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Objectives: Escherichia coli can cause infections in the urinary tract and in normally sterile body sites leading to 
invasive E. coli disease (IED), including bacteraemia and sepsis, with older populations at increased risk. We 
aimed to estimate the theoretical coverage rate by the ExPEC4V and 9V vaccine candidates. In addition, we 
aimed at better understanding the diversity of E. coli isolates, including their genetic and phenotypic antimicro-
bial resistance (AMR), sequence types (STs), O-serotypes and the bacterial population structure. 

Methods: Blood and urine culture E. coli isolates (n = 304) were collected from hospitalized patients ≥60 years 
(n = 238) with IED during a multicentric, observational study across three continents. All isolates were tested for 
antimicrobial susceptibility, O-serotyped, whole-genome sequenced and bioinformatically analysed. 

Results: A large diversity of STs and of O-serotypes were identified across all centres, with O25b-ST131, O6-ST73 
and O1-ST95 being the most prevalent types. A total of 45.4% and 64.7% of all isolates were found to have an O- 
serotype covered by the ExPEC4V and ExPEC9V vaccine candidates, respectively. The overall frequency of MDR 
was 37.4% and ST131 was predominant among MDR isolates. Low in-patient genetic variability was observed 
in cases where multiple isolates were collected from the same patient. 

Conclusions: Our results highlight the predominance of MDR O25b-ST131 E. coli isolates across diverse geo-
graphic areas. These findings provide further baseline data on the theoretical coverage of novel vaccines target-
ing E. coli associated with IED in older adults and their associated AMR levels.

© The Author(s) 2024. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/ 
by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Escherichia coli is the most common cause of Gram-negative in-
fections in humans, possessing the ability to infect extra- 
intestinal sites such as the urinary tract as well as normally sterile 
body sites resulting in invasive E. coli disease (IED) that includes 
acute infections such as bacteraemia, severe pyelonephritis 

and sepsis. Although IED affects all age categories, the incidence 
increases by age with adults aged 60 years or older having an in-
creased risk of developing the disease. Case-fatality rates range 
from 13% to 19% but may reach up to 60% in elderly with 
healthcare-associated infections.1–3 The increase in antimicrobial 
resistance (AMR) among E. coli strains, such as E. coli O-serotype 
O25b:H4-ST131 represents a major challenge for the treatment 
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and management of E. coli infections.4 Global morbidity and hos-
pitalization due to IED are substantial and are expected to further 
increase driven by ageing populations and high overall AMR 
prevalence.1

The O-antigen, a component of the surface polysaccharide is 
the target of the serum’s opsonophagocytic killing activity that eli-
cits an immunogenic response in humans. The O-antigen provides 
a protective mechanism also exploited in other polysaccharide- 
based bacterial vaccines5,6 and has been since many years a 
promising target for vaccine exploration in E. coli.

A four-valent (ExPEC4V)7 and nine-valent (ExPEC9V)8 biocon-
jugate vaccine containing four O-antigen polysaccharides 
(O-serotypes O1, O2, O6 and O25) and nine O-antigen polysac-
charides (O-serotypes O1, O2, O4, O6, O15, O16, O18, O25 and 
O75), respectively, are assessed in clinical studies towards devel-
opment of a vaccine for prevention of IED.9

To estimate the O-serotype distribution of extra-intestinal 
pathogenic E. coli in patients with IED aged ≥60 years, a multicen-
tre, prospective, observational study EXPECT-2 (NCT04117113) 
was conducted. Clinical results within this study reported by 
Doua et al.10 found that out of patients with IED aged ≥60 years 
in eight participating hospitals from seven countries, 80.4% had 
bacteraemic IED and half of infections was community-acquired, 
with the urinary tract the most common source of infection. 
Sepsis and septic shock were reported in 72.1% and 10.0% of pa-
tients, respectively. Kidney dysfunction was the most common 
complication (12.9%) and overall in-hospital mortality was 4.6%.

This study is part of the EXPECT-2 research project, comple-
menting the clinical results reported by Doua et al.10 with a 
microbiological analysis of the available isolates from 238 pa-
tients with IED. The major objective was prediction of the theor-
etical coverage of vaccine candidates ExPEC4V and ExPEC9V 
based on E. coli isolates obtained from hospitalized patients 
aged ≥60 years with a diagnosis of IED. The O-serotype, ST, 
AMR profile and genomic diversity of the isolates were obtained.

