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Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regu-

lation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs)

using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspe-

cies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable

between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated

Systematic Integration (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene reg-

ulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic

variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred

fromamultivariate regression, was used to estimate epigenetic state regulatory potential (esRP) scores for each cCRE in each cell

type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory ac-

tivity in human and mouse cell types, obtained by joint clustering on esRP scores, harbor distinctive transcription factor bind-

ing motifs that are similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific

patterns of epigenetic evolution. Finally, we show that comparisons of the epigenetic landscape between species can reveal

elements with similar roles in regulation, even in the absence of genomic sequence alignment.
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The morphology and functions of different cell types are deter-
mined by the expression of distinctive sets of genes in each. This
differential gene expression is regulated by the interplay of tran-
scription factors (TFs) binding to cis-regulatory elements (CREs)
in the genomicDNA, such as promoters and enhancers, forging in-
teractions among the CREs and components of transcriptional ap-
paratus and ultimately leading to patterns of gene activation and
repression characteristic of each cell type (Maston et al. 2006;
Hamamoto and Fukaya 2022). Epigenetic features such as accessi-
bility of DNA andmodifications of histone tails in chromatin have
pronounced impacts on the ability of TFs to bind to CREs, and fur-
thermore, they serve as a molecular memory of transcription and
repression (Strahl and Allis 2000; Ringrose and Paro 2004).
Frequently co-occurring sets of chromatin features define epige-
netic states, which are associated with gene regulation and expres-
sion (Ernst and Kellis 2010; Hoffman et al. 2013; Zhang et al.
2016). Genome-wide assignment of DNA intervals to epigenetic
states (annotation) provides a view of the regulatory landscape
that can be compared across cell types, which in turn leads to in-
sights into the processes regulating gene expression (Libbrecht
et al. 2021).

Comprehensive mapping of CREs within the context of the
regulatory landscape in different cell types is needed to achieve a
broad understanding of differential gene expression. Maps of can-
didate CREs (cCREs) provide guidance in understanding how
changes in cCREs, including single-nucleotide variants and indels,
can lead to altered expression (Hardison 2012), and they can in-
form approaches for activation or repression of specific genes in
potential strategies for therapies (Bauer et al. 2013). Indeed, most
human genetic variants associated with common traits and diseas-
es are localized in or near cCREs (Hindorff et al. 2009; The
ENCODE Project Consortium 2012; Maurano et al. 2012). Thus,
knowledge of the activity and epigenetic state of cCREs in each
cell type can facilitate understanding the impact of trait-associated
genetic variants on specific phenotypes. Furthermore, genome ed-
iting approaches in somatic cells have recently been demonstrated
to have promise as therapeutic modalities (Frangoul et al. 2021),
and a full set of cCREs annotated by activity and state can help
advance similar applications.

The different types of blood cells in humans andmice are par-
ticularly tractable systems for studying many aspects of gene regu-
lation during differentiation. The striking differences among
mature cell types result from progressive differentiation starting
from a common hematopoietic stem cell (HSC) (Kondo et al.
2003). Although single-cell analyses reveal a pattern of ostensibly
continuous expression change along each hematopoietic lineage
(Laurenti and Göttgens 2018), intermediate populations of multi-
lineage progenitor cells with decreasing differentiation potential
have been defined, which provide an overall summary and
nomenclature for major stages in differentiation. These stem, pro-
genitor, and mature cell populations can be isolated using charac-
teristic cell surface markers (Spangrude et al. 1988; Payne and
Crooks 2002), albeit with many fewer cells in progenitor popula-
tions. In addition to the primary blood cells, several immortalized
cell lines provide amenable systems for the intensive study of var-
ious aspects of gene regulation during differentiation and matura-
tion of blood cells (Weiss et al. 1997).

The VISION project aims to produce a Validated Systematic
Integration of hematopoietic epigenomes, harvesting extensive
epigenetic and transcriptomic data sets from many investigators
and large consortia into concise, systematically integrated summa-
ries of regulatory landscapes and cCREs (Hardison et al. 2020). We

previously published the results of these analyses for progenitor
and mature blood cell types from the mouse (Xiang et al. 2020).
In the current study, we generated additional epigenetic data sets
and compiled data from human blood cells to expand the integra-
tive analyses to include data from both human and mouse. The
systematic integrative analysis of epigenetic features across blood
cell types was conducted jointly in both species to learn epigenetic
states, generate concise views of epigenetic landscapes, and predict
regulatory elements that are comparable in both species. This joint
modeling enabled further comparisons using approaches that
were not dependent on DNA sequence alignments between spe-
cies, including a demonstration of the role of orthologous TFs in
cell type–specific regulation in both species. An exploration of
comparisons of epigenetic landscapes between species showed
that they were informative for inferring regulatory roles of ele-
ments in lineage-specific (i.e., nonaligning) DNA. Together, this
work provides valuable community resources that enable research-
ers to leverage the extensive existing epigenomic data into further
mechanistic regulatory studies of both individual loci and ge-
nome-wide trends in human and mouse blood cells.

Results

Extracting and annotating epigenetic states by modeling

epigenomic information jointly in human and mouse

A large number of data sets of epigenetic features related to gene
regulation and expression (404 data sets, 216 in human and 188
in mouse) (Fig. 1A,B; Supplemental Material, “Data generation
and collection”; Supplemental Tables S1, S2) served as the input
for our joint integrative analysis of human and mouse regulatory
landscapes across progenitor and mature blood cell types. The fea-
tures included chromatin accessibility, which is a hallmark of
almost all regulatory elements, occupancy by the structural pro-
tein CTCF, and histone modifications associated with gene activa-
tion or repression. After normalizing and denoising these diverse
data sets (Supplemental Fig. S1), we conducted an iterative joint
modeling to discover epigenetic states, that is, sets of epigenetic
features commonly found together, in a consistent manner for
both human and mouse blood cells (Fig. 2). The joint modeling
took advantage of the Bayesian framework of the Integrative and
Discriminative Epigenomic Annotation System (IDEAS) (Zhang
et al. 2016; Zhang and Hardison 2017) to iteratively learn states
in both species. The jointmodeling proceeded in four steps: initial
training on randomly selected regions in both species, retention of
the 27 epigenetic states that exhibit similar combinatorial patterns
of features in both human andmouse, the use of these 27 states as
prior information to sequentially run the IDEAS genome segmen-
tation on the human and mouse data sets, and removal of two
heterogenous states (Fig. 2A; Supplemental Figs. S2–S5). This pro-
cedure ensured that the same set of epigenetic states was learned
and applied for both species. Previously, the segmentation and ge-
nome annotation (Libbrecht et al. 2021) method ChromHMM
(Ernst and Kellis 2012) was used to combine data between species
by concatenating the data sets for both human and mouse cell
types (Yue et al. 2014). This earlier approach produced common
states between species, but it did not benefit from the positional
information and automated approach to handling missing data
that are embedded in IDEAS.

The resulting model with 25 epigenetic states (Fig. 2B) was
similar to that obtained from mouse blood cell data (Xiang et al.
2020). The states captured combinations of epigenetic features
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characteristic of regulatory elements such as promoters and en-
hancers, transcribed regions, and repressed regions marked by ei-
ther Polycomb (H3K27me3) or heterochromatin (H3K9me3),
including states that differ quantitatively in the contribution of
specific features to each state. For example, H3K4me1 is the pre-
dominant component of states E1 and E, but E1 has a lower contri-
bution of that histone modification. Similar proportions of the
genomes of human andmousewere covered by each state (Fig. 2B).

Assigning all genomic bins inhuman andmouse to one of the
25 states in each hematopoietic cell type produced an annotation
of blood cell epigenomes that gave a concise view of the epigenetic
landscape and how it changes across cell types, using labels and
color conventions consistently for human and mouse. The value
of this concise view can be illustrated in orthologous genomic in-
tervals containing genes expressed preferentially in different cell
lineages as well as genes that are uniformly expressed (Fig. 2C,
D). For example, the gene SLC4A1/Slc4a1, encoding the anion
transporter in the erythrocyte plasma membrane, is expressed in
the later stages of erythroid maturation (Doré and Crispino
2011). The epigenetic state assignments across cell types matched
the differential expression pattern, with genomic intervals in the
gene and its flanking regions, including a noncoding gene located
upstream (to its right, Bloodlinc in mouse), assigned to states indic-
ative of enhancers (yellow and orange) and promoters (red) only in
erythroid cell types, with indications of stronger activation in the
moremature erythroblasts (Fig. 2C,D, region boxed and labeled E).

