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Machine learning accelerates 
pharmacophore‑based virtual 
screening of MAO inhibitors
Marcin Cieślak 1,2,3*, Tomasz Danel 1,4, Olga Krzysztyńska‑Kuleta 5 & 
Justyna Kalinowska‑Tłuścik 1*

Nowadays, an efficient and robust virtual screening procedure is crucial in the drug discovery process, 
especially when performed on large and chemically diverse databases. Virtual screening methods, 
like molecular docking and classic QSAR models, are limited in their ability to handle vast numbers 
of compounds and to learn from scarce data, respectively. In this study, we introduce a universal 
methodology that uses a machine learning-based approach to predict docking scores without the 
need for time-consuming molecular docking procedures. The developed protocol yielded 1000 times 
faster binding energy predictions than classical docking-based screening. The proposed predictive 
model learns from docking results, allowing users to choose their preferred docking software without 
relying on insufficient and incoherent experimental activity data. The methodology described 
employs multiple types of molecular fingerprints and descriptors to construct an ensemble model 
that further reduces prediction errors and is capable of delivering highly precise docking score values 
for monoamine oxidase ligands, enabling faster identification of promising compounds. An extensive 
pharmacophore-constrained screening of the ZINC database resulted in a selection of 24 compounds 
that were synthesized and evaluated for their biological activity. A preliminary screen discovered weak 
inhibitors of MAO-A with a percentage efficiency index close to a known drug at the lowest tested 
concentration. The approach presented here can be successfully applied to other biological targets as 
target-specific knowledge is not incorporated at the screening phase.

Keywords  Machine learning, Virtual screening, Monoamine oxidase inhibitors, Molecular descriptors, 
Molecular docking

Exploration of a large chemical space1 in the search for novel lead compounds remains a challenge2. Thus, modern 
drug discovery campaigns require fast, robust, and efficient approaches to accelerate the design process3–5. The 
recent remarkable development of computational methods and algorithms has led to the successful application 
of virtual screening (VS)6, often based upon molecular docking procedures. It is routinely applied to assess the 
affinity of a ligand to the selected target protein7. The structure-based techniques constantly evolve and improve 
due to the increasing number of data deposited within the Protein Data Bank (PDB)8. This database is the utmost 
source of structural information concerning intermolecular interactions in biological systems. Through a deeper 
understanding of protein-ligand complex formation and stabilization, novel algorithms can be introduced and 
subsequently modified. Thus, as a consequence, an advantageous route to increasing the predictive power of the 
methods applied may be obtained. The utility of molecular docking procedures in the continued search for new 
lead structures is often fraught with costly computations to discover the optimal binding pose for the screened 
compounds. Of late, such calculations are often complimented or entirely bypassed by machine learning (ML) 
methods, that can derive quantitative structure-activity relationship (QSAR) models based on the ligands’ chemi-
cal structures9. These models use different classes of molecular descriptors as input and return predicted activity, 
e.g. estimated binding affinity or IC50 values. Nevertheless, the results of QSAR models are highly dependent on 
the training datasets, and predictions can be unreliable when novel chemotypes are presented to the model10.
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In parallel to improving QSAR models, significant efforts are also being made to accelerate docking-based 
VS. Recently, there has been an exponential increase in available screening libraries, ranging from purchasable 
compounds through on-demand and combinatorial libraries to de novo generated chemical spaces. Using clas-
sical molecular docking procedures to screen billions of molecules is infeasible2,11. In consequence, the highly 
performing ML methods that predict docking scores based on two-dimensional molecular structures seem 
a good alternative12. A recent publication suggests that ML models can outperform single-conformation docking 
when trained with docking scores from protein conformation ensembles13. Finally, deep neural networks enable 
fast screening of over a billion compounds towards various molecular targets14. In this study, we employ ML 
methods to accelerate the discovery of new monoamine oxidase inhibitors (MAOIs) in constrained subspaces 
of VS libraries.

Presently, the number of patients suffering from central nervous system dysfunctions increases rapidly17. The 
complex and uncomprehended etiology causes that the discovery and development of new, safe, and efficient 
drugs against such pathological conditions remain elusive18,19. One of the intensively studied and promising 
targets are monoamine oxidase enzymes (two isoforms MAO-A and MAO-B)20,21 which are flavin-binding 
(FAD) proteases responsible for the oxidative deamination of diverse endo- and exogenous monoamines, e.g. 
neurotransmitters22. MAOs dysfunctions may lead to many disorders, including major depressive disorder, 
anxiety disorder, Parkinson’s, and Alzheimer’s disease23–25. Thus, the significance of MAO as a drug target in 
neurodegenerative disorders or even cancer treatment seems to be justified26–28.

Over the years, many small molecular inhibitors of monoamine oxidase (MAOIs) have been designed and 
developed. They can be classified into either non-selective or selective, and either reversible or irreversible 
inhibitors27. MAO-A inhibitors are used as antidepressants, and these which act on MAO-B slow down the 
progression of Parkinson’s or Alzheimer’s diseases29,30. The first generation of MAOIs was a class of irreversible 
non-selective antidepressants that were later withdrawn from the market due to the severe toxicity31 with multiple 
undesirable drug-drug and drug-food interactions32,33. For instance, MAO-B degrades tyramine contained in 
many foods, and the inhibition of this enzyme combined with the lack of dietary restrictions can lead to hyper-
tension (so-called “cheese effect”) or even death34,35. Currently, MAOIs are not considered the first-choice drugs 
and are prescribed only in cases of treatment-resistant depression36,37. Thus, it became crucial to design novel, 
selective, and reversible monoamine oxidase inhibitors. Nevertheless, such a process remains a challenge, as 
both MAO isoforms share a high level of sequence identity. However, some small differences within the binding 
site may support the selective MAO-A or MAO-B inhibitors design. The sequence alignment (Fig. 1) reveals 
three crucial mutations within the ligand’s binding site (Phe208/Ile199, Phe173/Leu164 and Ile335/Tyr326, for 
MAO-A/MAO-B, respectively) that with the additional structural/cavity shape differences can be a road map 
leading to the discovery of selective inhibitors27,38,39.

Several computer-aided ligand- and structure-based drug discovery approaches have been employed in the 
search for novel and efficient MAO-A and/or MAO-B inhibitors27,40,41. Vilar et al.42 discussed the application of 
the 2D and 3D features to train ligand-based models, including multiple linear regression, partial least squares 
regression, linear discriminant analysis, comparative molecular field analysis (CoMFA), pharmacophore mod-
els, and neural networks. Lorenzo et al.43 evaluated caulerpin analogs in a ligand- and structure-based virtual 
screening to find potential inhibitory activity against MAO-B. Wang et al.41 employed hierarchical ligand-based 
methods to find selective MAOIs.

Despite the successful results of the aforementioned methods, designing new, selective, and reversible MAOIs 
is still a significant challenge for medicinal chemists. Thus, we developed a universal methodology based on the 
ensemble of machine learning models for the quick assessment of the compound activity, on the example of MAO 
inhibitors. In this approach, ligand-based QSAR models were trained to approximate the docking scores of the 
Smina docking software44. The results obtained were used to prioritize a large number of compounds retrieved 
from the ZINC database45, filtered by multiple models of pharmacophoric constraints. To test the performance 
of the proposed method, the top compounds were docked to MAO-A and MAO-B. The scoring function results 
obtained showed a strong correlation to the predictions from our model. Finally, the 24 top selected compounds 
were synthesized and in vitro tested, showing up to 33% MAO-A inhibition.

Unlike traditional QSAR models, the developed methodology is not limited by available bioactivity data and 
speeds up virtual screening compared to classical molecular docking procedures. In this study, the proposed 
approach is used to search for MAO-A and MAO-B inhibitors. Nevertheless, this methodology can be applied 
to other biological targets in general, allowing for the choice of molecular docking software which gives the best 
agreement to the experimental data. The methodology overview is depicted in Fig. 2.

Materials and methods
Activity dataset
The MAO-A and MAO-B ligands with their corresponding activity data were downloaded from the ChEMBL 
database (ver. 29 2021-07-21)46. In the resulting dataset, there are 2 850 records with MAO-A and 3 496 records 
with MAO-B activity values. Only compounds with given Ki and IC50 values were retained. Smina docking scores 
(DS) were calculated for the combined set of these compounds, filtered by molecular weight, excluding those 
greater than 700 Da, and highly flexible structures, for which docking procedure and precise pose predictions 
are more demanding and complicated. The distribution of the activity values used in the experiments and the 
docking scores obtained are shown in Figure 3. Due to the small number of available data, the compounds with 
given inhibition constants Ki were not used for activity modeling by machine learning methods. The IC50 values 
were transformed into pIC50 values ( pIC50 = − log10 IC50 ) to mitigate the negative impact of very high values.
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Data‑splitting strategies
In the machine learning experiments, the prediction of two parameters was under investigation, these were 
pIC50 values and docking scores. To train machine-learning models, the dataset was randomly split into training, 
validation, and testing subsets in the proportions of 70/15/15. The splitting was repeated five times to account 
for the variability of the data, and the mean score with its standard deviation was reported in all of the following 
results. In other experiments, the data was divided into subsets based on compound Bemis-Murcko scaffolds47. 
The proportions were kept the same as for the random split, and the overlap of the scaffolds between subsets 
was minimized to ensure that the evaluations were performed on chemotypes that differed from those used in 
the training process. This method of data splitting is used to test the model’s ability to generalize to new chemo-
types. The scores achieved by the models for this data-splitting strategy are usually lower, but they describe the 
screening capability of these models more accurately.

Figure 1.   The superposition of MAO-A (2Z5Y) and MAO-B (2V5Z) binding sites (top). The differing amino 
acids are shown as red and green sticks for MAO-A and MAO-B, respectively. An exemplary ligand, ((S)-2[4-
(3-fluorobenzyloxy)benzalamino]propanamide)in the MAO-B binding site, is shown in blue. In the MAO-A/
MAO-B sequence alignment chart (bottom), the amino acids of the binding site are marked with a blue frame, 
and these near the FAD are underlined in green. The pocket comparison was created with PyMOL15, and the 
sequences were aligned with MOE16.
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To avoid splits with big differences in the distribution of the activity measurements, we sampled 50 splits 
and retained those with the lowest D statistic in the two-sample Kolmogorov–Smirnov (KS) test comparing the 
distribution of the activity labels in the training, validation, and testing subsets. The details of our KS data split 
are included in the Supporting Information.

Molecular docking
Human monoamine oxidase (hMAO) crystal structure coordinates were downloaded from the Protein Data 
Bank (PDB)8. The resolution of the diffraction data for the selected structures of MAO-A with harmine (PDB ID: 
2Z5Y)48 and MAO-B with safinamide (PDB ID: 2V5Z)49 was reported as 2.17 Åand 1.60 Å, respectively. Prior to 
the docking procedures, the ligands and water molecules were removed, so the only remaining molecules were 
the target enzyme and FAD. The active sites of both MAO isoforms are compared in Fig. 1.

