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Global population datasets 
overestimate flood exposure 
in Sweden
Konstantinos Karagiorgos 1,2,3*, Stefanos Georganos 4, Sven Fuchs 1,5, Grigor Nika 6, 
Nikos Kavallaris 3,6, Tonje Grahn 1,3, Jan Haas 3,4 & Lars Nyberg 1,2,3

Accurate population data is crucial for assessing exposure in disaster risk assessments. In recent years, 
there has been a significant increase in the development of spatially gridded population datasets. 
Despite these datasets often using similar input data to derive population figures, notable differences 
arise when comparing them with direct ground-level observations. This study evaluates the precision 
and accuracy of flood exposure assessments using both known and generated gridded population 
datasets in Sweden. Specifically focusing on WorldPop and GHSPop, we compare these datasets 
against official national statistics at a 100 m grid cell resolution to assess their reliability in flood 
exposure analyses. Our objectives include quantifying the reliability of these datasets and examining 
the impact of data aggregation on estimated flood exposure across different administrative levels. 
The analysis reveals significant discrepancies in flood exposure estimates, underscoring the challenges 
associated with relying on generated gridded population data for precise flood risk assessments. 
Our findings emphasize the importance of careful dataset selection and highlight the potential for 
overestimation in flood risk analysis. This emphasises the critical need for validations against ground 
population data to ensure accurate flood risk management strategies.

Keywords Flood exposure, Gridded population dataset, WorldPop, GHSPop, Flood risk management, 
Sweden

Flooding is a global challenge that affects many regions worldwide. Over the past 20 years, more than 1.6 billion 
people have been impacted globally, with estimated losses surpassing 1 trillion US  dollars1. Flood impacts can be 
mitigated through flood risk management, and high-risk areas can be identified by flood risk  assessments2. These 
assessments rely on the conceptual framework that considers flood risk as a combination of hazard (the flood 
event), exposure (the people and assets at risk), and vulnerability (the susceptibility of the exposed elements)3. 
While significant efforts have been made in developing hazard and vulnerability assessments, the assessment of 
exposure still remains fragmentary in many practical  applications4 and is thus under-researched5,6.

Apart from other elements at risk, population information plays a critical role in supporting exposure 
 assessments7. The availability of such information, however, is often limited particularly in countries with less 
detailed or infrequent  censuses8,9 or due to confidentiality, privacy issues and nondisclosure  requirements4. As 
a result, high-resolution census population data are mostly classified, and national census authorities typically 
provide such data at pre-defined and aggregated spatial resolution or statistical  division10. To overcome this 
gap, available digital spatial data, such as those derived from multi-temporal high-resolution satellite imagery 
has been used to derive gridded population data that can be used in flood risk assessments. As a consequence, 
exposure analysis focusing on population have been conducted at different  scales2,11,12 using such gridded data 
(see  Smith13 for further discussion), but results have hardly been critically evaluated so  far4.

The scientific community has increasingly demonstrated how to create global georeferenced data to address 
the information gaps in low-income  countries14 or to overcome inconsistencies in census-derived national popu-
lation  data8. Over the past 25 years, the number of available gridded population datasets has grown significantly. 
Gridded population mapping involves allocating census data to spatial units (grid cells) of a specific size based 
on a population distribution  model15. Some of the most widely used gridded population products include the 
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WorldPop  database16, the Global Human Settlement Layer Population (GHSPop)17, the Gridded Population of 
the World (GPW)18, the Global Rural Urban Mapping Project (GRUMP)19, the Landscan population  database20 
and the High Resolution Settlement Layer (HRSL)21. These datasets are applied in a wide variety of research 
areas, enhancing evidence-based decision-making. However, several studies using these datasets often neglect to 
justify their choice of dataset, even though it has been demonstrated that the selection of data can significantly 
impact the  outcomes16,22.