A similar pattern was obtained in both human and mouse. Those
genomic intervals assigned to the enhancer- or promoter-like
states contain candidates for regulatory elements, an inference
that was supported by chromatin binding data including occupan-
cy by the TF GATA1 (Xu et al. 2012; Pimkin et al. 2014) and the
coactivator EP300 (ENCODE data sets ENCSR000EGE and
ENCSR982LJQ) in erythroid cells. Similarly, the gene and flanking
regions forGRN/Grn, encoding the granulin precursor protein that
is produced at high levels in granulocytes and monocytes (Jian
et al. 2013), and ITGA2B/Itga2b, encoding the alpha 2b subunit
of integrin that is abundant in mature megakaryocytes (van Pam-
pus et al. 1992; Pimkin et al. 2014), were assigned to epigenetic
states indicative of enhancers and promoters in the expressing
cell types (boxed regions labeled G and MK, respectively). In con-
trast, genes expressed in all the blood cell types, such asUBTF/Ubtf,
were assigned to active promoter states and transcribed states
across the cell types. We conclude that these concise summaries
of the epigenetic landscapes across cell types showed the chroma-
tin signatures for differential or uniform gene expression and re-
vealed discrete intervals as potential regulatory elements, with
the consistent state assignments often revealing similar epigenetic
landscapes of orthologous genes in human and mouse.

Although these resources are useful, some limitations should
be kept in mind. For example, IDEAS used data from similar cell
types to improve state assignments in cell types with missing
data, but the effectiveness of this approach may be impacted by
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Figure 1. Cell types and data sets used for systematic integration of epigenetic features of blood cells. (A) The tree on the left shows the populations of
stem, progenitor, and mature blood cells and cell lines in human. The diagram on the right indicates the epigenetic features and transcriptomes for which
genome-wide data sets were generated or collected, with distinctive icons for the major sources of data, specifically the Blueprint project (Martens and
Stunnenberg 2013; Stunnenberg et al. 2016), Corces et al. (2016) (CMB), and St. Jude Children’s Research Hospital (SJCRH) (Cheng et al. 2021; Qi
et al. 2021). (B) Cell types and epigenetic data sets in mouse, diagrammed as for panel A. Sources were described by Xiang et al. (2020)
(Supplemental Table S1). Abbreviations for blood cells and lines are as follows: (HSC) hematopoietic stem cell, (MPP) multipotent progenitor cell,
(LMPP) lymphoid–myeloid primed progenitor cell, (CMP) common myeloid progenitor cell, (MEP) megakaryocyte–erythrocyte progenitor cell, (K562)
a human cancer cell line with some features of early megakaryocytic and erythroid cells, (HUDEP) immortalized human umbilical cord blood–derived ery-
throid progenitor cell lines expressing fetal globin genes (HUDEP1) or adult globin genes (HUDEP2), (CD34_E) human erythroid cells generated by differ-
entiation from CD34+ blood cells, (ERY) erythroblast, (RBC) mature red blood cell, (MK) megakaryocyte, (GMP) granulocyte monocyte progenitor cell,
(EOS) eosinophil, (MON) monocyte, (MONp) primary monocyte, (MONc) classical monocyte, (NEU) neutrophil, (CLP) common lymphoid progenitor
cell, (B) B cell, (NK) natural killer cell, (TCD4) CD4+ T cell, (TCD8) CD8+ T cell, (LSK) Lin−Sca1+Kit+ cells frommouse bonemarrow containing hematopoietic
stem and progenitor cells, (HPC7) immortalized mouse cell line capable of differentiation in vitro into more mature myeloid cells, (G1E) immortalized
mouse cell line blocked in erythroid maturation by a knockout of the Gata1 gene and its subline ER4 that will further differentiate after restoration of
Gata1 function in an estrogen-inducible manner (Weiss et al. 1997), (MEL) murine erythroleukemia cell line that can undergo further maturation upon
induction (designated iMEL), (CFUE) colony forming unit erythroid, (FL) designates ERY derived from fetal liver, (BM) designates ERY derived from adult
bone marrow, (CFUMK) colony forming unit megakaryocyte, (iMK) immature megakaryocyte, and (MK_fl) megakaryocyte derived from fetal liver.
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the pattern of missing data. In particular, the epigenetic data on
human stem and progenitor cell types were largely limited to
ATAC-seq data, whereas histonemodification data andCTCFoccu-
pancy were available for the analogous cell types inmouse (Fig. 1).
Thus, the state assignments for epigenomes in human stem and
progenitor cells may be less robust comparedwith those for similar
cell types in the mouse. Another limitation is the broad range of
quality in the data sets that cannot be completely adjusted by nor-
malization, which leads to over- or underrepresentation of some
epigenetic signals in specific cell types (Supplemental Fig. S5).
Despite these limitations, the annotation of blood cell epigenomes
after normalization and joint modeling of epigenetic states pro-
duced a highly informative painting of the activity and regulatory
landscapes across the genomes of human and mouse blood cells.

cCRE in human and mouse

We define a cCRE as a DNA interval with a high signal for chroma-
tin accessibility in any cell type (Xiang et al. 2020). We utilized a

version of the IDEASmethodology to combine peaks of accessibil-
ity across different cell types, running it in the signal intensity state
(IS) mode only on chromatin accessibility signals (Xiang et al.
2021), which helps counteract excessive expansion of peak calls
when combining them (Supplemental Fig. S6).

Employing the same peak-calling procedure to data from hu-
man andmouse resulted in 200,342 peaks of chromatin accessibil-
ity for human and 96,084 peaks for mouse blood cell types
(Supplemental Table S3). Applying the peak caller MACS3 (Zhang
et al. 2008) on the same human ATAC-seq data generated a larger
number of peaks, but those additional peaks tended to have low
signal and less enrichment for overlap with other function-related
genomic data sets (Supplemental Fig. S7).

The ENCODE Project released regulatory element predictions
in a broad spectrum of cell types in the index of DHSs (Meuleman
et al. 2020) and the SCREEN cCRE catalog (The ENCODE Project
Consortium et al. 2020), using data that were largely different
from those utilized for the VISION analyses. Almost all the VISION
cCRE calls in human blood cells were included in the regulatory

25 epigenetic states extracted jointly from human and mouseB

C DA
(1) Train models on 100 randomly selected, 
50 Mb genomic regions in each species

Epigenomic data sets from blood cells

(2) Retain states reproducible in both species

(4) Remove heterogeneous states

(3a) Full genome segmentation in human
and mouse using prior information

(3b) Update 
state model

AT
AC

CTCF

H3K
27

ac

H3K
27

m
e3

H3K
36

m
e3

H3K
4m

e1

H3K
4m

e3

H3K
9m

e3

Human region 1
Human region 2
Human region 3
Mouse region 1
Mouse region 2
Human region 4
Human region 5
Human region 6
Mouse region 3
Mouse region 4

....
..

....
..

Human Mouse

7,550 
epigenetic
states
identified

27 epigenetic 
states

....
..

....
..