The Smina docking software version 2020.12.1044 (https://​sourc​eforge.​net/​proje​cts/​smina/) was used to per-
form molecular docking. This program is based on Autodock Vina50 and focuses on improving scoring and 
minimization. The initial 3D conformations of ligands were computed using the OpenBabel tool51. The docking 
procedure was run with the default parameters.

For comparison, other docking programs were used, such as AutoDock implemented in Yasara52, MOE16, and 
DockThor53. These programs were selected to compare a variety of both the conformation search algorithms and 
the scoring functions applied. To search the conformational space, AutoDock and DockThor use the Lamarck-
ian and DMRTS (Dynamic Modified Restricted Tournament Selection)54 genetic algorithms, respectively, 
while Smina uses the ILS (Iterated Local Search) optimizer combined with the BFGS (Broyden–Fletcher–Gold-
farb–Shanno) algorithm for local optimization. An empirical free-energy function is used for scoring in Auto-
Dock and Smina, and DockThor uses a physics-based scoring function derived from the MMFF94S (Merck 
Molecular Force Field)55. MOE uses the Triangle Matcher algorithm for selecting conformations and scores 
them using the London dG scoring function.

Figure 2.   The schematic representation of the proposed virtual screening approach. The MAOs ligands selected 
from the ChEMBL database are docked, and the pharmacophore hypotheses of the best docking molecules are 
generated. In parallel, the fingerprints and descriptors of the docked compounds are applied to train machine 
learning models, allowing the prediction of activity values and docking scores. The pharmacophores and 
binding models are used to identify the most promising compounds from the ZINC database.

Figure 3.   The distribution of the predicted (docking score) and experimental activity values retrieved from the 
ChEMBL database. The number of compounds is denoted by n and a color code was applied for each isozyme. 
The unit for docking scores is kcal/mol , and −log10(nM) for pIC50 and pKi.

https://sourceforge.net/projects/smina/
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Activity prediction with machine learning models
Molecular descriptors
As input to machine learning models, several molecular descriptors and fingerprints were selected and applied. 
Molecular descriptors were calculated using Mordred56 and RDKit toolkits57, yielding 1 314 and 196 properties, 
respectively. These descriptors encode information about, e.g., the occurrence of individual fragments in mol-
ecules (characteristic functional groups), graph topological indexes, molecular weight, polar surface area, and 
other molecular properties. Some of them require initial information about the three-dimensional structure, 
e.g. Mordred which assigns 1D, 2D, and 3D descriptors. For optimizing molecular conformations, the MMFF55 
implemented in the RDKit tool was used.

In the category of fingerprints, MACCS (Molecular ACCess System) keys58, Morgan59, and Avalon60 finger-
prints were selected. The first type of fingerprint is based on a handcrafted set of predefined substructures. The 
Morgan fingerprint is a circular fingerprint (we use a radius of 2 and a vector length equal to 1024), and the 
Avalon fingerprint is path-based (we use 512 bits). The RDKit implementation of these fingerprints was applied.

Machine learning models
In the experiments, three machine learning algorithms widely used for molecular property prediction were 
employed: random forest (RF)61, support vector machine (SVM)62, and artificial neural network (ANN)63.

RF is a nonlinear model that builds multiple decision trees that create predictions by making consecutive 
binary decisions up to the point where the input data is sorted into a group with an assigned prediction value. 
The final prediction is retrieved from the predictions of all decision trees. RFs can process high-dimensional 
data such as molecular fingerprints effectively. They are interpretable, and their predictions can be attributed to 
the input features. On the other hand, a significant amount of time may be needed to train RFs on large datasets.

SVM is a model that constructs a regression formula optimized so that the majority of true values lie within 
an ε-margin from the predicted value. The nonlinearity of this model is achieved by applying the so-called kernel 
trick. SVMs are flexible and can process large datasets, but they are not interpretable and their computational 
complexity increases rapidly with the number of input features.

ANN is a biologically inspired model based on the way the neural network processes information. The model 
consists of many connected processing units called neurons. Each neuron can take as an input multiple features 
which are weighted by the learned strengths of neural connections. Neurons aggregate this information with the 
sum operation, use a non-linear activation function, and propagate the information to the next layer of neurons. 
The model prediction is the output of the network’s last-layer neurons. ANNs can handle big datasets and process 
large numbers of input features. They require almost no feature engineering because their initial layers can serve 
as data preprocessors. Unfortunately, these models are not interpretable and their performance depends heavily 
on the selection of the network architecture and training procedure.

Model evaluation
Multiple models were trained with different hyperparameters on the training set and then evaluated on the 
validation set to find the optimal hyperparameter set. Next, models were evaluated on the testing set, and test 
performance was reported for each combination of molecular descriptors and machine-learning models. The 
full set of tuned hyperparameters is included in Supporting Information.

The coefficient of determination R 2 was used for model evaluation. This evaluation metric describes how 
much variation of the true activity value is explained by the model, where the maximum possible value is 1 
means that the model predictions correlate perfectly with the true activity values. The metric is defined below.

where N is the size of the testing set, yi is the true activity value of the i-th compound, ŷi is the predicted activity 
value of the i-th compound, and ȳ is the mean activity value in the testing set.