Even though the gridded population products utilize comparable input data (census data, administra-
tive boundary data and geospatial correlates), there are notable discrepancies when compared to ground 
 observations23. To evaluate the reliability of gridded population datasets, several comparative analyses have been 
 conducted22–27. The majority of these focus on total population estimates, with very few studies aiming to quantify 
population exposure to various natural  hazards28–30 and even fewer specifically addressing flood  exposure4,10,13. 
Additionally, current studies validating flood exposure have been limited to using either a 1 km grid or relying 
on synthetic  data4,13. Uncertainty is inherent in population estimates and there is currently no accepted method 
to quantify or communicate the level of uncertainty associated with the available data  products31. While differ-
ences in population counts for most counties are insignificant, they can be significant in smaller administrative 
 units32. Objective comparisons can support our understanding of the differences and limitations of the various 
datasets and the nature of these differences. Population grids ultimately need to be validated against ground 
population data to ensure the most accurate  estimates31. Furthermore, a challenge faced by all the producers of 
gridded population estimates is the lack of spatially detailed datasets that correlate with the variation of popula-
tion density across small areas. Accurate fine-scale gridded population data is needed for these datasets to be 
useful in policy and  practice33.

While gridded products are becoming integral to decision-making processes for various stakeholders, the 
discussion of the fitness for use of spatial data, particularly concerning scale, has received less  attention8. Users of 
gridded products often attempt to model a specific process of interest, but there is frequently a mismatch between 
the operational scale and the analytical  scale8. Although gridded products offer high-resolution estimates, this 
does not inherently ensure greater accuracy at the analytical scale. In fact, uncertainties and errors tend to escalate 
as the resolution  increases31. These effects are described in the literature as the Modifiable Areal Unit Problem 
(MAUP)34. MAUP is a potential source of error in generated population studies; however, most of these studies 
overlook its impact on their  results15.

The aim of this study is to contribute to the ongoing discussion regarding the accuracy and suitability of 
gridded population datasets for flood exposure analyses. This is accomplished by evaluating the discrepancies 
between two commonly used gridded population datasets and official population statistics in Sweden at a 100 m 
grid cell level. The first objective is to quantify the flood exposure reliability of two globally available gridded 
population datasets (WorldPop and GHSPop) by comparing them to a national reference dataset in Sweden. 
Although other datasets exist, they were excluded from this analysis due to differences in spatial resolution (not 
available at the 100 m grid cell level), temporal limitations (not available for the specific year of analysis), una-
vailability of data in the study area and lack of global coverage. The second objective is to assess and quantify the 
impact of data aggregation on estimated flood exposure at different administrative levels.

Results
Flood exposed population
Table 1 presents a statistical analysis comparing flood exposure estimates derived from the reference population 
data provided by the Swedish Statistical Bureau (SCB) with those extrapolated using modelled populations gen-
erated by WorldPop and GHSPop across various administrative divisions. The analysis reveals that the GHSPop 
model generally outperforms the WorldPop model in nearly all metrics, exhibiting a discernible linear trend 
(see the bottom two scatter plots in Fig. 1). At the municipal level, the results are particularly reliable for both 
modelled datasets. The GHSPop model accounts for approximately 80% of the variability  (R2 = 0.80), while the 
WorldPop model accounts for about 74% of the variability  (R2 = 0.74), with few outliers. Additionally, the Root 

Table 1.  Performance metrics of population comparison from the reference dataset (SCB—Swedish Statistical 
Bureau) to those from the generated datasets at different administrative boundary levels, using WorldPop 
and GHSPop datasets. The administrative levels include Grid (1 km), Demographic Statistical Areas (DeSo), 
Regional Statistical Areas (RegSo), and Municipality. The performance is evaluated based on R-squared, Root 
Mean Squared Error (RMSE), Mean Absolute Error (MAPE) and Percentage Mean Absolute Error (%MAE).