PNA
PEA

AT
A

C

C
T

C
F

H
3K

27
ac

H
3K

27
m

e3

H
3K

36
m

e3

H
3K

4m
e1

H
3K

4m
e3

H
3K

9m
e3

23 (0.03%)
14 (0.27%)
15 (0.12%)
6 (0.63%)
17 (0.11%)
16 (0.12%)
20 (0.1%)
19 (0.12%)
21 (0.06%)
22 (0.04%)
13 (0.15%)
24 (0.03%)
11 (0.22%)
18 (0.09%)
7 (0.36%)
12 (0.09%)
8 (0.48%)
4 (2.12%)
10 (0.39%)
9 (0.87%)
5 (0.47%)
2 (6.41%)
3 (2.49%)
0 (79.27%)
1 (4.98%)

Human Mouse

2

4

6

8

10

12

14

P = Promoter-like
E = Enhancer-like
N = Nuclease accessible
H = Heterochromatin
Q = Quiescent

A = Active
C = CTCF

B = Bivalent
T = Transcribed

23 (0.04%)
14 (0.22%)
15 (0.19%)
6 (0.44%)
17 (0.05%)
16 (0.08%)
20 (0.05%)
19 (0.08%)
21 (0.06%)
22 (0.01%)
13 (0.15%)
24 (0.03%)
11 (0.36%)
18 (0.13%)
7 (0.39%)
12 (0.15%)
8 (0.27%)
4 (1.29%)
10 (0.1%)
9 (0.21%)
5 (0.9%)
2 (4.71%)
3 (2.4%)
0 (83.89%)
1 (3.79%)

H

H1
Q

Pc
BPE

T

N

Pc1

E
ETA

C

PENC

PN

PA
PNA

PNCA

PEA

PE

T1

A
E1

CN
EC
ENA

ENA1

Pc = Polycomb 

Mouse

AVE
LSK_r1

HPC7_r1

CMP_r1
MEP_r1
G1E_r1
G1E_r2
ER4_r1
ER4_r2

ERY_fl_r1
ERY_fl_r2
CFUE_r1

ERY_ad_r1
ERY_ad_r2

MEL_r1
MEL_r2
iMEL_r1
iMEL_r2

CFUMK_r1
iMK_r1
iMK_r2

MK_fl_r1
MK_fl_r2

GMP_r1

NEU_r1
MON_r1

CLP_r1

B_r1
B_r2

NK_r1
T_CD4_r1
T_CD8_r1

Atxn7l3
Ubtf

Slc4a1
Bloodlinc

Rundc3a

Slc25a39 Grn
Fam171a2

Itga2b

Gpatch8

CTCF ERY

GATA1 ERY

EP300 ERY

MK

E

G

AVE
HSC_100258
HSC_100259
MPP_100272
MPP_100273

LMPP_100268
LMPP_100269

CLP_100266
CLP_100267

GMP_100256
GMP_100257
CMP_100246
CMP_100247

MEP_Donor2596
MEP_Donor7256

K562_rep1
K562_rep2

HUDEP1_rep1
HUDEP1_rep2
HUDEP2_rep1
HUDEP2_rep2
CD34_E_rep1
CD34_E_rep2
ERY_S002R5
ERY_S002S3

MK_S004BTH2
MK_S00VHKH1

EOS_S006XEH2
EOS_S00BKK

NEU_C0011IH2
NEU_C001UYH1

MONp_Prim_mon_C
MONp_Prim_mon_F

MONc_C0011IH1
MONc_C001UYH2

B_B15_50
B_NC14_42
NK_S005YG

NK_S01E4WH0
T_CD4_S008H1
T_CD4_S009W4

T_CD8_C0066PH1
T_CD8_S00C2FH1

ATXN7L3
UBTF

SLC4A1
RUNDC3A

SLC25A39

GRN
FAM171A2

ITGA2B
GPATCH8

RP5-1067M6.6

CTCF ERY

GATA1 ERY

EP300 K562

Human

E

G

MK

Figure 2. Genome segmentation and annotation jointly between human and mouse using IDEAS. (A) Workflow for joint modeling. (1) Initial epigenetic
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element predictions from ENCODE (Supplemental Fig. S8A), sup-
porting the quality of the VISION cCRE calls. Furthermore, as ex-
pected from its focus on blood cell types, the VISION cCRE
catalog shows stronger enrichment for regulatory elements active
in blood cells (Supplemental Fig. S8B; Supplemental Table S4).

Enrichment of the cCRE catalog for function-related elements

and trait-associated genetic variants

Having generated catalogs of cCREs along with an assignment of
their epigenetic states in each cell type, we characterized the hu-
man cCREs further by connecting them to orthogonal (not includ-
ed in VISION predictions) data sets of DNA elements implicated in
gene regulation or in chromatin structure and architecture (termed
structure-related) (Fig. 3A; Supplemental Fig. S9; Supplemental Ta-
ble S5). About two-thirds (136,664 or 68%) of the VISION human
cCREs overlapped with elements in the broad groups of CRE-relat-
ed (97,361 cCREs overlapped) and structure-related (83,327 cCREs
overlapped) elements, with 44,024 cCREs overlapping elements in
both categories (Fig. 3A,B). In contrast, 10 sets of randomly chosen
DNA intervals, matched in length and GC-content with the hu-
man cCRE list, showed much less overlap with the orthogonal
sets of elements (Fig. 3B). Of the CRE-related superset, the enhanc-
er-related group of data sets contributed the most overlap with VI-
SION cCREs, followed by SuRE peaks, which measure promoter
activity in a massively parallel reporter assay (van Arensbergen
et al. 2017), and CpG islands (Fig. 3C). Compared with overlaps
with the randommatched intervals, the VISION cCREs were high-
ly enriched for overlap with each group of CRE-related data sets
(Fig. 3C). Of the structure-related superset, the set of CTCF occu-
pied segments (OSs) contributed the most overlap, followed by
chromatin loop anchors, again with high enrichment relative to
overlaps with random matched sets (Fig. 3D). Considering the
VISION cCREs that intersected with both structure- and CRE-
related elements, major contributors were the cCREs that overlap
with enhancers and CTCF OSs or loop anchors (Supplemental
Fig. S10). Furthermore, the VISION cCREs captured known blood
cell CREs (Supplemental Table S4) and CREs demonstrated to im-
pact a specific target gene in a high throughput analysis (Fig. 3E;
Gasperini et al. 2019). We conclude that the intersections with or-
thogonal, function- or structure-related elements lent strong sup-
port for the biological significance of the VISION cCRE calls and
added to the annotation of potential functions for each cCRE.

The catalog of VISION human blood cell cCREs showed a re-
markable enrichment for genetic variants associated with blood
cell traits, further supporting the utility of the catalog. We initially
observed a strong enrichment by overlap with variants from the
NHGRI-EBI GWAS catalog (Buniello et al. 2019) associated with
blood cell traits (Supplemental Fig. S11).We then analyzed the en-
richmentswhile considering the haplotype structure of human ge-
nomes, whereby association signals measured at assayed genetic
markers likely reflect an indirect effect driven by linkage disequili-
brium (LD) with a causal variant (that may or may not have been
genotyped). We employed stratified LD score regression (sLDSC)
(Finucane et al. 2015) to account for LD structure and estimate
the proportion of heritability of each trait explained by a given ge-
nomic annotation, quantifying the enrichment of heritability in
587 traits from the UK Biobank (UKBB) GWAS (Ge et al. 2017;
http://www.nealelab.is/uk-biobank/) within the VISION cCREs
relative to the rest of the genome (Supplemental Material, “Strati-
fied linkage disequilibrium score regression (sLDSC)”). These traits
encompassed 54 “blood count” traits that measure properties in-

cluding size and counts of specific blood cell types, 60 “blood bio-
chemistry” traits that measure lipid, enzyme, and other molecular
concentrations within whole blood samples, and 473 non-blood-
related traits, allowing us to assess the specific relevance of the
cCREs to regulation of blood-related versus other phenotypes. At
a 5% FDR threshold, we discovered 53 traits for which cCREs
were significantly enriched in heritability (Fig. 3F). Of these traits,
52 (98%) were blood-related and 50 were blood count traits, repre-
senting 93% of all UKBB blood count traits included in our analy-
sis. The remaining two significant traits pertained to blood
biochemistry, specifically, the male and female glycated hemoglo-
bin concentrations. These metrics and observations together lend
support to the VISION cCRE annotation being composed of infor-
mative genomic regions associated with regulation of genes in-
volved in development of blood cell traits.

