM) decreased to
2.85 on the evaluation set, which means that the model was able
to narrow down the choice from 64 (uniform distribution) to
only eight codons for each masked position (Methods).

CodonBERT learns, on its own, the genetic code and evolutionary

homology

In addition to the quantitative evaluation ofmodel predictions, for
example, loss and accuracy, we also performed several qualitative

A B C

Figure 1. Pretraining data distribution and CodonBERT model architecture. (A) Hierarchically classified mRNA sequences for pretraining. All the 14 leaf-
level classes (those annotated with an asterisk are numbered). The angle of each segment is proportional to the number of sequences belonging to this
group. (B) Model architecture and training scheme deployed for two tasks of CodonBERT. (C ) A stack of 12 transformer blocks employed in
CodonBERT model.
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analyses of the embeddings provided by CodonBERT. To decipher
what kind of biological informationhas been learned by themodel
and encoded in the representation, we randomly sampled 500 se-
quences for each category from the held-out data set and extracted
high-dimensional codon and sequence embeddings from
CodonBERT. These were projected onto a two-dimensional space
(2D) by UMAP (McInnes et al. 2018).

In Figure 2, A and B, each dot represents a codon and is anno-
tated with different colors based on its type of codon and amino
acid. Codons that encode the same amino acid, namely, synony-
mous codons, are spatially close to each other in Figure 2B, which
implies that CodonBERT learns the genetic code from the large-
scale training set. For example, the amino acid valine, whose
one-letter code is V, can be encoded by four codons: {GUA,
GUU, GUG, GUC}. Figure 2B illustrates four separate gray clusters
for four possible codons, and four clusters are close to each other.

We applied the k-nearest neighbor algorithm (kNN) on the output
codon embeddings directly. Five hundred embeddings were sam-
pled for each codon; 99.4% of the 500-nearest neighbors are the
same codons. For the remaining misclassified codons, 87.7% are
stop codons and are classified to other stop codons.

Codon2vec, a Word2vec (Mikolov et al. 2013) model trained
on the collected mRNA sequences, can also produce codon repre-
sentations (Methods). However, compared with the codon repre-
sentation generated by CodonBERT, the embedding of each
codon fromCodon2vec is fixed regardless of the context surround-
ing the codon (Fig. 2D). This results in clusters that are often
less accurate than the projection of codon representation from
CodonBERT.

In addition to codon representation, CodonBERT also opti-
mizes for sequence identification. 2D projections of the sequence
embeddings of the held-out data set are presented. Figure 2C

A B

C D

Figure 2. Genetic code and evolutionary taxonomy information learned by the pretrained, unsupervised CodonBERTmodel. High-dimensional embed-
dings were projected into two-dimensional space using UMAP (McInnes et al. 2018). (A,B) Projected codon embeddings from the pretrained CodonBERT
model. Each point represents a codon with different contexts, and its color corresponds to the type of codon (A) or amino acid (B) accordingly. (C )
Projected sequence embedding from the pretrained CodonBERT model. Each point is a mRNA sequence, and its color represents the sequence label.
(D) Projected codon embedding from the pretrained Codon2vec model. Each point shows a codon, and its color is the corresponding amino acid.
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illustrates clusters of four high-level sequence categories:
(Escherichia coli, human virus, yeast, and mammal). Sequences
from the same organism are clustered together with clear boundar-
ies between the taxonomy classes. However, CodonBERT does not
reveal a clear separation between different families within mam-
mals as illustrated in Supplemental Figure S2A. This observation
could be attributed to the similar codon usage patterns within
the taxonomic groups. Codon usage, a critical factor in the trans-
lation efficiency of genes, can significantly influence the
clustering of genetic sequences in computational analyses. We
conducted a statistical analysis on the frequency of codons in dif-
ferent taxonomic groups and computed the Kullback–Leibler
divergence of the codon usage between any two organisms
(Supplemental Fig. S2B). We found that all taxonomic groups in
mammals exhibit significant different codon usage compared
with human virus, E. coli, and yeast. However, among mammals,
the codon usage is too similar to distinguish.

