Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 May 15;308(Pt 1):39–44. doi: 10.1042/bj3080039

Oxidation of cis-5-unsaturated fatty acids in intact rat liver mitochondria: the operation of reduction pathways.

K Y Tserng 1, S J Jin 1
PMCID: PMC1136840  PMID: 7755586

Abstract

The metabolism of cis-5 unsaturated fatty acids was studied in intact rat liver mitochondria to assess the operation of a reduction pathway. By using direct quantification of metabolites with a capillary-column gas chromatography, 3-hydroxydodecanoate was identified among other metabolites when cis-5-dodecenoate was metabolized in intact rat liver mitochondria. The formation of 3-hydroxydodecanoate supports the existence of a reduction pathway in the metabolism of cis-5-unsaturated fatty acids. This metabolite cannot be produced from the conventional isomerase-mediated pathway. However, the data also indicated the possible operation of the conventional isomerase-mediated pathway in intact rat liver mitochondria. The reduction pathway appears to account for at least 61% of the pathway for cis-5-dodecenoate. This reduction pathway was likely to proceed from the dehydrogenation to trans-2,cis-5-dodecadienoyl-CoA, which was isomerized to delta 3, delta 5-dodecadienoyl-CoA, then to trans-2,trans-4-dodecadienoate. The reduction was mediated by 2,4-dienoyl-CoA reductase by the conversion of trans-2,trans-4-dodecadienoyl-CoA into trans-3-dodecenoyl-CoA. However, direct reduction of the cis-5 double bond was also shown to be operating, although to a lesser extent.