Administrative boundaries n R-squared RMSE MAPE %MAE

WorldPop

Grid (1 km) 534,712 0.49 13 118.42 73.41

DeSo 5985 0.41 140 121.85 67.68

RegSo 3363 0.53 191 115.17 61.57

Municipality 290 0.74 1484 47.34 38.13

GHSPop

Grid (1 km) 534,712 0.63 11 168.87 74.07

DeSo 5985 0.50 105 149.91 65.2

RegSo 3363 0.67 138 126.73 55.66

Municipality 290 0.80 1003 43.18 31.32



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20410  | https://doi.org/10.1038/s41598-024-71330-5

www.nature.com/scientificreports/

Fig. 1.  Scatter plots comparing the exposed population estimates from the reference dataset (SCB—Swedish 
Statistical Bureau) to those from the generated datasets, WorldPop (left column) and GHSPop (right column), 
across four administrative levels : Grid (1 km), Demographic Statistical Areas (DeSo), Regional Statistical 
Areas (RegSo), and Municipality. Each plot shows the SCB estimates on the x-axis and the corresponding 
estimates from WorldPop and GHSPop on the y-axes. The dashed line represents the 1:1 ratio, indicating perfect 
agreement between the datasets. The dispersion of points around this line illustrates the degree of correlation 
and potential discrepancies in population exposure estimates between the different sources and administrative 
divisions.
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Mean Square Error (RMSE) at the municipal level indicates that GHSPop data significantly surpasses WorldPop 
data (GHSPop RMSE = 1003 versus WorldPop RMSE = 1484), as shown in Table 1. As the analysis progresses to 
regional (RegSo), demographic (DeSo), and 1 km grid areas, the model’s reliability diminishes, and the linear 
trends dissipate. When comparing the two modelled populations with the reference data using Mean Absolute 
Error (MAE), GHSPop consistently outperforms WorldPop, with the exception of the 1 km grid level.

Figure 1 presents scatter plots comparing flood exposure estimates based on known population data from SCB 
with those derived using generated population data from WorldPop and GHSPop across different administrative 
levels: Grid, DeSo, RegSo and Municipality. The scatter plots reveal a positive correlation at all administrative 
levels; however, the strength of this correlation varies significantly, with some levels displaying tighter clustering 
and others showing greater dispersion.

At the grid level, there is a discernible trend between the known population dataset and the generated datasets, 
albeit with some scatter, indicating variability in the accuracy of WorldPop and GHS-Pop compared to the SCB 
dataset. Moving to the DeSo level, the scatter tightens, especially noticeable for WorldPop, suggesting better 
consistency at this administrative level. Conversely, at the RegSo level, the points exhibit wider dispersion, par-
ticularly for the GHSPop dataset, indicating less consistency in population estimates. Finally, at the municipality 
level, both WorldPop and GHSPop datasets show a tighter cluster of points, with GHSPop demonstrating fewer 
outliers and thus higher accuracy at this level.

Figure 2 depicts the cumulative distribution functions (CDFs) of flood exposure estimates based on known 
population data from SCB, compared with those derived using generated population data by WorldPop and 
GHSPop across various administrative boundaries. In all four graphs, both WorldPop and GHSPop datasets 
show a similar overall trend in their estimates across the population range. However, both datasets consist-
ently tend to overestimate the exposed population. WorldPop overestimates the exposed population by 35%, 

Fig. 2.  Cumulative Distribution Functions (CDFs) comparing the exposed population estimates from the 
reference dataset (SCB—Swedish Statistical Bureau) to those from the generated datasets, WorldPop and 
GHSPop , across four administrative levels : Grid (1 km) (n = 534712), Demographic Statistical Areas (DeSo) 
(n = 5985), Regional Statistical Areas (RegSo) (n = 3363), and Municipality (n = 290). Each plot shows the CDF of 
exposed population estimates, with SCB in blue, WorldPop in red and GHSPop in green. The x-axis represents 
the exposed population, while the y-axis represents the cumulative probability.
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while GHSPop overestimates it by 10%. Across all administrative boundaries, WorldPop consistently estimates 
higher numbers of individuals in flood zones and the discrepancy between the three datasets increases with 
population size. At the grid and RegSo levels, the estimates are comparable in the lower population ranges, but 
as population size increases, both datasets significantly overestimate the exposed population. At the DeSo and 
municipality levels, estimates are similar for low and medium population ranges, but overestimation occurs in 
higher population ranges.