Evaluating CodonBERT and comparison to prior methods on

supervised learning tasks

CodonBERT can be extended to perform supervised learning for
specific mRNA prediction tasks. To evaluate the use of our LLM
for downstream tasks and to compare it to prior methods, we col-
lected several mRNA prediction data sets. Table 1 presents the data
sets and the mRNA properties. As can be seen, these included a
diverse set of downstream tasks related to mRNA translation,
stability, and regulation. In addition, these data sets represent a
range ofmolecules, including newly published data sets for recom-
binant protein, bio-computing, and SARS-CoV-2 vaccine design.
Finally, we generated a new data set to test CodonBERT in the con-
text of mRNAs encoding the influenza hemagglutinin antigen for
flu vaccines.

ThemRFPexpression data set (Nieuwkoop et al. 2023) pro-
files protein production levels for several gene variants in E. coli.
The fungal expression data set (Grigoriev et al. 2014; Wint
et al. 2022) includes CDSs >150 bp from a wide range of fungal ge-
nomes. The E. coli protein data set (Ding et al. 2022) comprises
experimental data for protein expression in E. coli, which are la-
beled as low, medium, or high expression (2308, 2067, and 1973
mRNA sequences, respectively). The mRNA stability data set
(Diez et al. 2022) includes thousands ofmRNA stability profiles ob-
tained from human, mouse, frog, and fish. The Tc-riboswitch
data set (Groher et al. 2019) consists of a set of tetracycline (Tc)
riboswitch dimer sequences upstream of a GFP mRNA. The mea-
sured variable in this data set is the switching factor, which refers
to the differential effect of the riboswitch in the presence or ab-

sence of Tc. The SARS-CoV-2 vaccine degradation data set
(Leppek et al. 2022) encompasses a set of mRNA sequences that
have been tuned for their structural features, stability, and transla-
tion efficiency. The average of the deg_Mg_50C values at each nu-
cleotide is treated as the sequence-level target. Deg_Mg_50C has
the highest correlation with other labels, including deg_pH10,
deg_Mg_pH10, and deg_50C. The benchmarking data set also in-
cluded a new data set generated by Sanofi encoding the hemagglu-
tinin antigen for flu vaccines. Briefly, mRNA sequences, encoding
the Influenza H3N2 A/Tasmania/503/2020 hemagglutinin protein,
were tested for protein expression level in HeLa cells (Methods).

To compare CodonBERT’s performance on these tasks, we
have also applied several other state-of-the-art methods that
have been previously used for mRNA property prediction with dif-
ferent model complexities, including TF-IDF (Rajaraman and
Ullman 2011), TextCNN (Kim 2014), Codon2vec, RNABERT
(Akiyama and Sakakibara 2022), and RNA-FM (Chen et al. 2022).
Table 2 presents the performance of CodonBERT and the other
six methods on these downstream tasks. For each task, the first
three rows are nucleotide-based methods (plain TextCNN,
RNABERT, and RNA-FM), whereas the rest are codon-based meth-
ods (TF-IDF, plain TextCNN, Codon2vec, and CodonBERT).
Supplemental Table S1 provides complimentary loss values for
these comparisons. Overall, we see that codon-basedmethods out-
perform nucleotide-based methods on most tasks. This is in part
because of the critical role of codons on the protein expression.
Moreover, the codon-based variant of TextCNN outperforms the
original nucleotide implementation on most tasks.

As for the detailed comparison, we observe that CodonBERT
performed best on four of the seven tasks and second best (in
most cases with very small difference) on two of the remaining
three tasks. Plain codon-based TextCNN produced the best results
for SARS-CoV-2 vaccine degradation, whereas it performed poorly
on other prediction tasks including riboswitches, flu vaccines, and
E. coli. The other twomethods that were best performing for one of
the data sets, for example, TF-IDF and RNA-FM, did not perform
well on the other tasks.

Both secondary structure and codon usage play critical roles
in mRNA vaccine expression (Mauger et al. 2019; Agarwal and
Kelley 2022). Stable secondary structure increases mRNA stability
in solution (Mauger et al. 2019), and optimal codons improve
cellular mRNA stability (Agarwal and Kelley 2022). Therefore,
mRNA stability, SARS-CoV-2 vaccine degradation, and Tc-ribos-
witch data sets are strongly affected by local and global secondary
structure patterns encoded on top of RNA sequences. Although
CodonBERT is a codon-based model, it outperforms RNABERT
and RNA-FM, which were demonstrated to capture rich structural

Table 1. The collection of the data sets with their corresponding mRNA source and property used for method evaluation

Data set Target Category No. of mRNAs Seq length

MLOS flu vaccines (Sanofi-Aventis) Expression Regression 543 1698–1704

mRFP expression (Nieuwkoop et al. 2023) Expression Regression 1459 678–678

Fungal expression (Wint et al. 2022) Expression Regression 7056 150–3000

E. coli proteins (Ding et al. 2022) Expression Classification 6348 171–3000

Tc-riboswitches (Groher et al. 2019) Switching factor Regression 355 67–73

mRNA stability (Diez et al. 2022) Stability Regression 41,123 30–1497

SARS-CoV-2 vaccine degradation (Wayment-Steele et al. 2022) Degradation Regression 2400 81–81

Each data set is split into training, validation, and test with a 0.7, 0.15, and 0.15 ratio. All the methods were optimized on the same data split.
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information from large-scale noncoding RNAs. This may indicate
that CodonBERT also learns coevolutionary information and
structural properties from millions of mRNA sequences.

Nucleotide embeddings learned from noncoding RNAs, for
example, RNA-FM+TextCNN, leads to significantly better results than
plain nucleotide-based TextCNN onmost tasks. This may indicate
that structural information, even fromnoncoding RNA sequences,
is beneficial to solving mRNA translation and stability problems.
Althoughboth RNABERT andRNA-FMare pretrainedBERTmodels
from noncoding RNA sequences, their performance differs. This
may be attributed to the training data size and model capacity of
RNA-FM, which is significantly larger than that of RNABERT.

Discussion

To enable the analysis and prediction of mRNA properties, we uti-
lized 10 million mRNA CDSs from several species to train a LLM
(CodonBERT) and to establish a foundational model. Our primary
focus is on optimizing mRNA vaccines and drugs, concentrating
specifically on sequences pertinent to these applications, includ-
ing those from host cells and viruses critical for vaccine
development.

The model optimizes two self-supervised tasks: codon com-
pletion and taxonomic identification. Like other unsupervised
LLMs, we expected that such a foundational model will learn to
capture aspects of natural selection that favor mRNA sequences
with high expression and stable structure. Analysis of the resulting
model indicates that it indeed learns several relevant biological
properties for codons and sequences.

Projection of codon embedding obtained from CodonBERT
produces distinct clusters that adhere to the amino acid types.
Besides, the analysis of alanine codons revealed notable clustering
patterns: “GCU” and “GCC” cluster separately from “GCA” and
“GCG.” Cosine similarity calculations (Supplemental Fig. S3) sup-
ported this grouping, showing higher similarities between “GCG”

and the nonsynonymous codons “CCG” (proline), “UCG” (ser-
ine), and “ACG” (threonine) than with its synonymous counter-
parts. This unexpected pattern, consistent with our projection
plot findings, presents an interesting anomaly in codon behavior.
The reasons for these unusual similarities remain unclear, suggest-
ing an area for further exploration that could provide new insights
into codonusage and gene expressionmechanisms. In-depth anal-

ysis of CodonBERT representation of a set of genes from different
organisms revealed that CodonBERT autonomously learns the ge-
netic code and principles of evolutionary taxonomy.