Estimates of regulatory impact of cCREs during differentiation

The epigenetic states assigned to cCREs can reveal those that show
changes in apparent activity during differentiation. Inferences
about the activity of a cCRE in one or more cell types are based
on whether the cCRE was actuated, that is, was found in a peak
of chromatin accessibility, andwhich epigenetic statewas assigned
to the actuated cCRE. Those states can be associated with activa-
tion (e.g., enhancer-like or promoter-like) or repression (e.g., asso-
ciated with polycomb or heterochromatin). In addition to these
categorical state assignments, quantitative estimates of the impact
of epigenetic states on expression of target genes are useful, for ex-
ample, to provide an estimate of differences in inferred activity
when the states change. Previous work used signals from single
or multiple individual features such as chromatin accessibility or
histone modifications in regression modeling to explain gene ex-
pression (e.g., Karlić et al. 2010; Dong et al. 2012), and we applied
a similar regression modeling using epigenetic states as predictor
variables to infer estimates of regulatory impact of each state on
gene expression (Xiang et al. 2020).

We used state assignments of cCREs across cell types in amul-
tivariate regression model to estimate the impact of each state on
the expression of local genes (Supplemental Material, “Estimation
of the impact of epigenetic states and cCREs on gene expression”).
That impact was captured as β coefficients, which showed the ex-
pected strong positive impact for promoter- and enhancer-associ-
ated states and negative impacts from heterochromatin and
polycomb states (Fig. 4A). The β coefficients were then used in fur-
ther analysis, such as estimating the change in regulatory impact
as a cCRE shifts between states during differentiation (Fig. 4A, dif-
ference matrix to the left of the β coefficient values). The β coeffi-
cient values also were used to generate an epigenetic state
regulatory potential (esRP) score for each cCRE in each cell type,
calculated as the β coefficient values for the epigenetic states as-
signed to the cCRE weighted by the coverage of the cCRE by
each state (Fig. 4B). These esRP scores were the basis for visualizing
the collection of cCREs and how their regulatory impact changed
across differentiation (Supplemental Fig. S12; SupplementalMovie
S1). Comparison of the integrative esRP scores with signal intensi-
ties for single features (ATAC-seq andH3K27ac) showed all were in-
formative for visualizations, and esRP performed slightly better
than the single features in differentiating cCREs based on locations
within gene bodies (Supplemental Fig. S13).

In addition, we explored the utility of the esRP scores for clus-
tering the cCREs into groups with similar activity profiles across
blood cell types in both human and mouse. Focusing on the
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esRP scores in 12 cell types shared between human and mouse
along with the average across cell types, we identified clusters
jointly in both species. The clustering proceeded in three steps,
specifically finding robust k-means clusters for the combined hu-

man and mouse cCREs, identifying the clusters shared by cCREs
in both species, and then further grouping those shared k-means
clusters hierarchically to define 15 joint metaclusters (JmCs) (Sup-
plemental Fig. S14). Each cCRE in both mouse and human was
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Figure 3. Overlaps of VISION cCREs with other catalogs and enrichment for variants associated with blood cell traits. (A) Venn diagram showing inter-
sections of human VISION cCREs with a combined superset of elements associated with nuclear structure (CTCF OSs, loop anchors, and TAD boundaries);
with a combined superset of DNA intervals associated with cis-regulatory elements (CREs), including TSSs, CpG islands, peaks from a massively parallel
promoter and enhancer assay; and enhancers predicted from enhancer RNAs, peaks of binding by EP300, and histone modifications in erythroblasts
(see Supplemental Material, Supplemental Fig. S9; Supplemental Table S5). (B) The proportions of cCREs and randomly selected, matched sets of intervals
in the overlap categories are compared in the bar graph. For the random sets, the bar shows themean, and the dots show the values for each of 10 random
sets. (C) The UpSet plot provides a higher resolution view of intersections of VISION cCREs with the four groups of CRE-related elements, specifically en-
hancer-related (Enh), transcription start sites (TSSs), survey of regulatory elements (SuREs), and CpG islands (CpGs). The enrichment for the cCRE overlaps
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of SNPs associated with blood cell traits from the UK Biobank in VISION cCREs. Results of the sLDSC analysis of all cCREs are plotted with enrichment of the
cCRE annotation in heritability of each trait on the x-axis and the significance of the enrichment on the y-axis. The analysis covers 292 unique traits with
GWAS results from both males and females and three traits with results only from males. The vertical dotted line indicates an enrichment of one, and the
horizontal dotted line delineates the 5% FDR significance threshold. Points and labels in red represent traits for which there was significant enrichment of
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assigned to one of the 15 JmCs, and each JmC was populated with
cCREs from both mouse and human.

These JmCs established discrete categories for the cCREs
based on the cell type distribution of their inferred regulatory im-

pact (Fig. 4C). The clusters of cCREs with high esRP scores across
cell types were highly enriched for promoter elements
(Supplemental Fig. S15A). The cell type–restricted clusters of
cCREs showed enrichment both for selected enhancer catalogs
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Figure 4. β coefficients of states, esRP scores of cCREs, joint human–mouse metaclusters of cCREs based on esRP scores, and enrichment for TFBS motifs.
(A) β coefficients and the difference of β coefficients of the 25 epigenetic states. The vertical columns on the right show the β coefficients along with the ID,
color, and labels for the 25 joint epigenetic states. The triangular heatmap shows the difference of the β coefficients between two states in the right columns.
Each value in the triangle heatmap shows the difference in β coefficients between the state on top and the state below based on the order of states in the right
columns. (B) An example of calculating esRP score for a cCRE in a cell type based on the β coefficients of states. For a cCRE covering more than one 200 bp
bin, the esRP equals theweighted sumof β coefficients of states that covers the cCRE, in which theweights are the region covered by different states. (C) The
average esRP score of all cCREs in JmCs across blood cell types shared by human and mouse. The right column shows the number of human cCREs in each
JmC. (D) The average enrichment of JmCs in 15 homologous gene clusters. The genes are clustered based on the JmCs’ enrichments by k-means. (E) Motifs
enriched in joint metaclusters. The top heatmap shows the enrichment of motifs in the cCREs in each JmC in human (H) and mouse (M) as a Z-score. The
logo for eachmotif is given to the right of the heat map, labeled by the family of TFs that recognize that motif. The heatmap below is aligned with the motif
enrichment heatmap, showing the mean esRP score for the cCREs in each JmC for all the common cell types examined between human and mouse. A
summary description of the cell types in which the cCREs in each JmC are more active is given at the bottom.
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and for functional terms associated with those cell types
(Supplemental Fig. S15A,B). Furthermore, clustering of human
genes by the JmC assignments of cCREs in a 100 kb interval cen-
tered on their TSS (Supplemental Material, “Enrichment of JmCs
assigned to cCREs in gene loci”) revealed a strong enrichment
for JmCs with high activity in the cell type(s) in which the genes
are expressed (Fig. 4D). Examples include IFNG showing enrich-
ment for JmC 12, which has high esRP scores in T and NK cells;
CSF1R showing enrichment for JmC 15, which has high scores
inmonocytes; andGATA1 showing enrichment for JmC10, which
has high scores in erythroid cells and megakaryocytes. Moreover,
running sLDSC on cCREs in individual JmCs showed enrichment
for heritability of blood cell–related traits in some specific JmCs
(Supplemental Fig. S16).

As expected from previous work (e.g., Heintzman et al. 2009;
Meuleman et al. 2020), similarmetaclusters of cCREswere generat-
ed based on single signals from the histone modification H3K27ac
or chromatin accessibility across cell types (Supplemental Fig.
S17). Clustering based on any of the three features better resolved
individual cell types when larger numbers of clusters were consid-
ered, prior to collapsing the shared robust clusters into JmCs
(Supplemental Fig. S18).

In summary, we show that the β coefficients and esRP scores
provide valuable estimates of regulatory impacts of states and
cCREs, respectively. The esRP-driven JmCs provide refined subsets
of cCREs that should be informative for investigating cell type–
specific and general functions of cCREs.We also built self-organiz-
ing maps as a complementary approach to systematic integration
of epigenetic features and RNA data across cell types (Supplemen-
tal Fig. S19; Jansen et al. 2019).

Motif enrichment in JmCs of human and mouse cCREs

We examined the sets of cCREs in each JmC to ascertain enrich-
ment for transcription factor binding site (TFBS) motifs because
these enriched motifs suggest the families of TFs that play a major
role in regulation by each category of cCREs. Furthermore, having
sets of cCREs determined and clustered for comparable blood cell
types in human and mouse provided the opportunity to discover
which TFBS motifs were shared between species and whether
any were predominant in only one species.