Methods
Ethics
This study was conducted in accordance with the Declaration of Helsinki, 
Good Clinical Practices and applicable regulatory requirements. In coun-
tries where no waiver was obtained, participants or their legally accept-
able representatives provided their written consent to participate in the 
study after having been informed about the nature/purpose of the study, 
and the participation and termination conditions. The protocol, Informed 
Consent Form, and other relevant documents were approved by an 
Institutional Review Board/Independent Ethics Committee (IRB/IEC) be-
fore the study was initiated.

Trial design and patient inclusion
EXPECT-2 (NCT04117113) was a prospective, observational, multicentre, 
hospital-based study conducted in eight participating hospitals, including 
two sites in Japan and one site each in the USA, Canada, France, Germany, 
Italy and Spain. The study took place between October 2019 and January 
2021. The diagnosis of IED was determined by the microbiological con-
firmation of E. coli from blood, urine or an otherwise sterile body site in 
the presence of requisite criteria of systemic inflammatory response syn-
drome (SIRS), SOFA or quick SOFA (qSOFA).1

Patients were eligible for data collection if they were aged ≥60 years 
and hospitalized with a clinical diagnosis of IED. For countries where no 
waiver for informed consent had been obtained before data collection, 
a signed participation agreement/ICF/IAF allowing data collection and 
source data verification was obtained in accordance with local 
requirements.

All isolates from this E. coli dataset were stored in microbanks at 
−80°C at the local sites until shipment to the central laboratory at the 
University of Antwerp.

Bacterial identification
Control of viability of the stored isolates was performed by culture at the 
central laboratory. Identification at species level was confirmed by 
MALDI-TOF MS (Bruker Daltonics, Bremen, Germany).

Antimicrobial susceptibility testing (AST)
The MIC of 24 antimicrobial agents (Table S2, available as Supplementary 
data at JAC Online), covering 10 different drug classes, were determined 
for the full dataset by microdilution method using a commercial panel 
(Sensititre Gram-negative GN6F AST plate, ThermoFisher Scientific). 
Reading of MIC values was performed with a semi-automated digital 
MIC viewing system (Vizion™, ThermoFisher) and results were interpreted 
according to the 2023 (v.13.0) EUCAST criteria.11 MDR was defined as non- 
susceptibility to at least one agent in three or more antimicrobial 
categories.12

Determination of O-serotypes
The O-serotype was determined as a combination of in silico 
O-genotyping and agglutination O-serotyping. O-genotyping was con-
ducted based on WGS with identification of unique O-serotype specific se-
quences of wzy, wzx, wzt and wzm genes following guidelines and using 
reference sequences13 and were determined with the O-serotyper v.0.1 
(Janssen Vaccines & Prevention, Leiden, the Netherlands).14 In case of 
negative O-genotyping results or in instances where the in silico result 
corresponded to an O-serotype belonging to one of the nine following 
serotypes included in the EXPEC9V vaccine candidate: O1, O2, O4, O6, 
O15, O16, O18, O25, O75, an O-serotyping agglutination assay (SSI 
Diagnostica, Hillerød, Denmark) was performed to confirm the 
O-genotyping result.

Whole-genome sequencing
For Illumina short-read sequencing, genomic DNA was isolated from all 
isolates using the Lucigen MasterPure Complete DNA and RNA 
Purification kit, according to the manufacturer’s protocol. Sample and li-
brary preparation was done using Nextera XT kits (Illumina Inc, San Diego, 
CA, USA). Libraries per isolate were pooled and adjusted to equal molar 
quantities. Sequencing was done using MiSeq v.2, 500 cycle, PE 2 × 250 
bp (Illumina Inc., USA). Raw sequencing data were quality-assessed using 
FastQC, cleaned using Trimmomatic v.0.4.2 with default parameters for 
adapter removal and quality trimming. Contamination (<5%) and com-
pleteness (>95%) were confirmed with CheckM v.1.1.2 (taxonomy_wf 
species ‘Escherichia coli’).