We also utilized CodonBERT to perform several supervised
prediction tasks for mRNA properties. These include data sets test-
ing for recombinant protein expression, mRNA degradation,
mRNA stability, and more. Our results indicate that CodonBERT
is the top-performing method overall and ranks first or second in
performance for six of the seven tasks. All other methods we com-
pared performed poorly on all, or some of the tasks. Thus, for a new
task, the use of CodonBERT is likely to lead to either the best or
close to best results. CodonBERT’s success in the more structurally
related tasks (includingmRNA stability and the TC riboswitch data
sets) indicates that it can learn coevolutionary and structural con-
cepts using large-scale mRNA sequences.

For the vaccine-related downstream tasks, CodonBERT gen-
erally exhibited robust performance. It was 10% better than the
second-bestmethod for the newhemagglutinin flu vaccine expres-
sion data set and very close (2% difference) to the top-performing
model for the SARS-CoV-2 vaccine degradation data set. Although
fungal sequences are not included in pretraining sequences, the
CodonBERT model shows its generalization to a downstream fun-
gal data set. RNABERT and RNABERT are also pretrained RNA
LLMs; however, they are nucleotide based and trained on noncod-
ing RNAs. Because they do not explicitly capture codon usage,
these methods are inferior to CodonBERT on the protein expres-
sion-related tasks.

The flu vaccine data set usesN1-methylpseudouridine in RNA
modification for bypassing the innate immune response and en-
hancing protein synthesis from mRNA. CodonBERT model’s abil-
ity to adapt to these modifications without prior exposure to
similar natural data exemplifies its robustness and versatility.

The one exception in terms of performance was observed for
the mRNA stability task. Stability is known to be structure depen-
dent, and stable structures such as stem-loops or hairpin structures
can impede degradation enzymes, protecting the mRNA from rap-
id decay. A possible reason for the reduction in performance for
this data set is that structural properties are highly dependent on
nucleotides, whereas CodonBERT is a codon-based model. One
possible solution for this is a model that combines codon and nu-
cleotide representation. Similarly, mRNA modification events in-
cluding capping at the 5′ end and polyadenylation at the 3′ end

Table 2. Comparison of CodonBERT to prior methods on seven downstream tasks

Model
Flu

vaccines
mRFP

expression
Fungal

expression
E. coli

proteins
mRNA
stability

Tc-
riboswitch

SARS-CoV-2 vaccine
degradation

Nucleotide-based

Plain TextCNN 0.72 0.62 0.53 0.39 0.01 0.41 0.55

RNABERT+TextCNN 0.65 0.40 0.41 0.39 0.16 0.47 0.64

RNA-FM+TextCNN 0.71 0.80 0.59 0.43 0.34 0.58 0.74

Codon-based

TF-IDF 0.68 0.57 0.68 0.44 0.54 0.49 0.69

Plain TextCNN 0.71 0.78 0.76 0.36 0.26 0.43 0.80

Codon2vec+TextCNN 0.72 0.77 0.61 0.43 0.33 0.56 0.70

CodonBERT 0.81 0.85 0.88 0.55 0.51 0.56 0.77

For regression tasks, the corresponding Spearman’s rank correlation values are listed. For the classification task (E. coli protein data set), classification ac-
curacy is calculated. The best values of correlation and accuracy for each task are in bold. The corresponding loss values are listed in Supplemental
Table S1.
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in eukaryotes are not currently encoded in our model but can also
impact mRNA stability. However, extending CodonBERT to in-
clude UTRs will be an important direction for future work.

Although the tasks we have focused on are supervised in
nature, CodonBERT, as an LLM, can be utilized for generative
purposes. Specifically, we envision using this model for codon op-
timization of various heterologous proteins for vaccines. Other
generative tasks can include samplingmRNA for synthetic biology
use cases (e.g., creation of optimizedmRNA constructs for genome
editing).

To conclude, our findings suggest that CodonBERT could
serve as a versatile and foundational model for the development
of new mRNA-based vaccines and the engineering and recombi-
nant production of industrial and therapeutic proteins.