To find TFBS motifs associated with each JmC, we calculated
enrichment for all nonredundant motifs in the Cis-BP database
(Weirauch et al. 2014) usingMaelstrom fromGimmeMotifs (Bruse
and van Heeringen 2018) (Supplemental Material, “Enrichment
for transcription factor binding site motifs in joint metaclusters
of cCREs”). The results confirmed previously established roles of
specific TFs in cell lineages and showed little evidence for novel
motifs (Fig. 4E). For example, TFBS motifs for the GATA family of
TFs were enriched in JmCs 2 and 10, which have high esRP scores
in progenitor andmature cells in the erythroid andmegakaryocyt-
ic lineages, as expected for the known roles of GATA1 and GATA2
in this lineage (Blobel and Weiss 2009; Fujiwara et al. 2009). The
GATA motif was also enriched in JmC 14, as expected for the
role of GATA3 in natural killer (NK) and T cells (Rothenberg and
Taghon 2005). Furthermore, motifs for the known lymphoid TFs
TBX21, TCF7L1, and LEF1 (Chi et al. 2009) were enriched in cCREs
withhigh esRP scores inNK andT cells (JmCs 9 and 12), andmotifs
for myeloid-determining TFs CEBPA and CEBPB (Graf and Enver
2009) and the myeloid TF SPI1 (also known as PU.1) (Tenen
et al. 1997) were enriched in cCREs that are active in progenitor
cells andmonocytes (JmCs 3 and 15). TFBSmotifs for promoter-as-

sociated TFs such as E2F2 and SP1 (Dynan and Tjian 1983; Kaczyn-
ski et al. 2003) were enriched in broadly active cCREs (JmCs 1 and
4). These patterns of motif enrichments in the JmCs fit well with
the expectations from previous studies of TF activity across line-
ages of blood cells, and thus, they lend further credence to the
value of the cCRE calls and the JmC groupings for further studies
of regulation in the blood cell types.

The genome-wide collection of cCREs across many blood cell
types in human and mouse provided an opportunity for an unbi-
ased and large-scale search for indications of TFs thatmay be active
specifically in one species for a shared cell type. Prior studies of TFs
have shown homologous TFs used in analogous cell types across
species (e.g., Carroll 2008; Noyes et al. 2008; Schmidt et al. 2010;
Cheng et al. 2014; Villar et al. 2014), but it is not clear if there
are significant exceptions. In our study, we found that for the
most part, the motif enrichments were quite similar between the
human andmouse cCREs in each JmC. Note that these similarities
were not forced by requiring sequence matches between species;
the cCREs were grouped into JmCs based on their pattern of activ-
ity, as reflected in the esRP scores, across cell types, not by requir-
ing homologous sequences. This similarity between species
indicates that the same TFs tend to be active in similar groups of
cell types in both mouse and human. An intriguing potential ex-
ception to the sharing of motifs between species was the enrich-
ment of TFBS motifs for CTCF and ZBTB7A in some JmCs,
suggestive of some species selectivity in their binding in the con-
text of other TFs (Supplemental Figs. S20, S21). These indications
of conditional, preferential usage of these TFs in human or mouse
could serve as the basis for more detailed studies in the future.

In summary, after grouping the cCREs in both human and
mouse by their inferred regulatory impact across blood cells in a
manner agnostic to DNA sequence or occupancy by TFs, the en-
richment for TFBS motifs within those groups recapitulated
known activities of TFs both broadly and in specific cell lineages.
The results also showed considerable sharing of inferred TF activity
in both human and mouse.

Evolution of sequence and inferred function of cCREs

The human and mouse cCREs from blood cells were assigned to
three distinct evolutionary categories (Fig. 5A). About one-third
of the cCREs were present only in the reference species (39% for
human, 28% for mouse), as inferred from the failure to find a
matching orthologous sequence in whole-genome alignments
with the other species. We refer to these as nonconserved (N)
cCREs. Of the two-thirds of cCREs with an orthologous sequence
in the second species, slightly more than 30,000 were also identi-
fied as cCREs in the second species. The latter cCREs comprise the
set of cCREs conserved in both sequence and inferred function,
which we call SF conserved (SF) cCREs. Almost the same number
of cCREs in both species fall into the SF category; the small differ-
ence resulted from interval splits during the search for orthologous
sequences (Supplemental Fig. S22). The degree of chromatin acces-
sibility in orthologous SF cCREs was positively correlated between
the two species (Supplemental Fig. S23). The remaining cCREs
(91,000 in human and 36,000 in mouse) were conserved in se-
quence but not in an inferred function as a regulatory element,
and we call them S conserved (S) cCREs. The latter group could re-
sult from turnover of regulatory motifs or acquisition of different
functions in the second species.

The distributions of epigenetic states assigned to the blood
cell cCREs in each of the three evolutionary categories were similar
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between human and mouse, but those distributions differed
among evolutionary categories, with significantly more SF cCREs
assigned to promoter-like states than were S or N cCREs (Supple-
mental Fig. S24). Indeed, the SF cCREs tended to be close to or en-
compass the TSSs of genes, showing a substantial enrichment in
overlap with TSSs compared to the overlap observed for all cCREs
(Fig. 5B). Many of the S and N cCREs were assigned to enhancer-
like states (Supplemental Fig. S24D), giving a level of enrichment
for overlap with enhancer data sets comparable to that observed
for the full set of cCREs (Fig. 5B).

For both human and mouse, the level of sequence conserva-
tion, estimated by themaximumphyloP score (Pollard et al. 2010),
was higher in the collection of cCREs than in sets of randomly cho-
sen genomic intervals matching the cCREs in length and G+C
content (Fig. 5C). Among the evolutionary categories of cCREs,
the distribution of phyloP scores for SF cCREs was significantly
higher than the distribution for S cCREs, which in turn was higher
than that for N cCREs, for both species (Fig. 5C). The whole-ge-
nome alignments underlying the phyloP scores are influenced
by proximity to the highly conserved coding exons (King et al.
2007), and the high phyloP scores of the promoter-enriched SF
cCREs could reflect both this effect as well as a strong constraint

on conserved function (Supplemental Fig. S25). In all three evolu-
tionary categories, the distribution of phyloP scores was higher for
promoter-proximal cCREs than for distal ones, but the relative lev-
els of inferred conservation were the same for both; that is, SF > S >
N (Supplemental Fig. S26).

In summary, this partitioning of the cCRE catalogs by conser-
vation of sequence and inferred function revealed informative cat-
egories that differed both in evolutionary trajectories and in types
of functional enrichment.

Conservation of noncoding genomic DNA sequences among
species has been used extensively to predict regulatory elements
(Gumucio et al. 1992; Hardison 2000; Pennacchio and Rubin
2001), but the observation that predicted regulatory elements
fall into distinct evolutionary categories (SF, S, and N) raised the
question of whether inter-species DNA sequence alignments or
annotation of epigenetic states would be more effective in
finding elements that were experimentally determined to be
active in gene regulation. Recent advances in massively parallel re-
porter assays have enabled the testing of large sets of candidate el-
ements, approaching comprehensive assessment of the predicted
elements (Agarwal et al. 2023). We used the set of more than
57,000 human genomic elements shown to be active in K562 cells
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to address this question (Supplemental Material), and we found
that requiring alignment to the mouse genome would miss
∼40% of the active elements, whereas requiring presence in a non-
quiescent epigenetic state or one associated with gene activation
would cover 87% or 82.5%, respectively, of the active elements
(Fig. 5D). Thus, the epigenetic state annotation can enable
a more comprehensive prediction and examination of gene
regulatory elements. This realization motivated a comparison of
epigenetic states between human and mouse, as described in the
next section.