For PacBio long-read sequencing, genomic DNA was isolated from two 
isolates collected from the same patient (EXP200133 and EXP200135) 
and selected for long-read sequencing due to major differences in AMR 
genes and AST, using the Qiagen® MagAttract® HMW kit (Qiagen) accord-
ing to the manufacturer’s protocol. Isolated DNA was sheared using 
Covaris G-tubes to obtain fragments with size distributions around 8–12 
kb. Barcoded SMRT bell™ libraries were prepared with the SMRTbell 
Template kit. Sequencing was performed using the PacBio Sequel 
(Pacific Biosciences, CA, USA) with 2 h pre-extension and 10 h movie 
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time in V3 SMRTCell (1M). PacBio sequencing data were processed, de-
multiplexed and assembled using SMRTLink v.10.2.

Assembly, annotation and resistome analysis
Generation of the assemblies, annotations and resistomes was done 
using an in-house developed bacterial WGS pipeline, BacPipe v.1.2.6.15

Using this pipeline, de novo genome assemblies were made using 
SPAdes v.3.13.0 and genome assembly quality including number of con-
tigs, total length and N50, was checked by QUAST v.5.0.2. Minimal aver-
age full depth coverage needed to be 50 times. Assemblies were 
annotated using Prokka v.1.11.1. The resistome was determined using 
the ResFinder v.2.1, CARD v.5.1 and ResFams v.1.2 databases with default 
parameters (90% identity and 60% coverage). Mutations in genes confer-
ring resistance to fluoroquinolones (gyrA and parC) were identified with 
SRST2 v.0.2.0.16 SNP variants between paired isolates were detected 
with CLC genomics workbench v.9.5.3.

Availability of WGS data
All sequence data from this study have been deposited under BioProject 
ID PRJNA1021534.

MLST typing, identification of phylogroups and 
fimbria typing
In silico MLST based on seven conserved housekeeping genes and assign-
ment to allelic numbers and STs was performed using the Achtman MLST 
locus/sequence definitions database.17 In silico ClermonTyping method 
and its associated web-interface, the ClermonTyper v.1.4.0 was used 
for E. coli phylogroup determination.18,19 In silico Fimbria Typing was 
done using FimTyper v.1.1.20

Phylogenetic analysis
Parsnp v.1.7.421 was used to create a core genome alignment of the nu-
cleotide sequences from the unique isolate collection. SNPs within the 
alignment were filtered with Gubbins v.2.4.122 and used to generate a 
phylogenetic tree with RAxML v.8.2.12,23 using the GTRGAMMA nucleotide 
substitution model. To obtain statistical support for the phylogeny, 1000 
bootstraps were performed. The phylogenetic tree and isolate metadata 
were visualized with iTOL.24

Results
IED patients and collection of E. coli isolates
In the study, 304 E. coli isolates were included from a total of 238 
unique IED patients, with 195 isolates from blood (64.1%), 106 
from urine (35.0%) and three from other sterile body sites (0.9%) 
(Table S1). A subset of the isolates, comprising one representative 
E. coli isolate per IED patient, hereafter referred to as the unique 
isolate collection, included a total of 238 individual isolates with 
193 isolated from blood and 45 from urine (Figure 1). For the dedi-
cated analysis of paired isolates, another sub-selection was made 
consisting of multiple isolates per patient (n = 128 from 62 pa-
tients), hereafter called the paired isolate collection.

E. coli genetic diversity and dominance of O25b-ST131
Among the unique isolate collection, genetic diversity was ob-
served across and within study centres, resulting in the identifica-
tion of 80 different STs (Figure 2a and Table S1). The nine most 
common STs (n = 152, 63.8%) were each found in at least five 

isolates and included ST131 (n = 49, 20.6%), ST95 (n = 31, 13%), 
ST73 (n = 19, 8%), ST69 (n = 18, 7.5%), ST58 (n = 11, 4.7%), ST12 
(n = 8, 3.3%), ST10 (n = 6, 2.5%), ST88 (n = 5, 2.1%) and ST141 (n  
= 5, 2.1%). Seventy-one additional STs each occurred in less than 
five isolates from the unique isolate collection (n = 86, 36.1%). 
These STs were found in four isolates (one ST, n = 4, 1.7%), three 
isolates (four different STs, n = 12, 5%), two isolates (10 different 
STs, n = 20, 8.4%) or only one isolate (50 different STs, n = 50, 21%).