Methods

Assembly of mRNA sequences for pretraining

We collected mRNA sequences across diverse organisms for pre-
training from NCBI (Wheeler et al. 2007). The data sets included
mammalian reference sequences (https://www.ncbi.nlm.nih.gov/
datasets/taxonomy/40674/), bacteria (E. coli) reference sequences
(https://www.ncbi.nlm.nih.gov/datasets/taxonomy/562/), Homo
sapiens virus complete nucleotides (https://www.ncbi.nlm.nih
.gov/labs/virus/vssi/#/), and yeast strains (http://sgd-archive
.yeastgenome.org/sequence/strains/). Each sequence is with a la-
bel representing its taxonomic group.

Wepreprocessed all the sequences and filtered out some inva-
lid and replicate ones by requiring the mRNA sequences with the
sequence length multiples of three, starting with the start codon
(“AUG”) and ending with stop codons (“UAA,” “UAG,” or
“UGA”), and only including nucleotides from the set {A, U, G, C,
N} (replacing T with U). After preprocessing, 10 million mRNA se-
quences were valid.

To build sequence pairs for the homologous sequence predic-
tion task, 50%of the sequence pairs consisted of two sequences be-
longing to one of the 14 categories. The remaining 50% of
sequence pairs included two sequences that were randomly sam-
pled from two different categories.

Model architecture

A codon is composed of three adjacent nucleotides. There are five
different options for each of these three positions {A, U, G, C, N},
leading to a total of 53 (125) possible combinations. Additionally,
five special tokens are added to the vocabulary: classifier token
([CLS]), separator token ([SEP]), unknown token ([UNK]), padding
token ([PAD]), and masking token ([MASK]). Thus, in total, there
are 130 tokens in the vocabulary of CodonBERT.

As shown in Figure 1B, CodonBERT takes a sequence pair as
input and concatenates them using a separator token ([SEP]). It
then adds a classifier token ([CLS]) and a separator token ([SEP])
at the beginning and end of the combined sequence, respectively.
CodonBERT constructs the input embedding by concatenating co-
don, position, and segment embeddings. Absolute positions are
utilized with values initialized from one to n1 +n2 + 3 along the
concatenated sequence, where n1 and n2 are the codon-wise length
of two sequences plus three specially added tokens ([CLS] and
[SPE]). The segment value is either one or two to distinguish two
sequences. These three types of embedding matrices are learned
across 10 millions of mRNA sequences.

The combined input embedding is fed into the CodonBERT
model, which consists of a stack of 12 layers of bidirectional trans-
former encoders (Vaswani et al. 2017) as shown in Figure 1C. Each

transformer layer processes its input using 12 self-attention heads
and then outputs a representation for each position with hidden
size 768. In each layer, the multihead self-attention mechanism
captures the contextual information of the input sequence by con-
sidering all the other codons in the sequence. A key benefit of self-
attention mechanism is the connection learned between all pairs
of positions in an input sequence using parallel computation,
which enables CodonBERT to model not only short-range but
also long-range interactions, which impact translation efficiency
and stability (Aw et al. 2016). Next a feed-forward neural network
is added to apply a nonlinear transformation to the output hidden
representation from the self-attention network. A residual connec-
tion is employed around each of themultihead attention and feed-
forward networks. After processing the input sequencewith a stack
of transformer encoders, CodonBERT produces the final contextu-
alized codon representations, which is followed by a classification
layer to produce probability distribution over the vocabulary dur-
ing pretraining.