Comparison of epigenetic states around orthologous genes in

human and mouse

The consistent state assignments from the jointmodeling facilitat-
ed epigenetic comparisons between species. Such comparisons are
particularly informative for orthologous genes with similar expres-
sion patterns but some differences in their regulatory landscapes.
For example, the orthologous genes GATA1 in human and Gata1
inmouse each encode a TF with amajor role in regulating gene ex-
pression in erythroid cells, megakaryocytes, and eosinophils
(Ferreira et al. 2005), with a similar pattern of gene expression
across blood cell types in both species (Supplemental Fig. S27).
The human and mouse genomic DNA sequences aligned around
these orthologous genes, including their promoters and proximal
enhancers; the alignments continued through the genes down-
stream from GATA1/Gata1 (Fig. 6A). An additional, distal regu-
latory element located upstream of the mouse Gata1 gene, which
was bound by GATA1 and EP300 (Fig. 6A), was found only in
mouse (Valverde-Garduno et al. 2004). The DNA sequences of
the upstream interval harboring the mouse regulatory element
did not align between mouse and human except in portions of
the GLOD5/Glod5 genes (Fig. 6A). Thus, the interspecies sequence
alignments provide limited information about this distal regulato-
ry element.

This limitation to sequence alignments led us to explore
whether comparisons of epigenetic informationwould bemore in-
formative, utilizing the consistent assignment of epigenetic states
in both human and mouse, which do not rely on DNA sequence
alignment. In the large genomic regions (76 kb and 101 kb in
the two species) encompassing the orthologous human GATA1
and mouse Gata1 genes and surrounding genes, we computed
the correlation for each genomic bin between the epigenetic state
assignments across cell types in one species and that in the other
species for all the bins (Supplemental Fig. S28). This local, all-ver-
sus-all comparison of the two loci yielded a matrix of correlation
values showing similarities and differences in profiles of epigenetic
states in the two species (Fig. 6B). The conserved promoter and
proximal enhancers of the GATA1/Gata1 genes were highly corre-
lated in epigenetic states across cell types between the two species,
in a region of the matrix that encompassed the aligning DNA se-
quences (Fig. 6B, labeled Px). In contrast, whereas the mouse-spe-
cific distal regulatory element did not align with the human DNA
sequence, the epigenetic states annotating it presented high corre-
lations with active epigenetic states in the human GATA1 locus
(Fig. 6B, labeled D).

The complexity of the correlation matrix (Fig. 6B) indicated
that multiple epigenetic trends could be contributing to the pat-
terns. To systematically reduce the high dimensionality of the ma-
trix to a set of simpler matrices, we employed nonnegative matrix
factorization (NMF) because of its interpretability (Stein-O’Brien
et al. 2018; Lee and Roy 2021). The decomposed matrices from

NMF revealed a set of factors, each of which (Fig. 6C, represented
by each column in the mouse matrix and each row in the human
matrix) captures a group of highly correlated elements in the orig-
inal matrix that shows a pattern distinct from the rest of the ele-
ments. The complex correlation matrix was decomposed into six
distinct factors, as determined by the number of factors at which
an “elbow” was found in the BIC score (Supplemental Fig. S29).
Each factor encapsulated a specific epigenetic regulatory machin-
ery or process exhibiting consistent cross-cell-type patterns in
both humans and mice (Supplemental Fig. S30). For example,
the correlationmatrices reconstructed by using signals from factor
3 exclusively highlighted the cell type–specific positive regulators
for theGATA1/Gata1 gene loci; these regulatory elements were ev-
ident in reconstructed correlation matrices between species (Fig.
6D) and within individual species (Fig. 6E). By applying a Z-score
approach to identify peak regions in the factor 3 signal vector
(with FDR<0.1) (Supplemental Material), we pinpointed regions
in both species showing an epigenetic regulatory machinery
exhibiting positive regulatory dynamics for the orthologous
GATA1/Gata1 gene loci, particularly in the ERY andMK cell types.
In contrast, the correlationmatrices reconstructed from the signals
for factor 6 (Fig. 6F,G) highlighted regionsmarked by the transcrip-
tion elongation modification H3K36me3 (Fig. 6G, epigenetic
states colored green). The correlations in the factor 6 elongation
signature were observed, as expected, between the human/mouse
orthologous gene pairs GATA1 and Gata1 as well as between hu-
man HDAC6 and mouse Hdac6 (Fig. 6F, green rectangles). The fac-
tor 6 correlations were also observed between the GATA1/Gata1
and HDAC6/Hdac6 genes (Fig. 6F,G, black rectangles), showing a
common process, specifically transcriptional elongation, at both
loci. A similar analysis for other factors revealed distinct regulatory
processes or elements, such as active promoters (factor 2), exhibit-
ing unique cross-cell-type patterns (Supplemental Fig. S30). The
genomic bins with high scores for a given NMF factor in human
showed high correlation with bins with high scores for that
same factor in mouse, indicating that the NMF factors capture a
similar set of epigenetic state patterns in each species (Supplemen-
tal Fig. S31). The patterns captured by NMF factors 3 and 6 were ro-
bust to the choice of k in theNMF (Supplemental Fig. S32). Overall,
these results underscore this method’s capability to objectively
highlight regulatory regions with analogous epigenetic patterns
across cell types in both species. This method could aid in extract-
ing additional information about similar epigenetic patterns be-
tween human and model organisms such as mice, for which
only a portion of their genome aligns with that of human.

Because some of the NMF factors reflected processes in gene
expression and regulation that occur in many genes, some of the
highly correlated regions across species could reflect false positives.
Thus, it is prudent to restrict the current approach to genomic in-
tervals around orthologous genes to reduce the impact of false dis-
covery. We examined patterns of epigenetic state correlations
across cell types between the human GATA1 gene locus and three
nonorthologous loci inmouse to investigate the scope of this issue
(Supplemental Material). Although genomic bins of high epige-
netic state correlation were observed between nonorthologous
loci, the discovery of bins implicated in a cell type–specific process,
such as erythroid or megakaryocytic regulation, could be en-
hanced by utilizing a broader background model for computing
peaks of NMF signal (Supplemental Fig. S33). With this refined ap-
proach to peak identification, the false-discovery rate estimated
for epigenetic state comparison between the human GATA1 locus
and the mouse Cd4 locus was reduced to 0.1 or less (Supplemental
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Fig. S33R). Furthermore, the epigenetic state comparisons between
the humanGATA1 locus and themouseRps19 locus revealed a pre-
viously unreported region with hallmarks of erythroid regulatory
elements (Supplemental Fig. S34). These initial results suggest
that the genomic scale of the epigenetic state correlations could
be expanded in future work with judicious attention to reducing
false discovery, for example, by linking the discovered elements
to evidence of conserved synteny between species.

Examination of human genomic elements shown to be active
in a lentiMPRA assay (Agarwal et al. 2023) at 30 loci (Supplemental
Table S6) revealed that the active elements were enriched in geno-
mic bins with high cross-cell-type epigenetic state correlation be-
tween species (Supplemental Fig. S35). The enrichment for active
elements was further increased in bins with both high epigenetic
state correlation and interspecies sequence conservation, whereas
enrichmentwas reduced or comparable (depending on approaches
used for false-discovery thresholds) in bins with only sequence
conservation. These results further support the value of the
cross-cell-type epigenetic state correlation between species in pre-
dicting and interpreting cCREs (Supplemental Fig. S36).

The comparison of epigenetic state profiles across cell types
also provided a means to categorize cCREs between species that
did not require a match in the underlying genomic DNA sequence
(Supplemental Figs. S37, S38). Results from that approach indicat-
ed that certain cCREs were potentially involved in regulation of
orthologous genes, even for cCREs with DNA sequences that did
not align between species.

In summary, the IDEAS joint modeling on the input data
compiled here and the consistent state assignments in bothmouse
and human confirmed and extended previous observations on
known regulatory elements, and they revealed both shared and
distinctive candidate regulatory elements and states between spe-
cies. Correlations of state profiles between species provided a com-
parison of chromatin landscapes even in regions with DNA
sequences that were not conserved between species. Our initial re-
sults reported here support continuing the development of this ap-
proach of comparing cross-cell-type epigenetic state profiles
between species for functional prediction and interpretation of
cCREs.