Most of the 238 unique isolates belonged to phylogroup B2 
(n = 147, 62%). Other identified phylogroups were phylogroup D 
(n = 31, 13%), B1 (n = 26, 11%), A (n = 14, 6%), C (n = 9, 4%), F 
(n = 7, 3%), E (n = 2, 0.8%) and G (n = 2, 0.8%). E. coli isolates 
from the three most found ST types (ST131, ST95, ST73) all be-
longed to phylogroup B2 (Figure 2b).

Forty-seven O-serotypes were detected among the unique 
isolates, while for nine isolates (3.8%) no O-serotype could be de-
termined (Table S1). The six most common O-serotypes, each re-
presented by 10 or more isolates from the collection, were O25 
(n = 46, 19.3%), O1 (n = 23, 9.7%), O2 (n = 22, 9.2%), O6 (n = 17, 
7.1%), O15 (n = 15, 6.3%) and O8 (n = 12, 5%) (Figure 2c). These 
six O-serotypes were found in more than half of all isolates (n =  
135, 56.7%). Twenty-four O-serotypes were each found in one 
isolate (n = 24, 10%) in the collection. O-serotypes mostly corre-
lated with specific STs (Figure 2d), with the most common corre-
lations between O25b-ST131 (n = 44, 18%), O6-ST73 (n = 13, 5%) 
and O1-ST95 (n = 16, 7%).

The E. coli population is genetically diverse, with the different 
STs presenting separate branches across the overall phylogeny 
(Figure 3). The dominant STs were found to be globally dispersed 
and there is no country-specific signature of particular STs.

Prevalence of antimicrobial resistance
Across the unique isolate collection, the highest resistance rates 
were reported for trimethoprim/sulfonamides (cotrimoxazole) 
and tetracyclines (31%, each). Substantial rates of resistance 
were also observed for fluoroquinolones (27.7%), third-generation 
cephalosporins (17.6%) and aminoglycosides (16.0%). No isolates 
were resistant to colistin or to carbapenems. At a geographic level, 
the highest proportion of resistance to third-generation cephalos-
porins, fluoroquinolones and aminoglycosides was observed in iso-
lates from North America and Japan (Table 1). Eighty-nine isolates 
were characterized as MDR (37.4%), which were found at all eight 
participating sites (Table S2).

Forty of the 89 MDR E. coli belong to ST131 (n = 39) or related 
ST2279 (n = 1, EXP201013). These isolates are also phylogenetic-
ally related and all part of the clonal complex (CC) 131 (Figure 3). 
One MDR isolate from a blood specimen of a patient in Japan be-
longed to ST2179 (EXP200661), phylogroup B1 and was phylo-
genetically unrelated to the other MDR isolates. It carried a 
blaCTX-M-65 gene (an allelic variant belonging to CTX-M group 9) 
as well as a large variety of other AMR genes (16 genes, nine 
classes of antimicrobial agents). The ST2179 lineage has been 
recently reported from E. coli recovered from horses in Brazil,25

retail meat in Portugal as well as pigs and pet animals in 
Switzerland. While CTX-M-65-producing ST2179 E. coli had 
already been reported to occur in humans as commensal organ-
isms, to our knowledge it had not yet been reported in the setting 
of an invasive bacterial infection in humans.
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With regards to ESBL genes, apart from this particular ST2179 
strain, all but one E. coli isolates of ST131/ST2279 carried a 
blaCTX-M-15 gene in association with blaOXA-1, aac(6’)-Ib-cr, catB3 
as well as three mutations in the QRDR domain of gyrA/parC 
(GyrA S83L, GyrA D87N and ParC S80I) that are typically known 
to be associated with resistance to fluoroquinolones in E. coli. 
One single ST131 isolate harboured blaCTX-M-14.