Figure 3 demonstrates the differences in population flood exposure at the municipal level, contrasting known 
population data from SCB with estimates derived from generated population data by WorldPop and GHSPop. 
Both models show underestimation in northern and central Sweden, regions primarily rural with lower popu-
lation densities. In contrast, overestimation is evident in major cities and suburban areas known for extensive 
industrial and commercial activities. The most substantial overestimation occurs in Gothenburg municipality 
for both datasets. To explore this discrepancy, we compared information related to population densities across 
the three datasets and examined building usage in the area (Fig. 4). In Gothenburg, industrial buildings (Fig. 4A) 
are primarily clustered along major waterways and transportation routes. There is also significant industrial 
presence close to central urban space, with smaller clusters distributed in peripheral regions. The SCB refer-
ence dataset (Fig. 4B) shows high population density areas concentrated around central urban areas, gradually 
decreasing towards rural peripheries. In contrast, the WorldPop generated population distribution (Fig. 4C) 
suggests higher population densities in urban areas than observed in reality, with notable overestimation in 
specific industrial zones. Similarly, the GHSPop dataset (Fig. 4D) indicates overestimation in both central and 
peripheral urban areas.

Discussion
Population data are essential components in risk assessment and management. Due to privacy concerns and 
the unavailability of high-resolution census population datasets, many disaster studies rely on modelled global 
population datasets at finer spatial resolutions. However, the accuracy and suitability of these datasets has to be 
carefully evaluated. In the age of open data, it is crucial to assess the appropriateness of a dataset and to quantify 
potential uncertainties. Our national-scale comparison of flood exposure represents a significant advancement 
over previous studies, which repeatedly conducted validations only at a kilometer grid level. In this study, two 
gridded population datasets—WorldPop and GHSPop—were evaluated in the context of flood exposure. Equally 
important, the impact of data aggregation at different administrative levels was also assessed and quantified.

Based on the statistical comparisons conducted, it was found that GHSPop’s population estimates outper-
form WorldPop’s across nearly all the metrics when assessing flood exposure. So far, comparisons at a 100 m 

Fig. 3.  Differences in exposed population estimates between the reference dataset (SCB—Swedish Statistical 
Bureau) to those from the generated datasets, WorldPop and GHSPop at the municipality level.
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grid resolution for flood exposure have not been previously documented in the literature. In studies comparing 
coarser resolutions, Tuholske et al.35 examined five gridded population datasets (GPW-15, GHSPop, WorldPop, 
Landscan and ESRI World Population Estimates) to estimate the proportion of population residing in flood-prone 
areas. They observed significant variations in estimates of exposed population at 1 km × 1 km resolution across 
different products. Notably, GHSPop provided more accurate estimates compared to the WorldPop-Global-
Unconstrained dataset. In another comparison of four global datasets, Mohanty and  Simonovic4 concluded that 
WorldPop performs better than GHSPop in a 1 km × 1 km comparison.

Comparison studies of gridded population datasets reveal significant variation in precision across different 
scales and locations. This variability in accuracy can lead to diverse conclusions and decisions depending on the 
dataset chosen for  analysis36. The findings from this study underscore the necessity of validating global population 
datasets against fine-resolution reference datasets to achieve the most accurate estimates. Users must carefully 
evaluate and comprehend the characteristics of different population datasets to select the most suitable option. 
Moreover, fine-scale validations could offer crucial insights and enhancements to the modelling methods and 
inputs used in these datasets.

Interestingly, both datasets under evaluation demonstrate optimal performance at the municipal level. The 
performance metrics are as expected, confirming quantitatively that despite employing different methods to 
construct the gridded population datasets, both datasets align closely with census counts at the administrative 
unit level, adjusted to correspond with UN estimates. Consistent with prior  research37–39, our findings indicate a 
decline in predictive accuracy as the model shifts to finer administrative levels. One contributing factor to these 
discrepancies at finer spatial scales may be the absence of detailed land-use information in dasymetric models. 
This includes distinctions between residential and non-residential built-up areas, as well as the incorporation of 
relevant predictors such as building volume and elevation. Additionally, population distribution is non-random, 
which means that how population is allocated and represented will always be influenced by aggregation effects. 
According to Leyk et al.8, it is crucial to acknowledge that the MAUP significantly impacts the suitability of data 
products in analyses where precise spatial positioning of population is essential. This finding aligns with research 
by other scholars investigating exposure to natural hazards, such as Fuchs et al.40. The use of finer resolution 
data in this study underscores the importance of ongoing testing of gridded population products across various 
spatial resolutions. While users may naturally prefer the highest resolution population data available, they should 
carefully assess whether this effectively meets their specific  needs31.