Discussion

In this paper, the VISION consortium introduces a set of resources
describing the regulatory landscapes of both human and mouse
blood cell epigenomes. A key, novel aspect of our work is that
the systematic integrativemodeling that generated these resources
was conducted jointly across the data fromboth species, which en-
abled robust comparisons between species without being limited
by sequence alignments, allowing comparisons in nonconserved
and lineage-specific genomic regions.

One major resource is the annotation of the epigenetic states
across the genomes of progenitor and mature blood cells of both
species. These state maps show the epigenetic landscape in a com-
pact form, capturing information from the input data on multiple
histone modifications, CTCF occupancy, and chromatin accessi-
bility, and they use a common set of epigenetic states to reveal
the patterns of epigenetic activity associated with gene expression
and regulation both across cell types and between species. A
second major resource is a catalog of cCREs actuated in one or
more of the blood cell types in each species. The cCREs are predic-
tions of discrete DNA segments likely involved in gene regulation,
based on the patterns of chromatin accessibility across cell types,

and the epigenetic state annotations suggest the type of activity
for each cCRE in each cell type, such as serving as a promoter or en-
hancer, participating in repression, or being inactive. A thirdmajor
resource is a quantitative estimate of the regulatory impact of hu-
man andmouse cCREs on gene expression in each cell type, that is,
an esRP score, derived from multivariate regression modeling of
the epigenetic states in cCREs as predictors of gene expression.
The esRP scores are a continuous variable capturing not only the
integration of the input epigenetic data but also the inferred im-
pacts on gene expression. Those impacts may be manifested as ac-
tivation or repression during regulation or as transcriptional
elongation. They are useful for many downstream analyses, such
as determining informative groups of cCREs by clustering analysis.
These resources along with browsers for visualization and tools for
analysis are provided at our project website (https://usevision.org).
Among these tools is cCRE_db, which records the several dimen-
sions of annotation of the cCREs and provides a query interface
to support custom queries from users.

Our human blood cell cCRE catalog should be valuable for
mechanistic interpretations of trait-related human genetic vari-
ants. Human genetic variants associated with traits intrinsic to
blood cells were significantly enriched in the VISION cCRE cata-
log, whereas variants associated with a broad diversity of other
traits were not enriched.We expect that the extensive annotations
in our cCRE catalog combinedwith information about TFBSmotifs
and TF occupancy should lead to specific, refined hypotheses for
mechanisms by which a variant impacts expression, such as alter-
ations in TF binding, which can be tested experimentally in fur-
ther work.

The jointly learned state maps and cCRE predictions allowed
us to extend previous work on the evolution of regulatory ele-
ments between mouse and human. Several previous studies fo-
cused on TF occupancy, for example, examining key TFs in one
tissue across multiple species (Schmidt et al. 2010; Ballester et al.
2014; Villar et al. 2014) or a diverse set of TFs in multiple cell types
and in mouse and human (Cheng et al. 2014; Yue et al. 2014;
Denas et al. 2015). Other studies focused on discrete regions of
high chromatin accessibility in multiple cell types and tissues be-
tween mouse and human (Stergachis et al. 2014; Vierstra et al.
2014). These previous studies revealed that only a small fraction
of elements was conserved both in genomic sequence and in in-
ferred function. A notable fraction of elements changed consider-
ably during mammalian diversification, including turnover of TF
binding site motifs and repurposing of elements (Schmidt et al.
2010; Cheng et al. 2014; Stergachis et al. 2014; Denas et al.
2015). These prior studies focused primarily on regions of the ge-
nome with sequences that aligned between human and mouse,
with the nonaligning regions used to infer that some elements
were lineage-specific and that many were derived from transpos-
able elements and endogenous retroviruses (Bourque 2009;
Rebollo et al. 2012; Jacques et al. 2013; Sundaram et al. 2014).
Our evolutionary analyses confirmed the previous observations,
for example, finding about one-third of cCREs are conserved in
both sequence and inferred function between human and mouse
and further showing that this evolutionary categorywashighly en-
riched for proximal regulatory elements.

Going beyond the prior comparative epigenetic studies, our
jointly learned epigenetic state maps generated a representation
of multiple epigenetic features, not just TF occupancy or chroma-
tin accessibility, and they are continuous in bins across genomes of
both species. Using the same set of epigenetic states for annotation
of both the human and mouse genomes gave a common
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“alphabet” (set of states) for both species, which enabled compar-
isons of the epigenetic profiles between species. In the current
work, we explored the utility of these epigenetic comparisons in
several ways. For example, the joint clusterings of cCREs between
species by esRP scores (derived from the epigenetic state annota-
tions) enabled an analysis that was agnostic to DNA sequence
or occupancy by TFs to show considerable sharing of inferred TF
activity in both human and mouse. Furthermore, the common
alphabet of states allowed us to compare the cross-cell-type
epigenetic state patterns in large genomic intervals of both species
containing orthologous genes, again in a manner agnostic to un-
derlying DNA sequence similarities or differences. These epigenet-
ic comparisons were a strong complement to genomic sequence
alignments, revealing regulatory elements with similar epigenetic
profiles even in genomic regions in which the DNA sequence does
not align between species. Our detection, even in segments of
DNA that do not align between species, of epigenetic similarity in-
dicative of a common role in gene regulation suggests that process-
es or structures, such as chromatin interactions, chromatin
complexes, or molecular condensates, may be maintained be-
tween species in a manner that is not fully revealed by compari-
sons of genome sequences. Hence, further studies of this
apparent epigenetic dimension of regulatory conservation may
be productive. For example, the complex interspecies epigenetic
state correlation matrices were decomposed into NMF factors
that represented major types of regulatory mechanisms, some
that were common across cell types and others that were specific
to certain cell types. Further investigation indicated the potential
for judicious use of the cell type–specific NMF factors in a context
of conserved synteny for expanding the scale of the state correla-
tion analysis in future studies.

Previous work compared epigenetic profiles across species,
such as the phylo-HMGP method to find different evolutionary
states in multispecies epigenomic data (Yang et al. 2018) and the
LECIF scores to find evidence of conservation from functional ge-
nomic data (Kwon and Ernst 2021). These approaches are powerful
but limited to the genomic regions with DNA sequences that align
between the species, and thus, they will miss the ∼40% of experi-
mentally demonstrated CREs that are not in aligning regions (Fig.
5D). In contrast, our approach of correlating epigenetic states in-
cluded both DNA segments that align between human andmouse
and those that do not, and it captures more of the experimentally
verified cCREs. For comparisons between species, both genomic se-
quence alignment and epigenetic state annotation across cell types
provide important sources of information. Combining both types
of data into jointmodels for predicting CREs could be a productive
avenue for future work, not only to improve accuracy but also to
allow the contributions of each type of information to be deter-
mined systematically.

Several innovations were developed to produce the resources
introduced here. A major innovation was to extend the IDEAS
framework (Zhang et al. 2016) to jointly learn epigenetic states
and assign them to annotate the epigenomes in humanandmouse
blood cells. The IDEAS method employs a Bayesian approach to
the modeling to learn the states, which we utilized to bring in
states learned from the data in one species as priors for learning
states in the data from the second species. Another extension of
the IDEAS framework was to learn states based on one feature, spe-
cifically ATAC-seq data, defining discrete signal ISs. This approach
was used for calling cCREs, implemented as the IDEAS-IS method
(Xiang et al. 2021). The approach is relatively simple and benefits
from joint modeling across the input data sets. Other methods for

predicting cCREs based on chromatin accessibility across many
cell types prevented excessive expansion of the summary calls
for overlapping peaks by employing a centroid determination for
the DNase hypersensitive site (DHS) index (Meuleman et al.
2020) or by choosing the highest signal peak for the ENCODE
cCRE catalog (The ENCODE Project Consortium et al. 2020). The
ENCODE cCRE catalog paired DHS peaks with individual chroma-
tin modifications or CTCF occupancy, which led to complications
when data on diagnostic features were missing from some cell
types. The IDEAS framework used for the VISION cCRE sets lever-
aged data in related cell types to ameliorate the impact of missing
data.