Association between O-serotypes, AMR and 
vaccine coverage
From the 238 unique isolates, 108 (45.4%) were found to carry 
serotypes that are included in the ExPEC4V vaccine candidate 
(Figure 4), whereas 154 out of 238 isolates (64.7%) contained 
O-antigens covered by the ExPEC9V vaccine. The most frequently 
found O-serotypes that were not covered by either of the vac-
cines were O8 (n = 12), members of the O77 group (i.e. O17/ 
O44/O73/O77/O106, n = 6), O13 (n = 5), O9 (n = 5) and O107/ 
O117 (n = 4).

Out of the 89 E. coli isolates that displayed a MDR pattern, 48 
(53.9%) were covered by EXPEC4V and 59 (66.3%) were covered 
by EXPEC9V. By far the most prevalent serotype associated with 
MDR E. coli was O25b always in association with ST131 that ac-
counted for 40% of all MDR isolates (Tables S4 and S5).

Besides O25b, serotype O1 (n = 5; two in ST95, one each in 
ST59, ST648 and ST1177), O2 (n = 4; three in ST95, one in ST73), 
O15 (n = 5; four in ST69, one in ST393), O18 (n = 1; in ST1193) 
and O75 (n = 2; in ST1193) have all been reported previously in 

association with MDR E. coli isolates from human infections.4 Of 
note, however, 13 of the 29 (44.8%) MDR E. coli isolates carrying 
non-vaccine serotypes belong to well-established or emerging 
MDR lineages of E. coli (ST58 (n = 5), ST10/ST744 (n = 2), ST38/ 
ST963 (n = 2), ST117, ST357, ST973, ST2179 (n = 1 each) that 
have been reported from animals, farm environment or food pro-
ducts, human intestinal carriage samples and clinical specimens 
from human infections.4,26,27

Analysis of paired isolates collected from blood and urine
From 62 patients, more than one isolate (n = 128/304) was col-
lected, which we jointly called the paired isolate collection. 
Most of these isolates (113 isolates from 55 patients) harbour 
identical ST, O-serotype, AMR and AST (Table S3). For 37 isolate 
pairs (59.7%), SNP diversity was limited to ≤10 SNPs. 
Within-host diversity exceeded 10 SNPs in 25 pairs. One patient 
carried two O25b-ST131 isolates (EXP200133 and EXP200135) 
originating from a urine and blood sample, collected on the 
same day. In the blood isolate, six resistance genes (aac(3)-IIa, 
blaOXA-1, blaCTX-M-15, catB3, dfrA17, aac(6’)-Ib-cr) were detected 
that were not found in the urine isolate. The blood isolate also 
showed phenotypic resistance to nine additional antibiotics 
(ampicillin, ampicillin-sulbactam, aztreonam, cefazolin, cefe-
pime, ceftazidime, ceftriaxone, gentamicin, tobramycin) as com-
pared to the urine isolate. Long-read sequencing of both isolates 
from this patient revealed a plasmid carrying these resistance 
genes in-between transposases (Tn3 family transposase and 

Figure 1. Overview of isolate collections used for analyses. The full data collection contains 304 E. coli isolates. The unique isolate collection contains 
238 isolates whereas the paired isolate collection comprises 128 isolates.
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IS6 family transposase). The full plasmid sequence (GenBank ac-
cession no. OR611935) was resolved and found to be 116 336 bp 
in length (Figure S1).

Discussion
Globally, the increasing burden of invasive disease due to E. coli 
and the continued emergence of AMR among E. coli strains is 
of great concern. There is a knowledge gap regarding the global 
distribution of E. coli ST and O-serotypes associated with IED (in-
cluding sepsis and bacteraemia), with the exception of two 

specific studies in the UK28 and France29 describing local findings 
focused on bacteraemia, as well as a collection of retrospective 
surveillance studies describing global O-serotype epidemiology 
between 2011 and 201730 and genomic data from human com-
mensal E. coli in France between 1980 and 2010.31 We present a 
recent, global prospective study on E. coli isolates from hospita-
lized IED patients combining O-typing results with phylogeny, 
and with a detailed comparison of AMR genotypes as determined 
with WGS and phenotypes with AST.