Fig. 4.  Comparison of population distribution between the known population data from SCB (B) with those 
derived using generated population data by WorldPop (C) and GHSPop (D) at Gothenburg municipality, 
considering flood extent and building uses (A).
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The analysis conducted in this study reveals significant overestimates in the exposed population to flooding 
when comparing official known population data with generated population datasets at a national scale. Both 
evaluated datasets, WorldPop and GHSPop, consistently overestimated the exposed population at national level 
across various administrative units examined. The findings contradict previous studies, which suggested that 
generated gridded population datasets tend to underestimate exposed populations. For example, Mohanty and 
 Simonovic4 assessed census-level population data from Statistics Canada alongside four generated datasets at 
1 km × 1 km resolution, finding that all global population datasets underestimated the actual population. When 
comparing the different generated population datasets in this study, it was observed that flood exposure esti-
mates using GHSPop resulted in lower overestimates compared to WorldPop. This contrasts with Mohanty and 
Simonovic  findings4, where WorldPop provided estimates closest to the official Canada census data, followed 
by LandScan, GPW, and GHSPop. Importantly, our analysis utilizes a finer 100 m x 100 m official population 
dataset, whereas Mohanty and  Simonovic4 used a coarser 1 km x 1 km official population grid. This highlights 
that the spatial scale of evaluating population data can introduce uncertainties, with finer resolutions potentially 
reducing them. Given that flooding is a highly localized phenomenon using coarser resolutions of population 
can pose challenges. This aligns with Smith et al.’s13 conclusion that combining high-resolution population data 
with high-resolution hazard data leads to more accurate exposure assessments.

Given the significant overestimates, a challenge encountered by producers of gridded population data is 
the scarcity of spatially detailed datasets that adequately reflect population density across small intra-urban 
 areas33. Although geospatial covariates are used to correlate the presence or absence of people, none of these 
datasets is reflective of the locations of high concentrations. Random Forest models utilize covariates such as 
land cover types and night-time lights, which typically have a resolution coarser than 100 m × 100 m. This lead 
to a “halo” effect, where population is assigned to cell adjacent to settlements rather than directly over  them36. 
It is crucial that the next versions of population distributions maps constrain their disaggregation within high-
quality, accurate building footprint layers that are becoming increasingly  available41,42. Additionally, the example 
of Gothenburg demonstrates how land use and the presence of industrial buildings can significantly influence 
the distribution of population and underscore the discrepancies between real and modeled population data 
particularly in distinguishing between residential and non-residential land uses. These findings suggest areas 
of improvement in the population models and more work will be needed to develop accurate datasets for the 
distinction of land use to avoid population being misallocated to industrial districts, universities, airports and 
other non-residential  cells36,43,44.

Flood risk assessment and management are major applications for gridded population data, if exposure has 
to be evaluated. The primary objective of the study was to compare the population estimates from different 
datasets in the context of flood exposure. The consistent methodology applied across all datasets ensures that 
the comparison is valid and any observed discrepancies are due to differences in the datasets rather than the 
method of analysis. The analysis presented in this study provides valuable insights for users of global gridded 
population products. It offers a quantitative comparison between known and two generated population data-
sets, clearly illustrating the differences among them. This study, although focused on Sweden, presents findings 
with broad implications for stakeholders utilising large-scale flood exposure data in risk analysis and decision-
making processes. We recommend that researchers and decision makers acknowledge the inherent uncertainty 
associated with these products. To better characterise this uncertainty, users should incorporate multiple grids 
in their analyses instead of relying solely on a single data product. Our findings underscore the need for further 
validation research and thorough scrutiny of gridded population datasets. Future studies should prioritize cross-
country evaluations, as emphasized in existing  literature31 which calls for a systematic global comparison rather 
than focusing solely on individual countries. Our aim is to advance these findings by examining more detailed 
population datasets, such as High-Resolution Settlement Layer (HRSL) and employing dasymetric techniques 
at the individual building  level45.