Although the resources introducedhere are valuable formany
applications, it is prudent to acknowledge their limitations. First,
the quality of the products of integrated analyses is limited by
the quality and completeness of the input raw data. We endeav-
ored to reduce the impact of variances in the input data by normal-
ization. The S3V2 procedure (Xiang et al. 2021) systematically
normalized the input data to adjust for differences in the signal-
to-noise ratio and variance in signal across the data sets. Some epi-
genetic features were not determined in some cell types, and we
used the IDEAS method in part because it is able to assign an epi-
genetic state even in the context of missing data by learning pat-
terns from local similarities in cell types for which the data are
present (Zhang and Mahony 2019). However, these approaches
cannot completely overcome all issues with variance in input
data, and further developments in these directions (such as
Shahraki et al. 2024; Xiang et al. 2024) may help to improve inte-
grative resources. Second, the resolution of both the epigenetic
state assignments and the cCRE inference is limited to 200 bp,
which is the window size we utilized in the IDEAS analyses.
Other resources, such as DHS calls (Meuleman et al. 2020),
DNase footprints (Vierstra et al. 2020), and motif instances
(Weirauch et al. 2014), achieve a higher resolution. Indeed, one
can use these higher-resolution data sets to derive further informa-
tion about cCREs, such as families of TFs that are likely to be bind-
ing to them. Regarding esRP scores, a third limitation is that we
do not make explicit assignments for target genes of cCREs.
Predictions of a large number of target gene–cCRE pairs were
made in our prior work (Xiang et al. 2020); these assignments cov-
er large genomic intervals around each gene and are most useful
when used with further filtering, such as restricting cCREs and tar-
get genes to the same topologically associated domains. On-going
work is examining othermodels and approaches for assigning like-
ly target genes to cCREs. A fourth limitation is that our inference of
repression-related cCREs applies only to those with stable histone
modifications. Elements that had been involved in initiation of re-
pression but eventually were packaged into quiescent chromatin,
for example, via a hit-and-run mechanism (Shah et al. 2019),
would not be detected. A fifth limitation concerns the scale of
the studies of epigenetic conservation by correlations of epigenetic
states. Our current approach is limited to individual examination
of specific genetic loci because we used orthologous genes as the
initial anchors. Exploring ways to expand the scale of the analyti-
cal approach is a goal of future research. Finally, the work present-
ed herewas restricted to blood cell types. In future work, extension
of the approaches developed in this study to a broader spectrum of
cell types would expand the utility of the resulting resources.

In conclusion, we present several important new resources to
enable further and more detailed studies of gene regulation in hu-
man and mouse blood cells both during normal differentiation
and in pathological contexts. The patterns of epigenetic states in
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cCREs across cell types showvalue in developing anunderstanding
of how genetic variants impact blood cell traits and diseases.
Furthermore, the joint modeling between species opens avenues
for further exploration of comparisons of epigenetic landscapes
in addition to sequence alignments for insights into evolution
and function of regulatory elements between species.

Methods

Data generation, collation, normalization, and integration

The data sets used as input, including the ones generated for the
work reported here (with methods), are described in the Supple-
mental Material (“Data generation and collection”) and Supple-
mental Tables S1 and S2. The S3V2 approach (Xiang et al. 2021)
was used for normalization and for denoising the data sets prior
to integration. The data sets were integrated to find and assign epi-
genetic states using IDEAS (Zhang et al. 2016; Zhang andHardison
2017); the extension of this approach to joint learning and anno-
tation between species is described in the Supplemental Material
(the sections “Data normalization” and “Joint systematic integra-
tion of human and mouse blood cell epigenomes by IDEAS”).

Prediction, annotation, and estimation of regulatory

impact of cCREs

The identification of cCREs as peaks of chromatin accessibility em-
ployed IDEAS in the signal IS mode (Xiang et al. 2021). This ap-
proach and comparisons with MACS peaks (Zhang et al. 2008)
are described in the Supplemental Material (“Prediction of VISION
cCREs using IDEAS-IS”). The cCREs are provided in Supplemental
Table S3. Annotation of potential cCRE functions used inter-
sections with orthogonal data sets of elements implicated in
regulation or chromatin structure (Supplemental Table S5). En-
richment of genetic variants associated with blood cell traits
used sLDSC (Finucane et al. 2015). The impact of epigenetic states
in cCREs on regulation of gene expression used a multivariate lin-
ear regression approach like one described previously (Xiang et al.
2020). The methods and supplemental results on these analyses
are presented in detail in the Supplemental Material.

Identification of clusters of cCREs based on esRP scores

The sets of human and mouse cCREs were placed jointly into
groups based on their esRP scores using a series of k-means cluster-
ing steps, as described in detail in the Supplemental Material and
Supplemental Figure S14. Methods and results for enrichment of
the resulting JmCs for orthogonal sets of regulatory elements
and SNPs associated with blood cell traits, along with comparisons
of clusters based on chromatin accessibility and H3K27ac signal,
are described in the Supplemental Material and Supplemental Fig-
ures S15–S18. Motifs that were differentially enriched across JmCs
were identified using the Maelstrom tool in the GimmeMotifs
suite (v0.17.1) (Bruse and van Heeringen 2018) and SeqUnwinder
(Kakumanu et al. 2017), as described in detail in the Supplemental
Material and Supplemental Figure S21.

Partitioning cCREs to evolutionary categories based on DNA

sequence alignments and cCRE calls between species

The human andmouse cCREs were assigned to three evolutionary
categories using the following procedure. The set of human cCREs
was mapped to mouse genome assembly mm10 using the liftOver
tool at the UCSC Genome Browser (Hinrichs et al. 2006). Human
cCREs that failed to map to mm10 were grouped as N cCREs.
Matches to mouse cCREs for the human cCREs that could be

mapped by liftOver to mm10 were determined using the intersect
tool in BEDTools (Quinlan and Hall 2010). Human cCREs that
overlapped with mouse cCREs were labeled as SF cCREs, whereas
human cCREs that mapped to mm10 but did not match mouse
cCREs were labeled as S cCREs. A similar process was performed
on the set ofmouse cCREs using liftOver tomap to humangenome
build GRCh38

Calculation of pairwise correlation coefficients for epigenetic

landscapes between human and mouse

A bin-to-bin pairwise correlation analysis was used to quantify the
similarity of epigenetic landscapes between two DNA regions in
human andmouse. For each 200 bp bin in one cell type in one spe-
cies, the assigned epigenetic state was replaced by a vector of mean
signals of eight epigenetic features in the IDEAS state model. After
replacing the states in all 15 matched cell types (14 analogous cell
types and one pseudocell typewith average values for all cell types)
in the two species, the original two categorical state vectorswith 15
elements were converted into two numeric vectors with 120
numbers (Supplemental Fig. S28). The similarity of cross-cell-
type epigenetic landscape between two bins in the two species
was defined as the correlation coefficient between each pair of nu-
meric vectors with 120 numbers.When calculating the correlation
coefficients, we added randomnoise (mean=0, sd =0.2) to the raw
values to avoid high correlation coefficients created between re-
gions with states that have low signals. The complex correlation
matrix was decomposed into distinctive factors using NMF (Lee
and Seung 1999). The methods and supplemental results on these
analyses are presented in detail in the Supplemental Material.

Data access

All raw and processed sequencing data generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE229101 and to the NCBI BioProject database (https://
www.ncbi.nlm.nih.gov/bioproject/) under accession number
PRJNA952902. Resources developed in the VISION project are
available at the website https://usevision.org; the data can be
viewed via a track hub at the UCSC Genome Browser or any com-
patible browser by using the URL https://usevision.org/data/
trackHub/hub.txt or by clicking the track hubs link at https://
usevision.org. The database cCRE db supports flexible user queries
on extensive annotation of the cCREs, including epigenetic states
and esRP scores across cell types, chromatin accessibility scores
across cell types, membership in JmCs, and evolutionary catego-
ries. Code developed for this study is provided as two zipped direc-
tories in the Supplemental Material: Supplemental Code 1 for the
joint IDEASmodeling andmost other analyses, and Supplemental
Code 2 for the sLDSC analysis. The code is also available at the
following GitHub repositories: https://github.com/guanjue/
Joint_Human_Mouse_IDEAS_State for the joint human–mouse
IDEAS pipeline and https://github.com/usevision/cre_heritability
for the sLDSC analysis.
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