E. coli strains belonging to O25b-ST131 present a growing 
challenge for clinicians due to their frequent association with 
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MDR, their increasing prevalence worldwide and ability to cause 
localized outbreaks of IED.30 The proportion of MDR isolates of 
37% in our study of which 40% are O25, is comparable to the 
one reported in Oxfordshire, UK, where 44% (1434 of 3278) of 
the invasive E. coli isolates were found to be MDR. However, this 
proportion is much higher than reported by Weerdenburg 
et al.30 in a larger global study (with more than 3200 invasive 
E. coli), where approximately 10% of the isolates were classified 
as MDR and 60% of MDR isolates were O25. These differences 
might reflect regional differences, variability in MDR definition 
and/or antibiotic classes that were tested.

Epidemiological data about extra-intestinal E. coli in 
sub-Saharan Africa is still relatively scarce, but studies in 
Malawi,32,33 Tanzania,34 Uganda,35 South Africa36 and the 
Democratic Republic of Congo37 show a highly diverse E. coli 
population ST131 being the predominant ST.

The increasing levels of AMR among Gram-negative bacteria, 
including E. coli, is a global threat and is one of the main drivers 

for prophylactic approaches such as vaccine development. 
A nine-valent vaccine (EXPEC9V) for the prevention of IED is cur-
rently being tested in a pivotal vaccine efficacy trial (E.mbrace 
study; ClinicalTrials.gov Identifier NCT04899336). Our data sup-
port that ExPEC9V, as well as the earlier tested EXPEC4V, candi-
date vaccines cover a substantial number of the E. coli strains 
collected in this study, with a predicted vaccine coverage of ap-
proximately 45% for EXPEC4V and 65% for EXPEC9V. This finding 
is in line with previous findings from patients of all ages in the UK 
(46% and 72%; 2008–2018)28 and results from patients aged 
>60 years across Europe, North America, Asia-Pacific and South 
America (47% and 68%; 2011–2017).30 In commensal E. coli iso-
lates from healthy individuals in France, the four O-serotypes 
covered by EXPEC4V represented nearly one-quarter (24%; 
1980–2010) of the isolate collection.31 Previous implementation 
of the serotype-based pneumococcal vaccine led to an increased 
incidence of the serotypes that were not targeted by the vac-
cine.38,39 Pneumococcal vaccines induce immunity that impacts 

Figure 3. The population structure of extra-intestinal pathogenic E. coli is represented by a midpoint-rooted maximum-likelihood phylogenetic tree of 
the unique isolate collection (238 isolates), based on 1000 bootstraps. Core genomes of the isolates in this study and the reference genome E. coli K-12 
were aligned. The tree is based on 139 932 SNPs. Coloured ranges represent predominant STs found in more than five isolates. Rings 1, 2 and 3 denote 
the hospital site, vaccine coverage by ExPEC4V and ExPEC9V, and multidrug resistance (MDR). Rings 4, 5 and 6 show resistance to cephalosporins, fluor-
oquinolones and aminoglycosides. The scale bar indicates the number of SNPs per site in the core genome alignment. The tree was visualized using 
iTOL.
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pneumococcal nasopharyngeal carriage, thereby applying a se-
lective pressure to switch serotypes to escape the immune re-
sponse. Unlike Streptococcus pneumoniae, E. coli normally 
inhabits the intestinal tract, representing a distinct immunologic-
al compartment. It remains unknown whether ExPEC4V and 
ExPEC9V apply the same selective pressure in the gut as pneumo-
coccal vaccines do in the nasopharynx. Stool sample analysis 
including O-serotype prevalence and general metagenomic pro-
filing revealed no indication of vaccine impact on E. coli preva-
lence, countering the notion of vaccine-induced serotype 
replacement.40 Close monitoring via surveillance and additional 
microbiome studies will be crucial to assess the risk of serotype 
replacement. Altogether, our findings support the further devel-
opment and theoretical coverage of O-antigen based vaccines 
targeting E. coli. However, ongoing and future studies will need 
to provide evidence whether such vaccines show protective effi-
cacy against the vaccine serotypes and assess the cost-benefit 
ratio of a vaccine-based prophylactic approach.