Data and methods
Data
Official national population dataset
As the reference for the known population, the total population of Sweden represented in a 100 m × 100 m 
vector grid has been used. The dataset is made available by the Swedish Statistical Bureau (SCB), where the 
input information is based on the Swedish population register. The Swedish population register includes all 
the registered residents in Sweden both Swedish citizens and non-Swedish citizens with a residence permit for 
a minimum of 12 months. To generate the grid data each individual in the population register is geocoded to 
their specific residence location and this information is then generalized to the grid code, based on the centroid 
of each residential building. This data is available exclusively for research purposes and can be accessed upon 
special request to SCB.

Generated population datasets
WorldPop. WorldPop provides open-access to gridded demographic indicators. The dataset was developed by 
the WorldPop project and is available at https:// www. world pop. org/. In our case, we used the 2020 constrained 
population product of population counts at approximately 100 m spatial resolution in the world geodetic sys-
tem WGS84. To re-allocate population counts into gridded pixels, a semi-automated, dasymetric approach that 
incorporates census and ancillary data is used, employing a random forest estimation technique. The ancillary 
spatial data include settlement locations, settlement extents, land cover, roads, building maps, health facility 
locations, satellite nightlights, vegetation, topography, and refugee  camps46. The constrained product restricts 
the population disaggregation only within built-up areas. Naturally, these data can vary from country to country 

https://www.worldpop.org/
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based on data availability. Moreover, the generated gridded population datasets have been adjusted to match the 
United Nations’ population estimates.

GHSPop. The GHSPop dataset provides residential population estimates at approximately 100 m spatial reso-
lution in the Mollweide projection and the WGS84 reference systems. The dataset was developed by the Joint 
Research Center (JRC) within the Global Human Settlement Layer (GHSL) project and is available at https:// 
ghsl. jrc. ec. europa. eu/ downl oad. php? ds= pop. It covers the period from 1975 to 2030 in 5-years intervals. The 
fundamental inputs encompass vector-based population estimates provided by the Center for International Earth 
Science Information Network (CIESIN) for the Gridded Population of the World (GPWv4.11) at polygon level. 
These estimates are disaggregated from census or administrative units to grid cells, informed by the distribu-
tion, classification, and volume of built-up as mapped in the GHSL global layers for each corresponding epoch, 
produced from Landsat imagery collections. To improve accuracy, the generated gridded population datasets 
are rescaled to match the total population time series at ’city’ level from the extended database feeding the UN 
World Urbanization Prospects 2018, and the total population time series at country level provided by the UN 
World Population Prospects  202247.

Administrative divisions
The administrative divisions used in this study consist of four levels: the 1 km grid, Demographic Statistical 
Areas (DeSo), Regional Statistical Areas (RegSo), and municipal levels (Fig. 5). The 1 km grid provides national 
coverage. The DeSo level, comprising 5985 areas, each with a population between 700 and 2700 inhabitants, 
and represents a nation-wide breakdown along county and municipal boundaries. DeSo areas tend to be stable 
and do not change over time. However, there is an exception: these areas might be subdivided in the future if 
their population composition and urban boundaries in particular change significantly. Similarly, the RegSo level 
is encompassing 3363 areas, each with a population ranging from 663 to 22,622 inhabitants, and represents a 
nation-wide breakdown along county and municipal boundaries. RegSo areas are stable and do not change over 
time unless there are any alterations to the county or municipal divisions, in which case the RegSo boundaries 
will be adjusted accordingly. Lastly, at the municipal level, there are data available for 290 municipalities. All the 
aforementioned datasets are freely available and can be accessed via SCB.

Flood hazard dataset
Swedish Civil Contingencies Agency (MSB) open access 100-year floodplain data. To estimate the number 
of people exposed to river flooding, the spatial distribution of flood hazards is represented by a 100-year flow, 
developed by the Swedish Civil Contingencies Agency (MSB) according to the requirements of the European Flood 
Risk Directive (Directive 2007/60/EU). These datasets serve as the national standard employed by MSB and the 
county administrative boards for the development of flood risk management plans. The MSB flood data are 
stored as polygons in ESRI Shapefile format and are freely available for download from the MSB’s flood portal 
(https:// gisapp. msb. se/ Apps/ overs vamni ngspo rtal/ index. html).

