Abstract
The metabolism of cis-5 unsaturated fatty acids was studied in intact rat liver mitochondria to assess the operation of a reduction pathway. By using direct quantification of metabolites with a capillary-column gas chromatography, 3-hydroxydodecanoate was identified among other metabolites when cis-5-dodecenoate was metabolized in intact rat liver mitochondria. The formation of 3-hydroxydodecanoate supports the existence of a reduction pathway in the metabolism of cis-5-unsaturated fatty acids. This metabolite cannot be produced from the conventional isomerase-mediated pathway. However, the data also indicated the possible operation of the conventional isomerase-mediated pathway in intact rat liver mitochondria. The reduction pathway appears to account for at least 61% of the pathway for cis-5-dodecenoate. This reduction pathway was likely to proceed from the dehydrogenation to trans-2,cis-5-dodecadienoyl-CoA, which was isomerized to delta 3, delta 5-dodecadienoyl-CoA, then to trans-2,trans-4-dodecadienoate. The reduction was mediated by 2,4-dienoyl-CoA reductase by the conversion of trans-2,trans-4-dodecadienoyl-CoA into trans-3-dodecenoyl-CoA. However, direct reduction of the cis-5 double bond was also shown to be operating, although to a lesser extent.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brady L. J., Hoppel C. L. Effect of diet and starvation on hepatic mitochondrial function in the rat. J Nutr. 1983 Nov;113(11):2129–2137. doi: 10.1093/jn/113.11.2129. [DOI] [PubMed] [Google Scholar]
- Bremer J., Norum K. R. Metabolism of very long-chain monounsaturated fatty acids (22:1) and the adaptation to their presence in the diet. J Lipid Res. 1982 Feb;23(2):243–256. [PubMed] [Google Scholar]
- Dommes V., Baumgart C., Kunau W. H. Degradation of unsaturated fatty acids in peroxisomes. Existence of a 2,4-dienoyl-CoA reductase pathway. J Biol Chem. 1981 Aug 25;256(16):8259–8262. [PubMed] [Google Scholar]
- ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- GOLDMAN P., VAGELOS P. R. The specificity of triglyceride synthesis from diglycerides in chicken adipose tissue. J Biol Chem. 1961 Oct;236:2620–2623. [PubMed] [Google Scholar]
- Hiltunen J. K., Osmundsen H., Bremer J. Beta-oxidation of polyunsaturated fatty acids having double bonds at even-numbered positions in isolated rat liver mitochondria. Biochim Biophys Acta. 1983 Jul 12;752(2):223–232. doi: 10.1016/0005-2760(83)90116-9. [DOI] [PubMed] [Google Scholar]
- Hoek J. B., Rydström J. Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem J. 1988 Aug 15;254(1):1–10. doi: 10.1042/bj2540001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jin S. J., Hoppel C. L., Tserng K. Y. Incomplete fatty acid oxidation. The production and epimerization of 3-hydroxy fatty acids. J Biol Chem. 1992 Jan 5;267(1):119–125. [PubMed] [Google Scholar]
- Jin S. J., Tserng K. Y. Metabolic origins of urinary unsaturated dicarboxylic acids. Biochemistry. 1990 Sep 18;29(37):8540–8547. doi: 10.1021/bi00489a006. [DOI] [PubMed] [Google Scholar]
- Kimura C., Kondo A., Koeda N., Yamanaka H., Mizugaki M. Studies on the metabolism of unsaturated fatty acids. XV. Purification and properties of 2,4-dienoyl-CoA reductase from rat liver peroxisomes. J Biochem. 1984 Nov;96(5):1463–1469. doi: 10.1093/oxfordjournals.jbchem.a134975. [DOI] [PubMed] [Google Scholar]
- Kunau W. H., Dommes P. Degradation of unsaturated fatty acids. Identification of intermediates in the degradation of cis-4-decenoly-CoA by extracts of beef-liver mitochondria. Eur J Biochem. 1978 Nov 15;91(2):533–544. doi: 10.1111/j.1432-1033.1978.tb12707.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lawson L. D., Holman R. T. Beta-oxidation of the geometric and positional isomers of octadecenoic acid by rat heart and liver mitochondria. Biochim Biophys Acta. 1981 Jul 24;665(1):60–65. doi: 10.1016/0005-2760(81)90232-0. [DOI] [PubMed] [Google Scholar]
- Luo M. J., Smeland T. E., Shoukry K., Schulz H. Delta 3,5, delta 2,4-dienoyl-CoA isomerase from rat liver mitochondria. Purification and characterization of a new enzyme involved in the beta-oxidation of unsaturated fatty acids. J Biol Chem. 1994 Jan 28;269(4):2384–2388. [PubMed] [Google Scholar]
- Mizugaki M., Nishimaki T., Yamamoto H., Sagi M., Yamanaka H. Studies on the metabolism of unsaturated fatty acids. XI. Alterations in the activities of enoyl-CoA hydratase, 3-hydroxyacyl-CoA epimerase and 2,4-dienyl-CoA reductase in rat liver mitochondria and peroxisomes by clofibrate. J Biochem. 1982 Dec;92(6):2051–2054. doi: 10.1093/oxfordjournals.jbchem.a134140. [DOI] [PubMed] [Google Scholar]
- Osmundsen H., Cervenka J., Bremer J. A role for 2,4-enoyl-CoA reductase in mitochondrial beta-oxidation of polyunsaturated fatty acids. Effects of treatment with clofibrate on oxidation of polyunsaturated acylcarnitines by isolated rat liver mitochondria. Biochem J. 1982 Dec 15;208(3):749–757. doi: 10.1042/bj2080749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smeland T. E., Nada M., Cuebas D., Schulz H. NADPH-dependent beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6673–6677. doi: 10.1073/pnas.89.15.6673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoffel W., Ditzer R., Caesar H. Der Stoffwechsel der ungesättigten fettsäuren. 3. Zur beta-Oxydation der Mono- und Polyenfettsäuren. Der Mechanismus der enzymatischen Reaktionen an delta-3-cis-Enoyl-CoA-Verbindungen. Hoppe Seylers Z Physiol Chem. 1964;339(1):167–181. [PubMed] [Google Scholar]
- Tserng K. Y., Chen L. S., Jin S. J. Comparison of metabolic fluxes of cis-5-enoyl-CoA and saturated acyl-CoA through the beta-oxidation pathway. Biochem J. 1995 Apr 1;307(Pt 1):23–28. doi: 10.1042/bj3070023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tserng K. Y., Jin S. J. NADPH-dependent reductive metabolism of cis-5 unsaturated fatty acids. A revised pathway for the beta-oxidation of oleic acid. J Biol Chem. 1991 Jun 25;266(18):11614–11620. [PubMed] [Google Scholar]
- Tserng K. Y., Kalhan S. C. Calculation of substrate turnover rate in stable isotope tracer studies. Am J Physiol. 1983 Sep;245(3):E308–E311. doi: 10.1152/ajpendo.1983.245.3.E308. [DOI] [PubMed] [Google Scholar]
- You S. Y., Cosloy S., Schulz H. Evidence for the essential function of 2,4-dienoyl-coenzyme A reductase in the beta-oxidation of unsaturated fatty acids in vivo. Isolation and characterization of an Escherichia coli mutant with a defective 2,4-dienoyl-coenzyme A reductase. J Biol Chem. 1989 Oct 5;264(28):16489–16495. [PubMed] [Google Scholar]
