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�
 ABSTRACT 

Purpose: Histologic transformation to small cell lung cancer 
(SCLC) is a mechanism of treatment resistance in patients with 
advanced oncogene-driven lung adenocarcinoma (LUAD) that 
currently requires histologic review for diagnosis. Herein, we 
sought to develop an epigenomic cell-free DNA (cfDNA)-based 
approach to noninvasively detect small cell transformation in 
patients with EGFR mutant (EGFRm) LUAD. 

Experimental Design: To characterize the epigenomic land-
scape of transformed (t)SCLC relative to LUAD and de novo 
SCLC, we performed chromatin immunoprecipitation se-
quencing (ChIP-seq) to profile the histone modifications 
H3K27ac, H3K4me3, and H3K27me3; methylated DNA im-
munoprecipitation sequencing (MeDIP-seq); assay for 
transposase-accessible chromatin sequencing; and RNA se-
quencing on 26 lung cancer patient-derived xenograft (PDX) 
tumors. We then generated and analyzed H3K27ac ChIP-seq, 
MeDIP-seq, and whole genome sequencing cfDNA data from 

1 mL aliquots of plasma from patients with EGFRm LUAD with 
or without tSCLC. 

Results: Analysis of 126 epigenomic libraries from the lung 
cancer PDXs revealed widespread epigenomic reprogramming 
between LUAD and tSCLC, with a large number of differential 
H3K27ac (n ¼ 24,424), DNA methylation (n ¼ 3,298), and 
chromatin accessibility (n ¼ 16,352) sites between the two his-
tologies. Tumor-informed analysis of each of these three epi-
genomic features in cfDNA resulted in accurate noninvasive 
discrimination between patients with EGFRm LUAD versus 
tSCLC [area under the receiver operating characteristic curve 
(AUROC) ¼ 0.82–0.87]. A multianalyte cfDNA-based classi-
fier integrating these three epigenomic features discriminated 
between EGFRm LUAD versus tSCLC with an AUROC of 0.94. 

Conclusions: These data demonstrate the feasibility of detecting 
small cell transformation in patients with EGFRm LUAD through 
epigenomic cfDNA profiling of 1 mL of patient plasma. 

Introduction 
Advanced EGFR-mutant (EGFRm) lung adenocarcinoma 

(LUAD) is an archetype of precision oncology, initially treated with 
selective EGFR tyrosine kinase inhibitors (TKI; ref. 1). While there 
are currently five EGFR TKIs approved in the United States, osi-
mertinib, a highly selective third-generation EGFR TKI, is the 
preferred first-line choice based on improved progression-free and 
overall survival compared to earlier generation TKIs (2). Despite 

initial robust responses to EGFR TKIs, acquired resistance inevita-
bly occurs. Subsequent treatment decisions are ideally made fol-
lowing evaluation for potentially targetable resistance mechanisms 
on a post-progression tumor biopsy, which uncovers potential 
therapeutic approaches in about one-third of patients (3–6). 

Histologic transformation from LUAD to small cell lung cancer 
(SCLC) is one well-characterized resistance mechanism that occurs 
in up to 15% of patients with EGFRm LUAD following progression 
on an EGFR TKI, and appears to be increasing in prevalence with 
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the use of more selective EGFR TKIs, such as osimertinib (4–7). 
EGFRm LUADs that undergo SCLC transformation are aggressive 
cancers that portend poor prognosis and require a change in ther-
apeutic regimen (8). Transformed (t)SCLC clinically mimics de novo 
SCLC—a distinct diagnosis which, unlike EGFRm LUAD, is typi-
cally associated with smoking history. Both de novo and tSCLC are 
treated with platinum-etoposide chemotherapy (1). 

Current guidelines recommend that patients with EGFRm LUAD 
progressing on targeted therapy undergo tumor biopsy to evaluate 
for actionable mechanisms of TKI resistance, including acquired 
genomic alterations as well as histologic transformation (1). How-
ever, tumor biopsies pose risks to patients and are often not clini-
cally feasible. Consequently, less than half of patients with 
metastatic EGFRm LUAD undergo tumor tissue biopsy at the time 
of TKI resistance (9). Further, due to intrapatient tumor heteroge-
neity, targetable mechanisms of resistance (including histologic 
transformation) may be missed by sampling a single metastatic 
focus, resulting in lost opportunities to deliver guideline- 
recommended histology-directed therapy. 

For these reasons, molecular profiling at the time of EGFR TKI 
resistance is increasingly performed via liquid biopsies, which can 
detect somatically acquired genomic alterations in circulating tumor 
cell-free DNA (cfDNA). Compared to tumor biopsies, liquid biop-
sies are minimally invasive, can easily be repeated at multiple 
timepoints, and may better capture intrapatient tumor heteroge-
neity (10). However, limitations in current commercially available 
liquid biopsies preclude detection of certain clinically actionable 
resistance phenotypes that lack defining genomic alterations (6). In 
particular, the diagnosis of tSCLC cannot be made by currently 
available liquid biopsy assays. 