Methods
Geospatial methods
The SCB population data are presented in a vector polygon format, while WorldPop and GHSPop are in raster 
format. The raster datasets were converted into a vector format and re-projected to match the coordinate system 
(SWEREF99) of the known population data.

Regarding the methodology applied in this study, we have defined exposure as the intersection of hazard and 
population data. An evaluation of the total population ensued, aligning the acknowledged total population by 
the SCB with the aggregate populations derived from WorldPop and GHSPop datasets.

Fig. 5.  An example (Värmland county) of the different administrative units in Sweden. Municipalities (A), 
Regional Statistical Areas (RegSo) (B), Demographic Statistical Areas (DeSo) (C) and 1 km grid (D) division.

https://ghsl.jrc.ec.europa.eu/download.php?ds=pop
https://ghsl.jrc.ec.europa.eu/download.php?ds=pop
https://gisapp.msb.se/Apps/oversvamningsportal/index.html
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To estimate the number of people exposed to river flooding, MSB hazard data, described as inundation 
areas, were intersected with population grids from both the known and generated datasets: SCB, WorldPop and 
GHSPop. Firstly, the intersection with the hazard data involved selecting population squares (100 m resolution) 
from both the known and generated population datasets that overlap with the inundated areas. Secondly, these 
inundated cells were converted into discrete points by calculating their centroids to facilitate a spatial join. This 
transformation was performed to optimize computational efficiency and prevent polygon double counting across 
two administrative levels. With this approach, we ensure that a population cell is only counted as inundated if 
the centroid of the area has been identified as being affected by the respective inundation polygon. Finally, a 
spatial join was performed to achieve a cohesive aggregation, allowing for the calculation of exposed population 
figures for each unit across various administrative levels, including the 1 km grid, Demographic Statistical Areas 
(DeSo), Regional Statistical Areas (RegSo), and municipal levels.

To evaluate the analyses developed for the various administrative boundaries based on known and generated 
populations, comparison statistics were calculated. The statistic metrics used included the Root Mean Squared 
Error (RMSE) as shown in Eq. (1), the Mean Absolute Percentage Error (MAPE), as shown in Eq. (2) and the 
percent Mean Absolute Error (%MAE), as shown in Eq. (3).

The variable yi indicates the known exposed population of sample i from the official population data, and ŷi 
indicates the generated exposed population of sample i from the population data for the two gridded datasets. 
RMSE represents the square root of the average squared difference between the actual and synthetically generated 
population values. Among the three metrics, we prioritize the MAE due to its heightened resilience in the pres-
ence of outliers. While RMSE (linked with the value of  R2, which represents the proportion of the variance for the 
dependent variable that is explained by an independent variable in the model) stands as a conventional statistical 
metric, it accentuates larger errors disproportionately due to the squaring of values. Additionally, in contrast to 
RMSE, both MAE and MAPE offer a straightforward interpretation between the observed and predicted values. 
In the last step, Cumulative Distribution Functions (CDFs) were developed to understand characteristics of the 
exposed population distribution across the three datasets at various administrative levels. By examining the 
shapes of CDFs, important characteristics of the distribution were extracted, such as the concentration of the 
data, its dispersion, and overestimations and underestimations.

Data availability
The official national population dataset used in this study, provided by Statisitska centralbyrån (SCB), is avail-
able exclusively for research purposes and can be accessed upon special request to SCB (https:// www. scb. se/). 
The WorldPop dataset, developed by the WorldPop project, is publicly available at https:// www. world pop. org/. 
The GHSPop dataset, developed by the Joint Research Center (JRC) within the Global Human Settlement Layer 
(GHSL) project, is publicly available at https:// ghsl. jrc. ec. europa. eu/ downl oad. php? ds = pop. Administrative divi-
sions are freely available and can be accessed via SCB (https:// www. scb. se/). The flood hazard dataset, developed 
by the Swedish Civil Contingencies Agency (MSB), is freely available for download from the MSB’s flood portal 
(https:// gisapp. msb. se/ Apps/ overs vamni ngspo rtal/ index. html).
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