One study strength is that in a subset of patients more than 
one E. coli isolate was obtained from different body sites, allow-
ing for a comparison of paired isolates from the same patient and 
thus assessment of the within-host diversity of the E. coli isolates 
both at the genomic and phenotypic levels. These data allowed 
us to confirm that in most of the cases the collected E. coli strains 
from blood and urine were genetically identical. However, in a 
small number of cases (four patients) different strains were ob-
served, indicating a co-infection of multiple strains and highlight-
ing the potential impact of within-host diversity. Alternatively, 
faecal contamination of the urine sample could lead to detection 
of an isolate that was not responsible for IED. One blood isolate 

harboured a plasmid with six resistance genes. Loss of this plas-
mid in the urine isolate compared to the blood isolate could have 
occurred during re-isolation and/or storage of the isolates.

Our study is part of the EXPECT-2 research project (ClinicalTrials. 
gov #NCT04117113) and complements the paper by Doua et al.10

in which the clinical presentation, characterization of IED by infec-
tion acquisition setting and outcome was reported in detail. 
Overall, the proportion of patients with community-acquired 
(50%) and healthcare-associated (30%) IED reflects the propor-
tion reported in other similar studies carried out in elderly adult pa-
tients in different countries and continents.41,42

One of the limitations of our study is the potential bias of this 
collection by including only one enrolling site per country, except 
for Japan, which might not be representative of the distribution of 
E. coli isolates at the country level. In addition, the participating 
centres used their own criteria and protocols for obtaining blood 
culture collection, sample transport and storage of isolates. 
Further, a selection bias at the patient level cannot be excluded 
as the proportion of community- versus healthcare-acquired 
infection, comorbidities and severity of infection at time of enrol-
ment could possibly have varied at the different sites. Moreover, 
this study was a prospective study of relatively short duration 
(between 2019 and 2021). This may not enable us to capture 
the possible emergence of new clonal lineages involved in 
IED or population genetic structure evolution within STs that 
may only appear in longitudinal surveys over longer periods 
(10–20 years).43–45

In conclusion, the E. coli isolates causing IED are diverse, with 
the most frequent being O25b-ST131, a strain with high rates of 
MDR. Our data showing the distribution of the phylogeny, STs, 

Table 1. Prevalence of antibiotic resistance following EUCAST breakpoints

Class of antibiotic
Europe  

(n = 148)
North America  

(n = 60)
Eastern Asia  

(n = 30)
Unique isolate collection  

(n = 238)

Number of isolates (%)

Susceptible 47 (31.8) 23 (38.3) 15 (50) 85 (35.7)
MDRa 54 (36.5) 23 (38.3) 11 (36.6) 89 (37.4)
Resistance to single classb

Aminoglycosides (gentamicin/tobramycin) 18 (12.2) 14 (23.3) 6 (20) 38 (16.0)
β-lactam/β-lactamase inhibitor combination (piperacillin-tazobactam) 6 (4.1) 4 (6.7) 2 (6.7) 12 (5.0)
Extended-spectrum cephalosporin (ceftriaxone/ceftazidime) 19 (12.8) 16 (26.7) 7 (23.3) 42 (17.6)
Fluoroquinolones (ciprofloxacin/levofloxacin) 36 (24.3) 20 (33.3) 10 (33.3) 66 (27.7)
Folate synthesis inhibitor (trimethoprim/sulfamethoxazole) 52 (35.1) 15 (25.0) 7 (23.3) 74 (31.1)
Tetracyclines (tetracycline/minocycline) 52 (35.1) 16 (26.7) 6 (20.0) 74 (31.1)

Resistance to last resort antibiotics
Colistin 0 0 0 0
Ertapenem 0 0 0 0
Imipenem 0 0 0 0
Meropenem 0 0 0 0
Ceftazidime/avibactam 0 0 0 0

aMDR: multidrug resistant defined as non-susceptibility to at least one agent in three of more antimicrobial categories. 
bThe degree of drug resistance was based on susceptibility to representative antibiotics in the following six classes of antimicrobial drugs: aminoglyco-
sides, extended-spectrum penicillins (piperacillin-tazobactam) β-lactam/β- lactamase inhibitors, expanded-spectrum cephalosporins, folate synthesis 
inhibitor and tetracyclines.
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O-serotypes and AMR profiles of E. coli isolates may provide add-
itional epidemiological and microbiological information and in-
form the development of multivalent conjugate vaccines that 
target E. coli O-antigens.
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