The development of noninvasive diagnostic approaches to detect 
SCLC transformation has the potential to usher in a new paradigm of 
diagnostic and therapeutic precision for patients with advanced lung 
cancer (8, 11–14). In particular, histologic transformation is accom-
panied by widespread epigenomic reprogramming, which presents an 
opportunity to detect tSCLC through epigenomic analysis of cfDNA 

(11). We, and others, have developed tools to profile tumor epi-
genomic features from patient plasma, including DNA methylation 
(15–18), chromatin accessibility (19, 20), and histone modifications 
(21, 22). Herein, we build upon this work, generating and analyzing 
351 tissue and plasma epigenomic libraries to demonstrate the clinical 
utility of epigenomic cfDNA profiling to noninvasively detect small 
cell transformation in patients with EGFRm LUAD (Fig. 1). 

Materials and Methods 
Subjects and samples 

Lung cancer patient-derived xenografts (PDX) were derived 
from patients with LUAD, de novo SCLC, and tSCLC as previ-
ously described (23–26). Tissue samples were obtained from 
donors who provided explicit written consent per the Declaration 
of Helsinki under an approved Institutional Review Board (IRB) 
protocol at Massachusetts General Hospital (MGH). All mouse 
studies were conducted through Institutional Animal Care and 
Use Committee–approved animal protocols in accordance with 
institutional guidelines (MGH Subcommittee on Research Ani-
mal Care, OLAW Assurance A3596-01). tSCLC PDXs were 
reviewed by a staff thoracic pathologist to confirm SCLC histol-
ogy. Plasma samples were collected from patients with advanced 
lung cancer diagnosed and treated at the Dana-Farber Cancer 
Institute (DFCI) or MGH between November 2016 and March 
2023. All patients provided written informed consent. The use of 
samples was approved by DFCI (01-045 and 09-171) and MGH 
(13-416) IRB. Studies were conducted in accordance with rec-
ognized ethical guidelines. 

cfDNA processing and tumor content calculation 
Peripheral blood was collected in EDTA Vacutainer tubes (BD) 

or Streck Cell-Free DNA tubes and processed within 3 hours of 
collection. Plasma was separated by centrifugation at 1,600 g for 
10 minutes, transferred to microcentrifuge tubes, and centrifuged at 
3,000 g at room temperature for 10 minutes. The supernatant was 
aliquoted and stored at �80°C until the time of DNA extraction. 
cfDNA was isolated from 1 mL of plasma, using the QIAGEN 
Circulating Nucleic Acids Kit (Qiagen), eluted in AE buffer, and 
stored at �80°C. Low-pass whole genome sequencing (LPWGS) was 
performed on all cfDNA samples. The ichorCNA R package was 
used to infer copy-number profiles and cfDNA tumor content from 
read abundance across bins spanning the genome using default 
parameters (27). Per the published limit of detection of ichorCNA, 
estimated cfDNA tumor content cut-off of greater than or less than 
0.03 were used to characterize samples as having detectable or un-
detectable circulating tumor DNA, respectively. 

Tissue chromatin immunoprecipitation sequencing 
Frozen tissue was pulverized using the Covaris CryoPrep system 

and fixed with 2 mmol/L disuccinimidyl glutarate for 10 minutes 
followed by 1% formaldehyde buffer for 10 minutes and quenched 
with glycine. Chromatin was sheared to 300 to 500 bp using the 
Covaris E220 ultrasonicator and then incubated overnight with the 
following antibodies coupled with 40 μL protein A and protein G 
beads (Invitrogen) at 4°C overnight: H3K27ac (Abcam #ab4729, Lot 
GR3442890-1), H3K4me3 (Thermo Fisher Scientific #PA5-27029, 
Lot XI3696063), and H3K27me3 (Cell Signaling #9733S, Lot 19). 
Five percent of the sample was not exposed to antibody and was 
used as a control. Beads were washed three times each with Low-Salt 
Wash Buffer (0.1% SDS, 1% Triton X-100, 2 mmol/L EDTA, 20 

Translational Relevance 
Histologic transformation to small cell lung cancer (SCLC) 