Biochemical assay
The HTS screening was performed using the fluorometric assay: Monoamine Oxidase-A Inhibitor Screening Kit 
(Merck) according to the manufacturer’s protocol. Echo 650 Liquid Handler (Labcyte) was used to dose com-
pounds on the 384-well plate format at 3 different concentrations: 100 µM , 10 µM , and 1 µM in duplicate. All 
compounds were dissolved in DMSO (at a final concentration 1%). Using Mantis Liquid Dispenser (Formulatrix), 
to each tested compound 12.5 µL of protein was added (at final concentration 56 nM) and incubated for 60 min 
at 25 ◦C . After that, the enzymatic reaction was initiated by the addition of 10 µL/well of an aqueous solution 
of p-tyramine (substrate) and incubated for 60 min at 25◦C . The fluorescence intensity was measured on a plate 
reader (BioTek Synergy H1) using the following settings: excitation at 535 nm and emission at 587 nm. The data 
were normalized to low control (assay buffer containing substrate) and high control (protein and substate). The 
results were presented as a percentage of inhibition.

Results
In this section, we explain the decisions made to optimize the VS pipeline (cf. Fig. 2) and the steps undertaken 
to select the best ligands that were chosen for the following in vitro tests. First, we discuss the reasons for the 
docking software choice. Second, the predictions of activity values and docking scores are compared between dif-
ferent machine learning methods and molecular descriptors or fingerprints. Next, the best models are ensembled 

(1)R2 = 1−

∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳ)2

,
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(combined) to further improve prediction accuracy. Finally, the selected ensemble models are applied to search 
a pharmacophore-constrained chemical subspace, and the resulting diverse hits are confirmed in vitro.

Selection of docking software and comparison of scoring functions performance
To select the docking software that shows the strongest correlation to the experimental activity data for both 
target systems, four available molecular docking tools were tested and compared. All the compounds deposited 
within the ChEMBL database with experimental Ki values for either MAO-A or MAO-B were docked (516 and 
386 compounds, respectively). Subsequently, the correlation between docking scores and experimental Ki values 
was calculated and compared (Fig. 4). Due to the shift of experimental values in the MAO-B assays, the calcula-
tions for MAO-A and MAO-B were done differently. For MAO-A, we report the correlation of values assembled 
from all the assays. For MAO-B, we average correlation values computed separately for 5 assays with the greatest 
number of data points. More details on this approach are included in Supporting Information (see Figure C2).

The Spearman correlation coefficients suggest that all the docking programs achieve a rather weak correlation 
with the experimental Ki for MAO-A. In the case of MAO-B, Smina’s and Yasara’s (AutoDock) correlations are 
significantly higher. For further investigation, we decided to use Smina, considering its relatively good correlation 
with the experimental data for both molecular targets and the ease of use when building automated pipelines.

Ligand‑based activity prediction
The proposed VS pipeline starts with the activity data downloaded from the ChEMBL database. Multiple 
machine-learning models combined with different molecular representations/fingerprints were trained to predict 
the pIC50 values of the compounds in the MAO-A and MAO-B assays. The calculated R 2-scores for two data splits 
of the activity dataset are presented in Table 1. We observe a moderate correlation between prediction and the 
experimental data for all models, reaching R 2=0.71 at the highest (random split). In the case of the scaffold split, 
the predictions performed for the testing subset are close to those obtained for the random split, with average R 2
-scores dropping below 0 for the ANN that operates on the RDKit descriptors to predict MAO-B inhibition. The 
standard deviation of R 2-scores is also significantly higher for the scaffold split. However, this result is expected 
due to an insufficient number of data to learn/derive meaningful relationships that generalize to new chemical 
structures (there are only 1717 and 2272 compounds with IC50 values in the MAO-A and MAO-B training sets, 
respectively). Additionally, one may observe that the highest scores are achieved for the Morgan and Avalon 
fingerprints, and even the MACCS fingerprint with a fixed set of hand-crafted structural features obtains com-
petitive results. This suggests that the information about the chemical structure is crucial in predicting inhibitory 
activity, and the 1D descriptors (RDKit and Mordred) lack this information.

When working with experimental data, especially stored in public databases, numerous problems may arise 
from the differences in measurement methods (e.g., different assays), the precision of different devices used 
in the experiment, or even human errors. To overcome these discrepancies, the docking scores instead of the 
experimental data were used to train the same combinations of machine-learning models. For each compound 
in the activity dataset, molecular docking was performed to establish its Smina docking score, which was sub-
sequently used for training. Table 2 demonstrates R 2-scores in the task of docking score prediction. In contrast 
to the prediction of pIC50 values, the models obtained with this approach had considerably higher R 2-scores. 
The results for the scaffold split are still not satisfactory and exhibit higher variance but, in most cases, the gap 
between the random and scaffold split is not vast. Moreover, better scores are achieved using 1D descriptors, 
i.e., RDKit and Mordred. These results indicate that there is a strong (possibly nonlinear) correlation between 
selected molecular features and docking scores that is not observed in the biological data.

Figure 4.   Correlation between selected scoring functions and experimental Ki for (a) MAO-A and (b) MAO-B 
isozymes.
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Importance of input features
The deeper insight into the abovementioned observation revealed that different classes of molecular representa-
tions work best at predicting pIC50 and docking scores, respectively. Interestingly, for the docking score predic-
tion, the connectivity/shape/complexity molecular descriptors lead to better results, whereas for predicting the 
half-maximal inhibitory concentration, the substructural fingerprints representing molecular features perform 
better. The importance of the RDKit descriptors extracted from the random forest model on the docking score/

Table 1.   Test R 2-scores in pIC50 prediction for MAO-A and MAO-B inhibitors. The highest scores for each 
isozyme and split are typed in bold. Additionally, the highest scores for each isozyme, split, and model are 
underlined.

MAO-A MAO-B

Random Scaffold Random Scaffold

RF

 Morgan 0.6121 ± 0.0384 0.3038 ± 0.1257 0.6807± 0.0296 0.4444± 0.0986

 Avalon 0.6039 ± 0.0404 0.3258± 0.0971 0.6447 ± 0.0307 0.3724 ± 0.1310

 MACCS 0.5888 ± 0.0408 0.2946 ± 0.1154 0.5862 ± 0.0444 0.3067 ± 0.1421

 RDKit 0.5691 ± 0.0437 0.1778 ± 0.1400 0.6078 ± 0.0375 0.3816 ± 0.0795

 Mordred 0.5279 ± 0.0169 0.1945 ± 0.1296 0.5916 ± 0.0336 0.4046 ± 0.0893

SVM

 Morgan 0.6282± 0.0309 0.2920 ± 0.1412 0.7075± 0.0277 0.4923± 0.0981

 Avalon 0.6004 ± 0.0361 0.3214± 0.0745 0.6572 ± 0.0523 0.4115 ± 0.1203

 MACCS 0.5757 ± 0.0203 0.2829 ± 0.1595 0.5717 ± 0.0482 0.3241 ± 0.1140

 RDKit 0.5647 ± 0.0296 0.2443 ± 0.1407 0.6071 ± 0.0234 0.3982 ± 0.1561

 Mordred 0.5855 ± 0.0418 0.2178 ± 0.1615 0.6567 ± 0.0478 0.3513 ± 0.3474

ANN

 Morgan 0.6178± 0.0540 0.2255 ± 0.1186 0.6875± 0.0314 0.4092 ± 0.1223

 Avalon 0.5498 ± 0.0812 0.2453 ± 0.0494 0.6485 ± 0.0532 0.3728 ± 0.1721

 MACCS 0.5841 ± 0.0500 0.3025± 0.1106 0.5745 ± 0.0418 0.3130 ± 0.1840

 RDKit 0.5472 ± 0.0519 0.0947 ± 0.1805 0.6115 ± 0.0226 -0.1228 ± 1.1259

 Mordred 0.5764 ± 0.0743 0.2085 ± 0.1590 0.6564 ± 0.0321 0.4247± 0.0819

Table 2.   Test R 2-scores in the prediction of Smina docking scores for MAO-A and MAO-B inhibitors. The 
highest scores for each isozyme and split are typed in bold. Additionally, the highest scores for each isozyme, 
split, and model are underlined.

MAO-A MAO-B

Random Scaffold Random Scaffold

RF

 Morgan 0.7740 ± 0.0828 0.6066 ± 0.2859 0.6495 ± 0.0339 0.4143 ± 0.0536

 Avalon 0.8218 ± 0.0668 0.5476 ± 0.4135 0.6648 ± 0.0490 0.3639 ± 0.1251

 MACCS 0.7652 ± 0.0790 0.3996 ± 0.7031 0.6339 ± 0.0734 0.4649 ± 0.1259

 RDKit 0.8788 ± 0.0447 0.8105 ± 0.0880 0.7228 ± 0.0638 0.5831 ± 0.1225

 Mordred 0.8742 ± 0.0580 0.7924 ± 0.1034 0.7086 ± 0.0514 0.5906 ± 0.1023

SVM

 Morgan 0.8363 ± 0.0794 0.6019 ± 0.2581 0.7065 ± 0.0400 0.5020 ± 0.0880

 Avalon 0.8513 ± 0.0657 0.5587 ± 0.3736 0.6752 ± 0.0522 0.3494 ± 0.1677

 MACCS 0.7977 ± 0.0506 0.5251 ± 0.4731 0.6400 ± 0.0254 0.4798 ± 0.1452

 RDKit 0.8888 ± 0.0464 0.8137 ± 0.1195 0.6902 ± 0.0508 0.6036 ± 0.1114

 Mordred 0.8813 ± 0.0676 0.7765 ± 0.1701 0.7248± 0.0325 0.6418± 0.1076

ANN

 Morgan 0.8341 ± 0.0605 0.6380 ± 0.2676 0.6713 ± 0.0408 0.4106 ± 0.0353

 Avalon 0.8357 ± 0.0349 0.6820 ± 0.2579 0.6742 ± 0.0596 0.4121 ± 0.0733

 MACCS 0.8128 ± 0.0694 0.5023 ± 0.6289 0.6075 ± 0.0720 0.4273 ± 0.1485

 RDKit 0.8890± 0.0335 0.8243± 0.0995 0.6829 ± 0.0495 0.5267 ± 0.1209

 Mordred 0.8711 ± 0.0362 0.8227 ± 0.1028 0.6952± 0.0506 0.6060± 0.0871
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pIC50 prediction is shown in Fig. 5. These importance values correspond to the impurity decrease or, in other 
words, how much information is explained by the decisions that use these features.

The features important for predicting docking scores are dominated by topological descriptors (e.g. Ipc and 
BertzCT) constructed from the connectivity of molecular graphs and the number of heavy atoms or rotatable 
bonds. Conversely, the features selected when predicting pIC50 values focus more on specific atom types and 
partial charges (e.g. TPSA and LogP), corresponding to interaction patterns in the protein-ligand complex. This 
finding confirms that docking scores correlate with simple molecular properties such as molecular weight and 
overall molecular shape. For reference, short explanations of the descriptors used in this analysis are presented 
in Table D2 in Supporting Information.

Ensemble QSAR model

An important insight from the achieved results is that different models and descriptors can specialize in predict-
ing different chemical structures. One may take advantage of this observation by combining multiple models and 
types of input data. We build an ensemble model consisting of several best-performing models by aggregating 
their predictions as follows:

where x is the input compound and k is the number of best-performing models. We denote the prediction of 
i-th model by ŷi(x) and its R 2-score calculated on the validation set by r2i  . As the reasonable values of the R 2 
metric are in the range [0, 1], the normalization of these values is not required, and they can be used directly 
as model weights so that predictions of more accurate models contribute stronger to the final prediction. The 
performance of this ensembling method (named “ R2-weighted” in Table 3) in comparison with the arithmetic 
mean of predicted pIC50 and docking score (DS) values was evaluated. In this experiment, the top 5 models for 
each setup were chosen to create an averaged ensemble model. The difference in performance between weighted 
and non-weighted averages is negligible, so we conclude that both averaging strategies lead to similar gains. In 
the next step, the ensemble performance with various numbers of machine learning models was measured to 
select the number of models to be included in the ensemble. The results of this experiment are shown in Fig. 6. 
The obtained data suggest that using 5 models reasonably balances computation time and model performance.

(2)ŷ(x; k) =

∑k
i=1 r

2
i ŷi(x)

∑k
i=1 r

2
i

,

Figure 5.   The feature importance in the prediction of docking scores and pIC50 values for MAO-A and MAO-
B.

Table 3.   The results of machine learning ensembles consisting of the 5 models with the best R2 scores on the 
validation set.

MAO-A MAO-B

Random Scaffold Random Scaffold

pIC50

arithmetic 0.6531 ± 0.0421 0.3475 ± 0.0895 0.7212 ± 0.0276 0.4961 ± 0.0988

R
2-weighted 0.6531 ± 0.0425 0.3477 ± 0.0884 0.7214 ± 0.0277 0.4977 ± 0.0987

DS
arithmetic 0.9044 ± 0.0452 0.7832 ± 0.2049 0.7525 ± 0.0428 0.6458 ± 0.0839

R
2-weighted 0.9046 ± 0.0449 0.7833 ± 0.2048 0.7528 ± 0.0427 0.6462 ± 0.0839
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ML model performance in detecting active compounds
The performance of ML models in detecting active compounds was measured using the task of discerning active 
molecules from decoys. This method is often employed to assess docking results64,65. In this experiment, the 
strongest binders from ChEMBL are used as examples of active compounds, and decoys with a similar structure 
to the active compounds are generated. These decoys are designed to be inactive for the tested target. The per-
formance of our ML models and a standard molecular docking protocol is compared using enrichment curves 
that describe what percentage of the active compounds is detected in the top X% of the molecules ranked by 
these models.

The three ML models with the highest R 2 scores for each isozyme were evaluated using the decoy recognition 
method described above. To conduct a reliable evaluation of the models, only molecules from the testing set were 
used in this experiment. Compounds with Ki less than 100 nM were selected and classified as actives. Decoys 
for these compounds were generated using the DUD-E server66. The testing sets consist of 7 actives versus 200 
decoys and 28 actives versus 1200 decoys for MAO-A and MAO-B, respectively.

The ML model predictions and docking scores were used to rank all the compounds, and enrichment curves 
were plotted in Fig. 7 to show the ability of these models to detect active compounds in the top-ranked molecules. 
These results indicate that the tested models are capable of capturing a good portion of active compounds. We 
observe that by selecting only 10% of top molecules with respect to ML model predictions, we are able to capture 
∼80% and ∼50% of true binders (known ligands) for MAO-A and MAO-B, respectively.

Virtual screening with pharmacophoric constraints
A two-step VS procedure was conducted. In the first step, pharmacophore models for the best docking com-
pounds from the activity data were defined. In the following step, the pharmacophore hypotheses were used 
to query the ZINC database45, and all the fetched compounds were evaluated using the developed ML activity 
models to select the most promising ligand candidates.

Figure 6.   The relationship between the number of top models included in the ensemble and R2 scores obtained 
for the testing set. The presented ensemble models use the R2-weighted averages of predictions.

Figure 7.   Enrichment curves calculated for Smina docking results and three best ML models on the testing set.
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Generation of diverse pharmacophore hypotheses
The k-means (k=50) clustering algorithm67 was used to extract groups of structurally similar compounds in 
the activity datasets described above. The algorithm used Morgan fingerprints as an input representation. Only 
the best compounds from each cluster were retained based on their docking scores. Next, these structurally 
diverse representatives were clustered using interaction fingerprints calculated by PLIP68, yielding 5 groups 
of compounds sharing similar ligand-protein interaction profiles. For each of the clusters, a pharmacophore 
hypothesis was postulated using PharmaGist69. Two exemplary pharmacophores are shown in Figure 8. All the 
other pharmacophore models are presented in SuppSupporting Information.

It is worth mentioning that the defined pharmacophore models were confronted against the MAO pharmaco-
phores reported in the literature. In the case of MAO-A, our hypothesis is similar to the one proposed by Aljanabi 
et al.28 in which the active MAO-A compounds should contain two aromatic rings within the 6 Å distance. In our 
pharmacophore, the distance between the aromatic ring and hydrogen bond acceptor is defined as approx. 3.7 Å 
which was also suggested by Suryawanshi et al.70 Moreover, our proposed MAO-B pharmacophore hypotheses 
contain a motif of two aromatic rings together with a hydrogen bond donor. These hypotheses are supported by 
the literature that describes chalcones as a common motif in MAO-B inhibitors71,72.

Compound selection using pharmacophores and ML models
Subsequently, the ZINC database45 was searched for compounds that fulfill the pharmacophore requirements (7M 
for MAO-A and 5M for MAO-B). Then, all these molecules were evaluated using the developed ML activity mod-
els. For each compound, the mean prediction of the five best docking-score prediction models was calculated.

The compounds were clustered into structural groups using the k-means algorithm and the Tanimoto simi-
larity index. The top molecules in six synthetically-accessible groups were selected for synthesis and biological 
testing. Sampling from different structural groups ensures the diversity of the selected compounds.

Compound synthesis and MAO‑A inhibition results
We selected four compounds from each of the identified six structurally diverse groups. These molecules were 
chosen based on their activity predictions, avoiding compounds with a high synthesis cost. In total, 24 com-
pounds were selected, synthesized, and tested in the MAO-A biochemical assay. The synthesis protocols are 
described in Supporting Information. The compounds with the highest biological activity results are shown in 
Fig. 9.

The tested compounds achieved up to 33% MAO-A inhibition at the 100 µM concentration, and compound 
3 obtained 31% inhibition at the 1 µM concentration. Importantly, the selected molecules are relatively small 
compared to the known MAO ligands, which makes them good starting candidates for further optimization. Nev-
ertheless, we observed only moderate activity of the preliminarily selected compounds, which can be addressed 
by using more diverse screening libraries or training ML models on high-fidelity scoring functions based on 
molecular dynamics and quantum mechanics. The huge advantage of the presented screening methodology is 
the speed of hit identification from a large-scale database, enabling the first selection of candidates in about a 
week. Moreover, this approach can be easily modified and adapted to other targets and the best-performing 
docking procedures of choice.

The compounds synthesized and tested were relatively small with a molecular weight of around 300 Da. To 
properly compare our results with existing data, we decided to use the percentage efficiency index (PEI), which 
is a more suitable parameter for comparing compounds of different masses. PEI is calculated by dividing the 
percentage inhibition by the molecular weight in kDa.

Figure 8.   Examples of pharmacophore hypotheses generated based on the ChEMBL activity dataset 
and applied for putative ligands extraction from the ZINC database. (a) an exemplary compound 
(6-[[4-(trifluoromethyl)phenyl]methoxy]chromen-4-one) that conforms to one of the MAO-A pharmacophore 
hypotheses (b) an example of a compound (1-[2-hydroxy-4-[3-(4-pyridin-2-ylpiperazin-1-yl)propoxy]phenyl]
ethanone) for one of the MAO-B pharmacophores.
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The strongest inhibitor found in the MAO‑A biochemical assay
At a concentration of 1 µM , compound 3 achieved a PEI of 1.00, placing it 9th among 74 compounds in the 
ChEMBL database that were assigned inhibition percentages at the same concentration of 1 µM . It is worth 
noting that the top-ranked compound on this list is a covalent inhibitor. Our compound comes close in terms 
of PEI to the known drug, moclobemide (PEI = 1.33), which is a monoamine oxidase inhibitor, indicating its 
potential as a new lead candidate.

Molecular docking was conducted using the Smina package to propose a binding mode for this ligand. 
Three favorable poses were selected for molecular dynamics simulations of 30 ns to optimize and assess the 
obtained protein-ligand complex stability. The most promising pose, depicted in Figure 10, was found to be 
stable throughout the simulation time. Notably, during molecular dynamics, other less favorable ligand binding 
modes transform into a pose that is close to the proposed conformation.

In the predicted protein-ligand complex, a hydrogen bond interaction between the amine group of Gln215 
and the sulfone oxygen of the ligand can be observed. Additionally, the stabilization of the sulfonyl group can 
be supported by the interaction of the Gln215 amide π electrons and the aromatic ring of the ligand. The other 
aromatic ring of the small molecule interacts with the Met324 and Thr336 main chain oxygen atom of the peptide 
bond by C-H· · · O contacts. Moreover, the −NO2 group forms weak C-H· · · O contact with Phe352 and π-π with 
Tyr407 (classification based on the shortest observed distance between NO2 and Tyr407). However, other stud-
ies suggest that the nitro group in the compounds inhibiting MAO forms cation-π interactions with Tyr40773.

The proposed binding motif is consistent with similar examples in the literature postulating the nitro group 
of the compounds targeting MAO often orients itself towards the FAD cofactor74.

Figure 9.   Selected compounds derived based on the presented ML protocol, showing the highest biological 
activity; (a–c) stands for the percentage of inhibition at 100, 10, and 1 µM concentrations of the tested 
compounds, respectively; * indicates either no inhibition or autofluorescence observed for the compound at the 
marked concentration level.

Figure 10.   The proposed binding pose of the most active compound of all synthesized and tested in the 
MAO-A inhibition assay. The binding pose was visualized with PyMOL 15.
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VS acceleration achieved using the developed ML models
The advantage of using ML methods for docking score prediction instead of performing the traditional VS pro-
cedure by molecular docking is computation time reduction. To check this statement, the three random subsets 
of 1 000 molecules from the ZINC database were downloaded to perform VS using the Smina docking software 
and our best ML models. For MAO-A the best predictive models are 1st best: SVM on Mordred descriptors 
(random split), 2nd best: SVM on RDKit descriptors (random split), and 3rd best: SVM on Mordred descriptors 
(scaffold split). The top 3 models for MAO-B are 1st best: RF on RDKit descriptors (random split), 2nd best: RF 
on Mordred descriptors (random split), and 3rd best: RD on RDKit descriptors (random split). The last model 
in this comparison is the ensemble of the three best models that average their predictions.

In Table 4, we show the comparison of VS duration for the different approaches discussed above. We observe 
that all ML methods are more than an order of magnitude faster than the full docking procedure. Smina needs 
more than 4 hours to dock 1000 drug-like molecules, while even the ensemble model takes less than 15 minutes 
to score the same number of compounds. Moreover, the most time-consuming step in the developed ML methods 
is related to the computation of the molecular descriptors, and thus the time for models trained on Mordred 
descriptors increases compared to different approaches. When other features are used, e.g. RDKit descriptors, 
we can score 1000 molecules in less than 15 seconds.

All the computations were performed using an Intel Core i5 processor and 8 GB RAM. The standard devia-
tion in Table 4 is reported for the 3 runs on different subsets of the ZINC database. Although the same com-
putational resources were used to perform traditional and ML-based screening protocols, some ML methods, 
such as neural networks, can leverage GPUs to accelerate model training. Each model training run, including 
hyperparameter tuning, took less than a day. The NVIDIA GeForce GTX 1650 graphics card was used to train 
neural network models.

Limitations
Applicability domain
Our approach can easily be adapted to other biological targets, and the code for training ML models is avail-
able online. However, a few constraints should be considered before employing our virtual screening package.

First, a high-resolution crystal structure of the protein target should be used to obtain docking scores of the 
compounds. These scores are then used to train ML models, so the results depend on the quality of the molecular 
docking protocol. Homology modeling or ML-based protein structure prediction tools, such as AlphaFold75 or 
ESMFold76, can be used to obtain protein structures for docking. However, the accuracy of these methods is 
often disputed.

The second consideration is the number of available ligands with activity measurements for the target. Active 
molecules are used to generate pharmacophore hypotheses and reduce the search space of druglike molecules. 
Moreover, activity data is used to train ML models. If insufficient data is provided, the screening results might 
be worse than those presented in this study.

Lack of high‑fidelity methods
Our study is focused on reducing the time needed to propose the first set of compounds for a preliminary bio-
chemical screen. Our virtual screening package can select a diverse pool of predicted binders in about a week. 
A considerable limitation of this study is the lack of high-fidelity methods used to confirm the potency of the 
selected compounds. Methods such as free-energy perturbation (FEP) or MM/GBSA are based on molecular 
dynamics and can produce predicted affinities that correlate better with the experimental results. We plan to 
explore the possibility of integrating these tools in the future. However, they can increase the virtual screening 
time significantly, which defies the main objective of this study.

The performance of the ML models can be also improved by using more consistent bioactivity data from one 
high-throughput screening campaign. Merging data from different sources may introduce significant noise77 
and deteriorate the performance of QSAR models. Obtaining new activity measurements through biochemical 
assay delivers new high-fidelity compound binding data, but is more costly and time-consuming than most of 
the in silico methods.

Table 4.   Comparison of the VS time using different methods.  We compare the Smina docking procedure 
against the top 3 models for each isozyme. The 3-Ensemble model is the time of computing and averaging the 
predictions of the top 3 models.

VS method MAO-A MAO-B

Smina 14 900.0 s ± 330.5 19 160 s ± 2200.7

1st best 821.7 s ± 64.7 12.5 s ± 0.7

2nd best 11.8 s ± 0.1 844.0 s ± 55.4

3rd best 835.0 s ± 45.7 12.1 s ± 1.0

3-Ensemble 838.3 s ± 61.4 835.7 s ± 60.9



13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8228  | https://doi.org/10.1038/s41598-024-58122-7

www.nature.com/scientificreports/

Conclusions
Nowadays, searching for new drug candidates in a constantly expanding chemical space remains a challenge for 
computational methods. However, developing new algorithms that incorporate both structure- and ligand-based 
methods, along with high-performance computing, can accelerate the drug discovery process. One promising 
strategy is the integration of machine learning techniques to increase the predictive power and level up the chance 
to conclude with a viable drug/lead candidate.

In this study, we demonstrated an approach where predictive ML-based models were used to derive docking 
scores instead of biological activity. We have shown that the model prediction does not significantly differ from 
the docking scores obtained in the classical molecular docking-based VS approach. Furthermore, the screen-
ing time using ML models is strongly decreased. The developed models return a docking score over 1000 times 
faster than the standard docking protocol. These models enable rapid screening of considerably larger compound 
libraries than docking-based approaches. Building QSAR models with this method is simple and allows for using 
unlabeled or generated data, rather than relying on external sources of often inconsistent biological assay results 
like those reported in the literature and assembled in the ChEMBL database. Our approach provides flexibility 
in choosing the docking program and scoring functions most aligned with the actual biological outcomes for 
the chosen target system.

The initial biological testing of compounds obtained using the proposed methodology to identify MAO-A 
inhibitors produced promising results. The 24 hit candidates were synthesized and tested, exhibiting up to 33% 
inhibition at the 1 µM concentration. Importantly, the PEI of the best selectee and a known drug moclobemide 
was comparable, which can be explained by the small size of our molecule relative to its inhibitory potency. This 
satisfactory initial outcome was achieved despite the small number of compounds that were selected for testing. 
We believe this general approach can prove successful in other screening projects.

Data availability
The data used for training QSAR models, including MAO-A and MAO-B activity data extracted from the 
ChEMBL database and computed docking scores, and the model training scripts are shared in our code reposi-
tory: https://​github.​com/​marcin-​ciesl​ak/​mao-​qsar.
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