Pretraining CodonBERT

Model architecture of CodonBERT and the training for the two
tasks are illustrated in Figure 1B. Prior to being fed into the model,
the input mRNA sequence is first tokenized into a list of codons.
Next, a fraction of the input codons (15%) is randomly selected
and replaced by the masking token ([MASK]). The self-training
loop optimizes CodonBERT to predict the masked codons based
on the remaining ones, taking into account interactions between
the missing and unmasked codons. A probability distribution
over 64 possible codons is produced byCodonBERT for themasked
positions. The average cross entropy loss LMLM over the masked
positions M is calculated by the optimization function:

LMLM = −Ex�XEM

∑

i[M

log p(xi|xM ),

where X represents a batch of sequences, x is one sequence, and xi
is the original codon for the position i. xM is themasked input with
a set of positionsMmasked. (xi∣xM) indicates the output probability
of the real codon xi given all the remaining codons in the masked
sequence xM.

For the STP task, the output embedding of the classifier token
([CLS]) is used for prediction about whether these two sequences
belong to the same class (binary classification). The average cross
entropy loss LSTP is computed as

LSTP = −EN

∑N

n=1

[yn log pn + (1− yn) log (1− pn)],

where N represents the number of sequence pairs; yn is the expect-
ed value, which is one when two sequences are from the same tax-
onomic group and zero when they are not; and pn indicates the
predicted probability of two sequences belonging to the same cat-
egory. The total loss is the sum of the losses from both tasks
(LMLM + LSTP).

We used a batch size of 128 with a sequence length limit of
1024 and trained the model around seven epochs in 2 weeks.
Because the inputs of CodonBERT are sequence pairs, the length
of each sequence is limited up to 512 codons; therefore, the length
of the combined sequence is less than 1024. Sequences exceeding
the length limitation are split into fragments no longer than 512.
Pretraining CodonBERT using 10 million mRNA sequences on
4 A10G GPUs with 96 GB GPU memory and 192 GB memory
took∼2weeks. Themodel was configured with the following spec-
ifications: a sequence length of 1024, as well as 12 layers, eachwith
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12 attention heads. The model’s hidden size is set at 768. Overall,
the model encompasses about 110 million parameters.

CodonBERT was also applied to a wide range of downstream
tasks. For this, we can use either a single or a pair of sequences as
input (Figs. 1B, 3C). To perform supervised analysis, the output
embedding is followed by an output layer that is trained for the
specific task (protein expression level prediction, mRNA stability,
etc.). We also conducted an ablation study in which we pretrained
a model with the same architecture using only the MLM task.
Although performance was good, it still did not match perfor-
mance of the model trained with both types of metrics. See
Supplemental Figure S5 and Supplemental Table S2.

Pretraining Codon2vec

Word2vec is a popular neural network-based model that is used to
learn distributed representations of words in a corpus (Mikolov
et al. 2013). Like the LLMmentioned above, Word2vec also learns
token representation from a large-scale text corpus, and the em-
bedding from both methods can be utilized as input features for
downstream tasks. Unlike LLMs, it only produces a single assign-
ment for each token, which usually correlates with the maximum
or most frequent context around the token in the corpus.

An existing work has applied Word2vec to the fungal ge-
nomes, studied codon usage bias, and built a predictive model
for gene expression (Wint et al. 2022). However, there is no appli-
cation on a large-scale mRNA sequence data set. Therefore, for
comparison, we trained our own Codon2vecmodel on the collect-
edmRNA sequences. Using the Gensim library (Řehůrěk and Sojka
2010), the Codon2vec model opted for a skip-gram architecture,
accompanied by a window size of five and a minimum count
threshold of 10 codons. The model was trained using hierarchical
SoftMax and negative sampling methodologies.

The input sequences for pretraining Codon2vec were pro-
cessed through a filtration system that selected sequences contain-
ing fewer than 1000nt. This filtration stagewas necessitated by the
constrained model capacity of the Word2vec neural network.
Upon completion of this process, we retrieved a total of around 2
million sequences, which were subsequently subjected to tokeni-
zation into k-mers. These k-mers serve as representations of all cor-
responding codons.