Full text

PDF
39

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brady L. J., Hoppel C. L. Effect of diet and starvation on hepatic mitochondrial function in the rat. J Nutr. 1983 Nov;113(11):2129–2137. doi: 10.1093/jn/113.11.2129. [DOI] [PubMed] [Google Scholar]
  2. Bremer J., Norum K. R. Metabolism of very long-chain monounsaturated fatty acids (22:1) and the adaptation to their presence in the diet. J Lipid Res. 1982 Feb;23(2):243–256. [PubMed] [Google Scholar]
  3. Dommes V., Baumgart C., Kunau W. H. Degradation of unsaturated fatty acids in peroxisomes. Existence of a 2,4-dienoyl-CoA reductase pathway. J Biol Chem. 1981 Aug 25;256(16):8259–8262. [PubMed] [Google Scholar]
  4. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  5. GOLDMAN P., VAGELOS P. R. The specificity of triglyceride synthesis from diglycerides in chicken adipose tissue. J Biol Chem. 1961 Oct;236:2620–2623. [PubMed] [Google Scholar]
  6. Hiltunen J. K., Osmundsen H., Bremer J. Beta-oxidation of polyunsaturated fatty acids having double bonds at even-numbered positions in isolated rat liver mitochondria. Biochim Biophys Acta. 1983 Jul 12;752(2):223–232. doi: 10.1016/0005-2760(83)90116-9. [DOI] [PubMed] [Google Scholar]
  7. Hoek J. B., Rydström J. Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem J. 1988 Aug 15;254(1):1–10. doi: 10.1042/bj2540001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jin S. J., Hoppel C. L., Tserng K. Y. Incomplete fatty acid oxidation. The production and epimerization of 3-hydroxy fatty acids. J Biol Chem. 1992 Jan 5;267(1):119–125. [PubMed] [Google Scholar]
  9. Jin S. J., Tserng K. Y. Metabolic origins of urinary unsaturated dicarboxylic acids. Biochemistry. 1990 Sep 18;29(37):8540–8547. doi: 10.1021/bi00489a006. [DOI] [PubMed] [Google Scholar]
  10. Kimura C., Kondo A., Koeda N., Yamanaka H., Mizugaki M. Studies on the metabolism of unsaturated fatty acids. XV. Purification and properties of 2,4-dienoyl-CoA reductase from rat liver peroxisomes. J Biochem. 1984 Nov;96(5):1463–1469. doi: 10.1093/oxfordjournals.jbchem.a134975. [DOI] [PubMed] [Google Scholar]
  11. Kunau W. H., Dommes P. Degradation of unsaturated fatty acids. Identification of intermediates in the degradation of cis-4-decenoly-CoA by extracts of beef-liver mitochondria. Eur J Biochem. 1978 Nov 15;91(2):533–544. doi: 10.1111/j.1432-1033.1978.tb12707.x. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Lawson L. D., Holman R. T. Beta-oxidation of the geometric and positional isomers of octadecenoic acid by rat heart and liver mitochondria. Biochim Biophys Acta. 1981 Jul 24;665(1):60–65. doi: 10.1016/0005-2760(81)90232-0. [DOI] [PubMed] [Google Scholar]
  14. Luo M. J., Smeland T. E., Shoukry K., Schulz H. Delta 3,5, delta 2,4-dienoyl-CoA isomerase from rat liver mitochondria. Purification and characterization of a new enzyme involved in the beta-oxidation of unsaturated fatty acids. J Biol Chem. 1994 Jan 28;269(4):2384–2388. [PubMed] [Google Scholar]
  15. Mizugaki M., Nishimaki T., Yamamoto H., Sagi M., Yamanaka H. Studies on the metabolism of unsaturated fatty acids. XI. Alterations in the activities of enoyl-CoA hydratase, 3-hydroxyacyl-CoA epimerase and 2,4-dienyl-CoA reductase in rat liver mitochondria and peroxisomes by clofibrate. J Biochem. 1982 Dec;92(6):2051–2054. doi: 10.1093/oxfordjournals.jbchem.a134140. [DOI] [PubMed] [Google Scholar]
  16. Osmundsen H., Cervenka J., Bremer J. A role for 2,4-enoyl-CoA reductase in mitochondrial beta-oxidation of polyunsaturated fatty acids. Effects of treatment with clofibrate on oxidation of polyunsaturated acylcarnitines by isolated rat liver mitochondria. Biochem J. 1982 Dec 15;208(3):749–757. doi: 10.1042/bj2080749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smeland T. E., Nada M., Cuebas D., Schulz H. NADPH-dependent beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6673–6677. doi: 10.1073/pnas.89.15.6673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stoffel W., Ditzer R., Caesar H. Der Stoffwechsel der ungesättigten fettsäuren. 3. Zur beta-Oxydation der Mono- und Polyenfettsäuren. Der Mechanismus der enzymatischen Reaktionen an delta-3-cis-Enoyl-CoA-Verbindungen. Hoppe Seylers Z Physiol Chem. 1964;339(1):167–181. [PubMed] [Google Scholar]
  19. Tserng K. Y., Chen L. S., Jin S. J. Comparison of metabolic fluxes of cis-5-enoyl-CoA and saturated acyl-CoA through the beta-oxidation pathway. Biochem J. 1995 Apr 1;307(Pt 1):23–28. doi: 10.1042/bj3070023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tserng K. Y., Jin S. J. NADPH-dependent reductive metabolism of cis-5 unsaturated fatty acids. A revised pathway for the beta-oxidation of oleic acid. J Biol Chem. 1991 Jun 25;266(18):11614–11620. [PubMed] [Google Scholar]
  21. Tserng K. Y., Kalhan S. C. Calculation of substrate turnover rate in stable isotope tracer studies. Am J Physiol. 1983 Sep;245(3):E308–E311. doi: 10.1152/ajpendo.1983.245.3.E308. [DOI] [PubMed] [Google Scholar]
  22. You S. Y., Cosloy S., Schulz H. Evidence for the essential function of 2,4-dienoyl-coenzyme A reductase in the beta-oxidation of unsaturated fatty acids in vivo. Isolation and characterization of an Escherichia coli mutant with a defective 2,4-dienoyl-coenzyme A reductase. J Biol Chem. 1989 Oct 5;264(28):16489–16495. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES