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Primary ciliary dyskinesia (PCD), a disorder of the motile cilia, is now recognised as an underdiagnosed cause of bronchiectasis.
Accurate PCD diagnosis comprises clinical assessment, analysis of cilia and the identification of biallelic variants in one of 50 known
PCD-related genes, including HYDIN. HYDIN-related PCD is underdiagnosed due to the presence of a pseudogene, HYDIN2, with
98% sequence homology to HYDIN. This presents a significant challenge for Short-Read Next Generation Sequencing (SR-NGS) and
analysis, and many diagnostic PCD gene panels do not include HYDIN. We have used a combined approach of SR-NGS with
bioinformatic masking of HYDIN2, and state-of-the-art long-read Nanopore sequencing (LR_NGS), together with analysis of
respiratory cilia including transmission electron microscopy and immunofluorescence to address the underdiagnosis of HYDIN as a
cause of PCD. Bioinformatic masking of HYDIN2 after SR-NGS facilitated the detection of biallelic HYDIN variants in 15 of 437
families, but compromised the detection of copy number variants. Supplementing testing with LR-NGS detected HYDIN deletions in
2 families, where SR-NGS had detected a single heterozygous HYDIN variant. LR-NGS was also able to confirm true homozygosity in
2 families when parental testing was not possible. Utilising a combined genomic diagnostic approach, biallelic HYDIN variants were
detected in 17 families from 242 genetically confirmed PCD cases, comprising 7% of our PCD cohort. This represents the largest
reported HYDIN cohort to date and highlights previous underdiagnosis of HYDIN-associated PCD. Moreover this provides further
evidence for the utility of LR-NGS in diagnostic testing, particularly for regions of high genomic complexity.
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INTRODUCTION
Primary ciliary dyskinesia (PCD) comprises a group of genetically
heterogenous disorders of the motile (9+ 2) cilia that contributes
to a growing number of ciliopathies [1]. There is increasing
awareness that PCD is underdiagnosed as a cause of bronchiec-
tasis and therefore its accurate and comprehensive diagnosis is
essential [2, 3]. Individuals with PCD present with a spectrum of
clinical findings, including neonatal respiratory distress, chronic
upper and lower respiratory tract disease, sinus and ear infections,
laterality defects, and infertility [4–8]. Phenotypic heterogeneity,
influenced by the underlying genetic cause, is observed among
individuals with PCD [4]. Recent work has estimated the global

prevalence of PCD is approximately 1:7500 individuals, although
the prevalence has been shown to vary greatly among different
populations [9].
PCD is almost exclusively an autosomal recessive condition,

however, rare X-linked forms and an autosomal dominant form
have been reported [10]. Currently, pathogenic variants in at least
50 genes encoding various components of the cilia as well as
trafficking proteins are known to cause the condition [11–13].
Pathogenic variants in these genes usually cause associated
defects in the axonemal ultrastructure of the motile cilia, or, more
rarely, reduced cilia numbers [13]. Disruption in these cilia
components typically causes defects in ciliary motility and
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waveform that characterise the motile ciliary dysfunction
observed in individuals with PCD. Of note, some genes, such as
DNAH11 [14], are known to be associated with normal axonemal
ultrastructure, often due to subtle defects that are missed by
clinical transmission electron microscopy (TEM).
In view of the highly variable clinical phenotypes and

genetically heterogenous ciliary disruptions observed in PCD,
diagnosis requires a specialist multidisciplinary approach. Current
guidelines for PCD diagnosis recommend integration of nasal
nitric oxide concentration measurement, cilia structure-function
assessment by high-speed video microscopy analysis (HSVMA),
immunofluorescence (IF), TEM and genotyping [15, 16].
Currently, a genetic diagnosis is made in up to 75% of clinically

confirmed cases, following detailed clinical and cilia studies [12].
Although PCD is genetically heterogeneous, it is well documented
that pathogenic variants in some genes are observed more
frequently than in others, although this distribution differs
between populations [9, 17]. For example, biallelic variants in
DNAH11 and DNAH5 are the most common causes of PCD in
Europe, accounting for ~30% of genetically confirmed cases [9].
Mutations in CCDC39, CCDC40 and DNAI1 are also recognised as
common causes of PCD whilst mutations in the remaining PCD-
associated genes are identified more rarely [9, 12, 18].
The HYDIN gene was first described in mice as a recessive cause

of hydrocephalus, with its expression localised to the motile cilia
[19]. HYDIN encodes the Hydrocephalus-inducing protein homo-
logue and its expression within the motile cilia was further
localised to a single projection from the C2 microtubule of the
central pair apparatus, called C2b [20, 21]. The motile cilia in
homozygous HYDIN mutant mice are reported to be unable to
bend fully and thus have a significantly reduced cilia beat
frequency, which leads to impaired fluid flow in the brain and the
development of hydrocephalus [21, 22]. In addition, similar ciliary
beat defects were observed in mouse tracheal cilia, suggestive of a
potential role for HYDIN as a cause of PCD [21, 22].
HYDIN (OMIM 610812), located on chromosome 16q22.2 in

humans [19], encodes the HYDIN axonemal central pair apparatus
protein and biallelic HYDIN variants cause PCD in humans [22–25].
Unlike most other PCD genes, recessive HYDIN variants do not
cause laterality defects, but do otherwise present with typical
clinical findings associated with PCD. When observed by HSVMA,
cilia on nasal epithelial cells from patients with HYDIN variants
show abnormal axonemal bending, as observed in mouse models,
which results in a twisting/rotating appearance similar to the beat
pattern of 9+ 0 nodal cilia, which lack a central pair complex [22].
Although loss of the C2b projections also occurs in these patients,
the small size of this projection from the central pair complex
means that it is rarely possible to visualise this absence on TEM,
although this is possible to demonstrate using 3D electron
microscopy tomography [22]. In clinical screening, IF must be used
instead [22]. However, there is a lack of commercially available
antibodies for the HYDIN protein within C2b. In addition to C2b,
the central pair complex is known to have 6 further projections,
including C1b, which anchors the C2b projection to the C1
microtubule [26]. It has been shown that a component of the C1b
projection, Sperm Flagellar 2 encoded by the SPEF2 gene,
associates directly with HYDIN, and that loss of HYDIN causes
concurrent loss of SPEF2. Consequently, IF using antibodies for
SPEF2 has been found to be informative for patients with HYDIN
variants, where loss of SPEF2 staining is apparent [27].
Humans carry a paralogous copy of HYDIN named HYDIN2 (OMIM

610813, HYDIN axonemal central pair apparatus protein 2) located
on chromosome 1q21.2 [28]. This 360 kb duplication includes exons
6–84 of the HYDIN gene, with only the first 5 and final 2 exons
being unique. The level of homology between the duplicated exons
of HYDIN and HYDIN2 exceeds 98% across the entire region [28].
The presence of HYDIN2 introduces problems with genetic analysis,
since the shared homologous regions make it difficult to design

PCR primers that uniquely amplify target regions, to create probes
to capture regions of interest for short-read sequencing, or to
uniquely map short reads after sequencing. Due to this genomic
complexity, HYDIN is not included in many PCD diagnostic gene
panels [27, 29]. These challenges along with the lack of laterality
defects, absence of clearcut diagnostic cilia structural defects, and
relative preservation of cilia motility in affected individuals all
contribute to the underdiagnosis of HYDIN-related PCD.
Short-read sequencing technology is generally limited in its

ability to identify structural variants, to sequence repetitive
regions, to phase alleles, and to distinguish highly homologous
genomic regions [30]. We hypothesised that the relatively low
number of pathogenic variants in HYDIN reported in individuals
with PCD may be due to technical and analytical difficulties in
analysing HYDIN because of its similarity with HYDIN2; and that
long-read sequencing (LRS) could be used to identify missing
disease-causing variants in these cases [31, 32]. In this paper, we
use a combination of short-read and long-read sequencing to
identify likely disease-causing variants in HYDIN in 17 families who
lacked a precise genetic diagnosis, comprising 7% of our PCD
diagnostic cohort.

SUBJECTS AND METHODS
Individuals and samples
The study cohort comprised individuals with a clinical suspicion of PCD, from
437 families who had been referred for molecular genetic diagnostic testing
and, in most cases, analysis of their respiratory cilia. All patients were
recruited at the Royal Brompton Hospital and provided written informed
consent for genetic testing and the use of their data for research. Ethics
approval for genetic studies was obtained from the NHS Health Research
Authority, IRAS project ID: 103488 and London-Bloomsbury Research Ethics
Committee (REC) reference: 08/H0713/82. DNA was extracted from peripheral
EDTA blood or saliva from patients using the QIAGEN EZ1 Advanced XL or
QIAGEN QIAsymphony instrument, following the manufacturer’s protocol.

Cilia diagnostics
Following a detailed assessment of clinical features and presentation, nasal
nitric oxide levels were measured in all individuals >5 years old by
chemiluminescence (Logan 2500, Logan Sinclair, Kent, UK) or for patients
after 2020 electrochemically (Niox Vero, Circassia). Readings from each
nostril were recorded during velum closure manoeuvres (breath holding or
breathing against a resistance) and the average value recorded in ppb.
Where possible results were converted to nl/min for reporting, or if
conversion was not possible (for tidal nasal nitric oxide measurements)
results were ported in ppb. All patients underwent a nasal brushing for
PCD diagnosis and ALI cell culture was set up as described in
Supplementary Material.
High-speed video microscopy was performed on fresh epithelial strips in

a chamber slide at 37 °C using a 100× oil immersion objective and Leica
upright microscope (DM-LB) with high-speed video camera (Troubleshoo-
ter TS-5 Fastec imaging) as described in supplementary material. Ten strips
of ciliated epithelium were recorded, including top and side views, and
assessed by a diagnostic scientist for beat pattern and frequency as
previously described [33]. Samples were subsequently fixed in cacodylate
buffered 2.5% glutaraldehyde for transmission electron microscopy (TEM).
Electron microscopy was conducted as previously described and
summarised in Supplementary Material. 300 ciliary cross sections were
counted per section and results reported according to the BEAT-PCD TEM
consensus guideline [34]. In cases where variants in HYDIN were suspected
as a cause, advanced TEM techniques were employed to visualise the C2b
projection. These included electron tomography [22] or image averaging
via an inhouse developed program (PCD detect) [34].
Samples taken after 2020 were air dried onto slides and stained for SPEF2

by immunofluorescence (supplementary material). Ten cells were assessed
per sample, and the co-localisation of SPEF2 protein with acetylated tubulin
of the ciliary axoneme was recorded as present or absent.

Genetic diagnosis
Targeted short-read next generation sequencing. Targeted short-read NGS
(SR-NGS) was performed on a custom 182-gene panel, using Agilent
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SureSelect QXT library preparation and sequencing on a NextSeq550
platform (Illumina, San Diego, USA). Library preparation used a paired-end
protocol, resulting in fragment lengths between 150–300 bp. Negative
controls were added to each library prep to ensure minimal contamination
occurred. Sequence data from targeted SR-NGS was analysed using an
automated in-house bioinformatics pipeline (details provided in supple-
mentary material). For individuals from all 437 families, first line SR-NGS
analysis was targeted to 47 genes associated with PCD, including all
coding exons of the HYDIN gene. The HYDIN2 region (chr1:146472566-
146914294, GRCh38 reference) was programmatically masked using
bedtools v2.27.0 maskfasta feature, so that all four alleles of HYDIN and
HYDIN2 were aligned to HYDIN. Variants were filtered and classified
according to in-house decision trees, which included multiple parameters,
such as allele frequency in the gnomAD database (http://
exac.broadinstitute.org; www.gnomad.org), presence in HGMD, presence
in our in-house variant database, ClinVar (https://www.ncbi.nlm.nih.gov/
clinvar/) and PubMed (https://www.ncbi.nlm.nih.gov/pubmed/). Missense
variants were assessed for their effect on protein structure and function
using SIFT, Polyphen2, LRT, Grantham score, MutationTaster, MutationAs-
sessor and FATHMM. NNSplice, MaxEntScan, SpliceSiteFinder-like and
SpliceAI [35] were used to assess the impact of variants potentially
affecting splicing. Copy number variants (CNVs) were called from SR-NGS
data using an ISO15189-accredited and validated in-house method based
on read-depth analyses of all targeted exons (further bioinformatic details
are provided in supplementary material).
Manual review and final variant classification was performed by a

Clinical Scientist according to the ACMG/AMP guidelines [36] with
subsequent modifications [37, 38]. The results of all clinical, cilia and
genetic tests were discussed at a monthly multidisciplinary meeting.

Targeted long-read sequencing. Long-read sequencing (LRS) was per-
formed on the Oxford Nanopore Technologies (ONT) platform for
individuals from 4 families where SR-NGS alone was unable to confirm a
genetic diagnosis. Libraries for sequencing were prepared using the
Oxford Nanopore ligation kit (SQK-LSK110; further details provided
in Supplementary Materials and Methods). Libraries for targeted LRS
(T-LRS) were loaded onto a R9.4.1 flow cell on a Nanopore GridION running
MinKNOW version 21.10.8. Adaptive sampling was performed
using ReadFish to target HYDIN (chr16:70300000–71700000) and HYDIN2
(chr1:146000000–147000000), as well as two control regions
(COL1A1, chr17:50000000–50250000 and FMR1, chrX:147800000–14800
0000) using GRCh38 as the reference (https://pubmed.ncbi.nlm.nih.gov/
33257864/).
Raw sequencing data was base called with Guppy 5.0.12 (ONT) using the

super accurate (SUP) model with 5mC modification detection. FASTQs
were generated from unaligned bam files using Samtools Fastq [39] and
aligned to GRCh38 using minimap2 [40]. Depth of coverage for HYDIN and
HYDIN2 was calculated using Samtools depth. Single nucleotide and indel
variants were called using Clair3 [41] then phased using LongPhase using
variant calls from Clair3 [42]. Single nucleotide (SNVs) and indel variants
were annotated using VEP [43] including CADD and SpliceAI scores as well
as allele frequency from gnomad version 3 [44, 45]. Structural variants (SVs)
were called using Sniffles2, CuteSV, and SVIM [46–48]. Variants in HYDIN
with allele frequencies in gnomad less than 1% or that had never been
observed before as well as all SVs were prioritised for analysis. Compelling
variants were visualised using IGV [49].

Targeted variant testing and primer design. Targeted testing for SNVs and
indels identified by both SR-NGS and LRS was performed using
bidirectional Sanger sequencing (details provided in supplementary
material). Any potential CNVs identified by SR-NGS and LRS were
confirmed by digital droplet PCR (ddPCR) (BioRad, CA, USA) (supplemen-
tary material).

RESULTS
Characteristics of the cohort
A clinical diagnosis of PCD was based on nasal nitric oxide
measurement and a history or presence of clinical features such as
neonatal respiratory distress in a term infant, chronic productive
wet cough, bronchiectasis, rhinorrhoea, and serous otitis media.
Some individuals had cilia analysis on nasal brushing samples
(Table 1). As previously described for PCD caused by pathogenic
variants in HYDIN, none of the individuals in the families found to

have at least one pathogenic variant in HYDIN presented with
laterality defects.

Short read NGS to identify pathogenic variants in HYDIN
A custom panel was used to evaluate individuals from all 437
families, and this identified potentially disease-causing variants in
one of the 47 PCD-associated genes in 242 families. Candidate
pathogenic variants in HYDIN were found in 17 unrelated families
comprising 29 affected individuals (Fig. 1, Table 2). Sixteen
individuals from 11 of these families were compound hetero-
zygous for the identified variants in HYDIN, while 13 individuals in
six families where consanguinity was known or suspected, were
homozygous for a single variant. Where possible, parental testing
was performed to phase the identified variants (Fig. 1, Table 2).
The majority of HYDIN variants identified in these families were
truncating or splice-site variants that were classified as pathogenic
or likely pathogenic based on ACMG criteria [36]. Three missense
and one potential splice variant were classified as variants of
uncertain significance (VUS).
Consistent with the high sequence homology between HYDIN

and HYDIN2, the majority of variants detected in our cohort
were in exons present in both genes and thus demonstrated
skewed allele balance by SR-NGS. Of the 24 different HYDIN
variants reported here, only c.283C>T p.(Gln95Ter) in family 10
and c.15037_15048delinsGATGATAT p.(Tyr5013_Pro5016delinsAs-
pAsplle) in families 1 and 2 were within sequences unique to
HYDIN, being located in exons 4 and 86 respectively. These
variants had allelic ratios of approximately 50%, as assessed by SR-
NGS and Sanger sequencing. Due to the masking of HYDIN2 prior
to read alignment, the majority of the remaining variants
demonstrated skewed allelic balances in SR-NGS and Sanger
sequencing (Fig. 2A variant c.1529del, B, F), with a heterozygous
variant present in 25% of reads rather than 50% (Fig. 2C) and a
homozygous variant being present in 50% of reads rather than
100% (Fig. 2D). For a small number of variants it was possible to
design primers utilising known sequence differences between
HYDIN and HYDIN2, to produce HYDIN-specific sequencing and a
normal 50% level of heterozygous allelic balance (Fig. 2A, variant
c.8487_8489delinsCA).
Of the HYDIN variants identified, only three have previously

been reported in individuals with PCD (c.6669+1G>A [24],
c.10012G>T [17] and c.1147C>T [50]) (Table 2). Of the previously
reported variants, only the c.6669+1G>A variant is present in
population databases (15/398,136 alleles in gnomAD, v2 and v3)
and was detected in two families in our cohort, indicating it is
likely a relatively common pathogenic HYDIN variant. Even within
our large cohort of HYDIN PCD families, only two variants, the
c.6669+1G>A variant and the previously unreported c.1529del
variant, were identified in more than one family (Table 2),
suggesting that most disease-causing HYDIN variants are likely
to be private. In families 1 and 2, who were both referred to our
laboratory from Northern Ireland, the same homozygous in-frame
indel variant, c.15037_15048delinsGATGATATA, was found.
Although these families are not known to be closely related, they
are all part of the same Irish traveller community, suggesting it
may represent a founder variant in this population.
As previously observed in HYDIN, as well as in other genes

associated with PCD, the majority of variants reported in these
families were loss-of-function variants (~85%), with missense
variants being observed only in families 5, 7, and 15. Of note, in
family 5, no truncating variants were detected, and both affected
siblings were found to be compound heterozygous for two
missense variants in HYDIN, c.1949G>A and c.3640A>G (Fig. 2B).
Nasal brushing TEM and HSVM results were consistent with a
HYDIN phenotype, as a complete loss of SPEF2 staining was
observed by IF and absence of the C2b projection of the central
pair microtubular complex was observed by 3D tomography in the
affected siblings (Table 1, Fig. 3A–C). Moreover, the typical
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Table 1. Phenotypic information and results of clinical diagnostic testing in affected individuals from the 17 families reported here.

Family Individual Age at
presentation

Clinical findings Clinical laboratory testing

Family 1 II:4 22 years Bronchiectasis, recurrent LRTI, chronic
productive cough

- NNO: 152.5 nl/min
- HSVM: Stiff with mixed beat pattern

III:3 Birth Respiratory distress at birth, LRTI’s,
bronchiolitis, chronic wet cough, glue ear,
rhinitis

- NNO: 26ppb (tidal)
- HSVM: Stiff and uncoordinated with
circling observed

- EM: Normal ultrastructure with ‘smudging’
of central pairs

III:4 Birth Respiratory distress at birth, LRTI’s, rhinitis - NNO: 66ppb (tidal)
- HSVM: Stiff and uncoordinated with
circling observed

III:5 Birth Respiratory distress at birth, LRTI’s, ear
infections

- HSVM: Stiff and uncoordinated
- EM: Normal ultrastructure with ‘smudging’
of central pairs

III:6 Birth Chronic productive cough, LRTI’s - HSVM: Stiff and uncoordinated

Family 2 II:5 Unknown Bronchiectasis and LRTI - NNO: 29 nl/min

II:6 Unknown - NNO: 29 nl/min
- HSVM: Predominantly stiff, reduced beat
amplitude and weak residual movement

Family 3 II:1 Unknown Wet cough, recurrent otitis media. Hearing
problems

- HSVM: Stiff and reduced beat amplitude
some subtle rotation

- EM: Absence of some central pairs

II:2 Unknown Chronic productive cough, glue ear - NNO: 80 nl/min
- HSVM: Stiff and reduced beat amplitude
some subtle rotation

Family 4 II:1 3 years Chronic bronchiectasis and rhinosinusitis - NNO: 50 nl/min
- HSVM: Dyskinetic with a circling beat
pattern

- EM: Disarrangement

II:2 5 years Bronchiectasis, rhinorrhoea - Not undertaken

Family 5 II:1 Birth Chronic wet cough, Rhinitis - NNO:25 nl/min
- HSVM: Dyskinetic with a circling beat
pattern

- EM: Absence of some central pairs
- IF: Loss of SPEF2 staining

II:2 Birth Neonatal pneumonia, chronic wet cough,
LRTI’s, ear infections, rhinorrhoea

- NNO:15/min
- HSVM: Dyskinetic with a circling beat
pattern

- EM: Absence of some central pairs
- IF: Loss of SPEF2 staining
- Tomography: Absence of C2b protein

Family 6 II:1 Unknown Bronchiectasis, Type II respiratory failure - Not undertaken

Family 7 II:1 12 Bronchiectasis - NNO: 16 nl/min
- HSVM: Stuff with circling patches
- EM: Normal ultrastructure
- IF: Loss of SPEF2 staining

II:2 5 Bronchiectasis, rhinitis - Not undertaken

Family 8 II:1 Birth Respiratory distress, ear infections, rhinitis,
glue ear and impaired hearing

- NNO: 11 nl/min
- HSVM: Stiff and uncoordinated beat with
circling observed

- EM: Normal ultrastructure
- Tomography: Absence of C2b protein

Family 9 II:1 Birth Bronchiectasis - HSVM: Stiff and uncoordinated beat with
circling observed

- EM: Absence of some central pairs

Family 10 II:1 Birth Bronchiolitis, glue ear, chronic wet cough - NNO: 38 nl/min
- HSVM: Dyskinetic with circling observed
- EM: Normal ultrastructure
- IF: Loss of SPEF2 staining

Family 11 II:1 Birth Bronchiectasis, rhinitis, glue ear - NNO: 11 nl/min
- HSVM: Stiff and dyskinetic
- EM: Normal ultrastructure
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rotational beat pattern of HYDIN-deficient cilia was observed
(Supplementary Fig. 1). Although these variants were both
classified as VUS, in the absence of other HYDIN variants in these
siblings, we consider these variants likely to be the cause of their
PCD. Separately, the proband in family 12 was found to be
compound heterozygous for two variants, each affecting splicing:
the previously reported c.6669+1G>A variant and a deeper
intronic variant, c.5789-39A>G. Splice prediction tools, including
SpliceAI, suggested that the c.5789-39A>G variant would create a
new splice acceptor site in intron 36, which would lead to the
inclusion of an additional 38 nucleotides in the transcript,
introducing a frameshift and likely inducing nonsense-mediated
decay. The inclusion of additional intronic sequence to
the beginning of exon 37 was confirmed in cDNA from the
patient.

Clarifying previously identified variants using long-read
sequencing
In the absence of parental samples to confirm phasing in Family 8,
targeted LRS was used to confirm homozygosity for the c.12444-
1G>A variant. Figure 4A shows the presence of the homozygous
G>A change in HYDIN at c.12444-1 (represented as C>T). This is
consistent with the 46%:54% C:T allelic ratio observed in Fig. 2D,
with approximately half of the reads contributed by HYDIN2 (due
to the masked alignment), which has a normal C at this position.
SR-NGS of proband II:1 in family 16 identified a homozygous
frameshift variant, c.7214_7215del p.(Ser2405CysfsTer2), and a
heterozygous frameshift variant, c.7956dup p.(Glu2653Argf-
sTer26), both of which occurred in a region of high homology
between the two genes. Homozygosity for the c.7214_7215del
was consistent with the reported consanguinity in the family, and
we considered it highly unlikely that only one parent had both the
c.7214_7215del and c.7956dup variants in cis. This suggested that
one of the two variants may be in HYDIN2. The proband’s mother

was found to be heterozygous for the c.7214_7215del variant and
not the c.7956dup variant by Sanger sequencing, however,
paternal testing was not possible. Using targeted LRS, we
confirmed that the proband was indeed homozygous for the
c.7214_7215del variant in HYDIN and that the c.7956dup was
present in HYDIN2.

Long-read sequencing to identify missing disease-causing
variants
First-line SR-NGS testing in the probands of families 11 (II:1) and 13
(II:1 and II:2) detected a single likely pathogenic variant in HYDIN:
c.2419_2422del p.(Val807llefsTer13) in family 11 and c.1095del
p.(Phe365LeufsTer64) in the two affected siblings in family 13
(Fig. 2E, F, Table 2). Due to the high clinical suspicion for PCD, we
questioned whether these families harboured variants that were
difficult to detect by prior testing approaches. Targeted LRS was
therefore used to identify second hits, both CNVs, in both families
(Fig. 4B, C). This approach resulted in approximately 2–5×
enrichment of the target regions, with coverage of both HYDIN
and the pseudogene HYDIN2, and allowed us to evaluate the
region for candidate pathogenic variants in HYDIN (Supplemen-
tary Table 1). In family 11 a heterozygous likely pathogenic 1678-
bp deletion that included the 36th coding exon of HYDIN
(chr16:70963530-70965207) was identified that would result in a
frameshift and subsequent premature termination codon early in
exon 37. In family 13 a heterozygous 9900-bp deletion that
included the 17th coding exon of HYDIN (chr16:71051501-
71061418) was found. While the exon 17 deletion is in-frame it
would remove 50 highly conserved amino acids, and therefore it is
likely to alter protein function. Both deletions were confirmed by
ddPCR of the relevant exons. Exons 17 and 36 both lie within a
region of high homology between HYDIN and HYDIN2 and were
not detected by initial SR-NGS CNV analysis, due to the skewed
allelic balance resulting from the masking of HYDIN2.

Table 1. continued

Family Individual Age at
presentation

Clinical findings Clinical laboratory testing

Family 12 II:1 Birth Bronchiectasis, chronic sinusitis and poor
hearing

- NNO: 15 nl/min
- HSVM: Stiff and dyskinetic with a circling
beat pattern

- EM: Absence of some central pairs
- IF: Loss of SPEF2 staining

Family 13 II:1 27 Mild bronchiectasis, chronic rhinosinusitis,
polyps, glue ear, fertility difficulties

- NNO: 6 nl/min
- HSVM: Uncoordinated, stiff
- EM: Normal ultrastructure

II:2 29 Bronchiectasis, ear infections, glue ear,
fertility difficulties

- NNO: 42 nl/min
- HSVM: Uncoordinated, stiff, weak residual
movement, occasional rotation

- EM: Normal Ultrastructure
- IF: SPEF2 present

Family 14 II:1 Unkown Rhinorrhoea, chronic productive cough - NNO: 4 nl/min
- HSVM: Stiff with circling observed
- EM: Normal ultrastructure
- IF: Loss of SPEF2 staining

Family 15 II:1 3 years Chronic productive cough - NNO: 170 nl/min
- HSVM: Stiff with circling observed
- EM: Absence of some central pairs

Family 16 II:1 13 years Bronchiectasis - NNO: 14
- HSVM: Circling observed
- EM: Normal ultrastructure

Family 17 II:1 Unknown Chronic wet cough, bilateral hearing aids - NNO: 31ppb (tidal)
- HSVM: Stiff with circling observed
- EM: Normal ultrastructure

NNO Nasal Nitric Oxide, HSVM High Speed Videomicroscopy, EM Electron Microscopy, LRTI Lower Respiratory Tract Infections.
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DISCUSSION
In a cohort of 437 unrelated families referred for genetic testing
with a clinical diagnosis or strong clinical suspicion of PCD, we
were able to diagnose 29 affected individuals from 17 unrelated

families as carrying potentially pathogenic variants in HYDIN.
In four of the 17 families, a complete genetic diagnosis was
only possible using LRS. This study comprises the largest HYDIN
cohort reported to date and confirms that comprehensive

Fig. 1 Pedigrees of the 17 families in whom HYDIN variants were found to be causative of PCD. The variants identified in each of the
families are listed with each pedigree (a–q). Circle: Female; Square: Male; Filled symbols: confirmed clinical diagnosis of PCD; Half-filled
symbols: clinical suspicion of PCD; Dot symbol: Carrier; Slash through: Deceased; +/+: homozygous variant; +/−: heterozygous variant; −/−:
reference genotype.
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genetic testing using different techniques can be used to identify
variants in challenging regions of the genome. HYDIN is revealed
as a relatively common cause of PCD in our cohort, representing
~7% of our genetically diagnosed cases. This is in line with a
recent report of HYDIN being shown to be causative in 8.7% of
families with PCD in Quebec, Canada, although 5 of 8 families in
that study shared the same founder variant [29].
While advances in molecular genetic testing have revolutio-

nised the approach to diagnosis of individuals with suspected
genetic disorders, several notable challenges remain. One
example includes the difficulty associated with analysing repeti-
tive or highly homologous regions of the genome, such as those
observed in HYDIN and HYDIN2. Initially, we addressed this
problem computationally by masking HYDIN2 during sequence
alignment to ensure that reads from HYDIN and HYDIN2 would
be mapped to HYDIN. This approach ensures that no HYDIN
sequence is incorrectly mapped to HYDIN2, and therefore
eliminates the possibility of true HYDIN variants being excluded
from analysis. Although this approach overcomes mapping
inconsistencies, it results in skewed variant allelic balances, since
there are four potential copies of the sequence, two from HYDIN
and two from HYDIN2, at positions of homology. However, the
identification of variants using skewed allele balance allows for

subsequent analysis of candidate variants by targeted approaches
such as PCR, SR-NGS and Sanger sequencing, with heterozygous
variants having an allelic balance of 0.25 and homozygous variants
having an allelic balance of 0.5.
Masking of HYDIN2 overcame some of the difficulties in the

detection of single nucleotide variants and small indels by SR-NGS,
as demonstrated by our ability to identify disease-causing variants
in 14/17 families in this study. However, as highlighted by families
11 and 13, this method has limitations with detecting deletions
spanning exons, since masking interferes with NGS CNV-calling
algorithms. After masking of HYDIN2, we expected to observe a
~0.25 allelic ratio when a heterozygous deletion was present in
either gene. This is likely not sufficient for detection by standard
short-read CNV callers, a fundamental limitation of short-read
sequencing. It is important to note that generally SR-NGS alone is
unable to confirm exactly which gene is affected when a variant is
identified in the highly homologous regions of HYDIN or HYDIN2,
although effective phenotyping does increase the confidence that
variants in these cases lie within the HYDIN gene.
We hypothesised that long-read sequencing could be used to

identify missing variants or refine the classification of candidate
variants in cases refractory to our standard approaches. This is
because the longer reads generated by this technology are more

Table 2. Summary of variants identified as the cause of PCD in 17 families, together with their ACMG classification.

Family Variant Variant (cDNA) Variant (amino acid) ACMG
classification

Individuals found in

Family 1 1, 2 c.15037_15048delinsGATGATATA p.(Tyr5013_Pro5016
delinsAspAsplle)

LP II:1, II:2, II:4, III:3, III:4, III:5,
III:6, III:7

Family 2 1, 2 c.15037_15048delinsGATGATATA p.(Tyr5013_Pro5016
delinsAspAsplle)

LP II:2, II:5: II:6

Family 3 1 c.8487_8489delinsCA p.(Pro2830Hisfs*23) LP I:1, II:1, II:1

2 c.1529del p.(Phe510Serfs*43) P I:2, II:1, II:1

Family 4 1 c.1529del p.(Phe510Serfs*43) P II:1, II:2

2 c.6669+1G>A p.? LP II:1, II:2

Family 5 1 c.1949G>A p.(Arg650His) VUS II:1, II:2

2 c.3640A>G p.(lle1214Val) VUS II:1, II:2

Family 6 1 c.10886_10902del p.(Asp3629ValfsTer9) LP II:1

2 c.14157T>G p.(Tyr4719Ter) LP II:1

Family 7 1 c.3252dup p.(Val1085ArgfsTer15) P I:2, II:1, II:2

2 c.1670G>C p.(Arg557Thr) LP II:1, II:2

Family 8 1,2 c.12444-1G>A – LP II:1

Family 9 1,2 c.10012G>T p.(Glu338Ter) P I:1, I:2, II:1

Family 10 1 c.283C>T p.(Gln95Ter) LP II:1

2 c.13680-3A>G p.? VUS II:1

Family 11 1 c.2419_2422del p.(Val807llefsTer13) LP I:2, II:1

2 c.5620-311_5788+1198del p.? LP II:1

Family 12 1 c.6669+1G>A p.? LP II:1

2 c.5789-39A>G p.? VUS II:1

Family 13 1 c.1095del p.(Phe365LeufsTer64) LP II:1, II:2

2 c.2376+752_2529+9004del p.? LP II:1, II:2

Family 14 1 c.1147C>T p.(Arg383Ter) P I:1, II:1

2 c.4888A>T p.(Lys1630Ter) P I:2, II:1

Family 15 1 c.12144dup p.(Thr4049HisfsTer9) LP II:1

2 c.2702G>T p.(Gly901Val) VUS II:1

Family 16 1,2 c.7214_7215del p.(Ser2405CysfsTer2) LP I:2, II:1

Family 17 1,2 c.13709del p.(Pro4570LeufsTer22) P I:1, I:2, II:1

LP LP, P P, VUS variant of uncertain significance.
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Fig. 2 Sequence analysis of variants of note identified in this HYDIN PCD cohort. A Sanger sequencing of variant c.1529del in family 3
showing a heterozygous result where primer design specifically for HYDIN was not possible, resulting in low allelic ratio of the variant. Sanger
sequencing of variant c.8487_8489delinsCA in a heterozygous individual from family 3 where primer design specifically for HYDIN was
possible and the allelic ratio is 50%. B Sanger sequencing of variants c.3640A>G and c.1949G>A in family 5, both showing skewed allelic ratios
in heterozygous individuals. C SR-NGS example for variant c.14157T>G in a heterozygous individual from family 6 showing skewed allelic ratio
due to HYDIN2 masking. D SR-NGS example for variant c.12444-1G>A in a homozygous individual from family 8, showing skewed allelic ratio
due to HYDIN2 masking. E SR-NGS of c.2419_2422del detected in a heterozygous individual in family 11, showing skewed allelic ratio due
to HYDIN2 masking. F Sanger sequencing of variant c.1095del in a heterozygous individual from family 13, showing skewed allelic ratios.

A. Fleming et al.

1081

European Journal of Human Genetics (2024) 32:1074 – 1085



likely to be accurately mapped to low-complexity or repetitive
regions, such as the regions in which HYDIN and HYDIN2 are
found. We also hypothesised that LR-NGS would identify variants
we were not able to identify with SR-NGS, such as intronic variants
and structural variants. Using a targeted approach, we were able
to identify a second disease-causing variant in 2 families where SR-
NGS identified only a single heterozygous pathogenic variant.
Specifically, LR-NGS in families 11 and 13, identified deletions of
coding exons 36 and 17 respectively, which were missed by SR-
NGS because of masking of HYDIN2 and difficulty identifying CNVs
with allele frequencies of 0.25. In a third individual, where parental
testing was not possible, we used LR-NGS to confirm that the
identified pathogenic variant was indeed homozygous (family 8).
It is likely that LR-NGS would have been able to detect all the
variants reported in the other families and thus would offer
additional benefits over SR-NGS, such as confirming phasing of
variants without the need for parental samples.
We have presented two cases where LR-NGS was able to

supplement SR-NGS and detect a missed second variant in HYDIN.
For such individuals, with a phenotype highly in keeping with
HYDIN, LR-NGS may be indicated following an in normal or

incomplete SR-NGS result. Based on the cohort included here, we
would not hypothesise many individuals to have two variants only
detectable by LR-NGS, however, we recognise that this does
represent an avenue for further investigation. As LR-NGS costs
continue to fall and bioinformatic pipelines mature we anticipate
that LR-NGS will become a first-line test for evaluating genes in
which there is high clinical suspicion for a missed variant, but
which are difficult to evaluate using short-read approaches, such
as HYDIN.
In conclusion, HYDIN presents a challenge for current SR-NGS

and Sanger sequencing due to the presence of HYDIN2, and
pathogenic variants in HYDIN are likely often missed. Moreover,
variants in HYDIN2may be incorrectly assessed as being present in
HYDIN. Although bioinformatic masking of HYDIN2 after SR-NGS
reduces the effect of this homology and allows for an increased
rate of genetic diagnoses in select cohorts, LR-NGS can overcome
all of the challenges presented by this large homology region
[32].The proportion of HYDIN variants being causative of PCD may
vary in different ethnic groups, however we propose that due to
the difficulty in identifying pathogenic HYDIN variants, HYDIN may
be an underrepresented cause of PCD in most cohorts. Thus, we
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Fig. 3 Nasal Cilia brushing diagnostics for siblings in family 5. A Averaged electron microscopy image and corresponding coloured contour
map showing absence of c2b protein in these siblings, II-1, II-2 and a healthy control. B Immunofluorescence control sample with DAPI staining of
the nucleus, tubulin staining of the cilia and SPEF2 for the c2b protein. C Immunofluorescence showing loss of SPEF2 staining in II:1.
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feel there are clear benefits of LR-NGS in unsolved cases with a
strong clinical phenotype, and we provide further support for the
future use LR-NGS as a single test in the clinical environment both
to increase the diagnostic rate and to reduce the time required to
arrive at a genetic diagnosis.
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