In vitro transcription, cell culture, and transfections

As shown in Supplemental Figure S4, mRNA sequences were de-
signed using to encode the Influenza H3N2 A/Tasmania/503/
2020 hemagglutinin protein. Sequences corresponding to these
candidates were synthesized as gene fragments and PCR-amplified
to generate template DNA for high-throughput in vitro transcrip-
tion reaction containing N1-methylpseudouridine. The resulting
purified precursor mRNA was reacted further via enzymatic addi-
tion of a 5′ cap structure (Cap 1) and a 3′ poly(A) tail of ∼200 nt
in length as determined by capillary electrophoresis.

HeLa cells were used to evaluate the expression of the protein
encoded by different mRNA sequences. Cells were cultured and
maintained in MEM (Corning) containing 10% (v/v) heat-
inactivated FBS (Gibco). To evaluate the expression of candidate
mRNAs, HeLa cells were transiently transfected with mRNAs
complexed with Lipofectamine MessengerMax (Thermo Fisher
Scientific). Unknown mRNAs were thawed, diluted in Opti-
MEM, combined with Lipofectamine for 10 min, and then further
diluted in Opti-MEM. To prepare the cells for reverse transfection,
HeLa cells were collected fromculture flasks using TrypLE andwere
diluted in complete growth medium such that each well will be
seeded with 2E4 live cells. Complexed mRNAs (20 ng/well) were
added to triplicate wells of a 96-well poly-D-lysine PhenoPlate
(PerkinElmer) and were combined with 2E4 HeLa cells. Plates

A C

B

Figure 3. Comparison to prior methods (TF-IDF, Codon2vec, RNABERT, and RNA-FM) and fine-tuning CodonBERT on downstream data sets. (A) Given
an input corpus with m mRNA sequences, TF-IDF is used to construct a feature matrix followed by a random forest regression model. (B) Use a TextCNN
model to learn task-specific nucleotide or codon representations. The model is able to fine-tune pretrained representations by initializing the embedding
layers with stacked codon or nucleotide embeddings extracted from pretrained languagemodels (Codon2vec, RNABERT, and RNA-FM). n is the number of
codons in the input sequence, and d is the dimension of the token embedding. As a baseline, plain TextCNN initializes the embedding layer with a standard
normal distribution. (C) Fine-tune the pretrained CodonBERT model on a given downstream task directly by keeping all the parameters trainable.
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were rested at RT briefly before incubation in a tissue culture in-
cubator for 20 h+30 min. At the endpoint, cells were lysed in
RIPA (Thermo Fisher Scientific) supplemented with OmniCleave
(Lucigen) and HALT protease inhibitor (Thermo Fisher Scientific).
The hemagglutinin expression in cell lysates was determined using
a quantitative sandwich ELISA, and the expression level of un-
knownmRNAs was normalized to the value from a known bench-
mark mRNA sequence.

Comparisons to other methods

We compared CodonBERT to several priormethods that have been
used to model and analyze RNA sequences:

• Term frequency-inverse document frequency (TF-IDF)
(Rajaraman and Ullman 2011) is a numerical statistic that is
commonly used as a weighting scheme in information retrieval
and natural language processing. In the context of mRNA se-
quences, TF-IDF is applied to measure the significance of each
codon in a sequence. A high TF-IDF value of a codon indicates
that the codon is important in a particular mRNA sequence
and is rare across all mRNA sequences in the corpus. Figure 3A
illustrates the application TF-IDF in the benchmark.

• Convolutional neural network (CNN)was first proposed and has
been commonly used in image recognition andwas later also ap-
plied for text analysis TextCNN (Kim2014). TextCNNconsists of
multiple types of layers, including an embedding layer, convolu-
tional layer, pooling layer, and fully connected layer, as shown
in Figure 3B. Each row of the embedding layer represents a token.

• RNABERT (Akiyama and Sakakibara 2022) and RNA-FM (Chen
et al. 2022) are RNA LLMs. However, they are pretrained on non-
coding RNAs to learn and encode structural and functional prop-
erties in the output nucleotide embedding.

Software availability

Software and data are available in the Sanofi GitHub (https://
github.com/Sanofi-Public/CodonBert) and as Supplemental Code.
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