is an increasingly common resistance mechanism to EGFR 
tyrosine kinase inhibitors in EGFR mutant lung adenocarci-
noma (LUAD) that is underdiagnosed in clinical practice due 
to the requirement for tissue biopsy. Early and accurate de-
tection of transformed (t)SCLC has important prognostic and 
therapeutic implications. To address this unmet need, we first 
comprehensively profiled the epigenomes of metastatic lung 
tumors finding widespread epigenomic reprogramming during 
histologic transformation from LUAD to SCLC. We then uti-
lized a novel approach for epigenomic profiling of cell-free 
DNA (cfDNA), which discriminated patients with EGFR-mu-
tant (EGFRm) tSCLC from patients with EGFRm LUAD with 
greater than 90% accuracy. This first demonstration of the 
ability to accurately and noninvasively detect small cell trans-
formation in patients with EGFRm LUAD through epigenomic 
cfDNA profiling is a critical step toward a new paradigm of 
diagnostic and therapeutic precision for patients with advanced 
lung cancer. 
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mmol/L Tris-HCl pH 7.5, 150 mmol/L NaCl), High-Salt Wash 
Buffer (0.1% SDS, 1% Triton X-100, 2 mmol/L EDTA, 20 mmol/L 
Tris-HCl pH 7.5, 500 mmol/L NaCl), and LiCl Wash Buffer (10 
mmol/L Tris pH 7.5, 250 mmol/L LiCl, 1% NP-40, 1% Na-Doc, 1 
mmol/L EDTA) and rinsed with TE buffer (pH 8.0) once. Samples 
were then de-cross-linked, treated with RNase and proteinase K, 
and DNA was extracted (Qiagen). DNA sequencing libraries were 
prepared from the purified immunoprecipitated and non- 
immunoprecipitated DNA using the ThruPLEX DNA-seq Kit 
(TakaraBio). Libraries were sequenced on an Illumina HiSeq 4000 to 
generate 150 bp paired-end reads (Novogene Corporation). 

Chromatin immunoprecipitation sequencing (ChIP-seq) reads 
were aligned to the human genome build hg19 using the Burrows- 
Wheeler Aligner version 0.7.17 (RRID:SCR_010910; ref. 28). Non- 
uniquely mapped and redundant reads were discarded. MACS 
v2.1.1.20140616 (RRID:SCR_013291) was used for ChIP-seq peak 
calling with a q-value threshold of 0.01 (29). IGV v2.8.2 was used to 
visualize normalized ChIP-seq read counts at specific genomic loci 
(30). ChIP-seq heatmaps were generated with deepTools v3.3.1 
(RRID:SCR_016366) and show normalized read counts at the peak 
center ±2 kb unless otherwise noted (31). Overlap of ChIP-seq peaks 
was assessed using BEDTools v2.26.0. Peaks were considered 
overlapping if they shared one or more base pairs. 

Tissue assay for transposase-accessible chromatin sequencing 
Frozen tissue was resuspended and dounce homogenized in 1,000 

μL of homogenization buffer. Nuclei were filtered using a 70-μm 
Flowmi strainer, isolated using iodixanol density-gradient centri-
fugation method, and washed with RSB buffer (10 mmol/L Tris-HCl 
pH 7.4, 10 mmol/L NaCl, and 3 mmol/L MgCl2 in water). Fifty 
thousand nuclei were resuspended in 50 μL of transposition mix 
[2.5 μL transposase (100 nmol/L), 16.5 μL PBS, 0.5 μL 1% digitonin, 
0.5 μL 10% Tween-20, and 5 μL water; ref. 32]. Transposition re-
actions were incubated at 37°C for 30 minutes in a thermomixer 
shaking at 1,000 rpm. Reactions were cleaned with Qiagen columns. 
Libraries were amplified using the Omni-ATAC protocol and se-
quenced on an Illumina platform (Novogene Corporation) using 
150-base paired-end reads (33). 

Identification and annotation of histology-specific ChIP-seq 
and assay for transposase-accessible chromatin sequencing 
peaks 

Sample clustering, principal component analysis, and identifica-
tion of lineage-enriched peaks were performed using Cobra v2.0 
(RRID:SCR_005677), a ChIP-seq analysis pipeline implemented 
with Snakemake (34, 35). ChIP-seq data from LUAD, de novo 
SCLC, and tSCLC PDXs were compared to identify H3K27ac, 
H3K4me3, and H3K27me3 peaks with significant enrichment in the 
three tumor subtypes. A union set of peaks for each histone mod-
ification was created using BEDTools (RRID:SCR_006646). nar-
rowPeak calls from MACS were used for H3K27ac and H3K4me3 
while broadPeak calls were used for H3K27me3. The number of 
unique aligned reads overlapping each peak in each sample was 
calculated from BAM files using BEDtools. Quantile normalization 
was applied to this matrix of normalized read counts for clustering 
and PCA analysis. Unsupervised hierarchical clustering was per-
formed based on Spearman correlation between samples. Principal 
component analysis was performed using the prcomp R function. 
Raw read counts for each peak were normalized to the total number 
of mapped reads for each sample. Then using DEseq2 v1.14.1 
(RRID:SCR_015687), histology-enriched peaks were identified at 

the indicated FDR-adjusted P value (padj) < 0.001 and log2 fold- 
change >2 (36). 

RNA sequencing and differential expression analysis 
RNA was extracted from frozen tumor samples using the Qia-

gen RNeasy Mini Kit (Cat No./ID: 74104). RNA sequencing 
(RNA-seq) libraries were constructed from 1 μg RNA using the 
Illumina TruSeq Stranded mRNA LT Sample Prep Kit. Barcoded 
libraries were pooled and sequenced on the Illumina HiSeq 2,500 gen-
erating 50 bp paired-end reads. FASTQ files were processed using the 
VIPER workflow (37). Read alignment to human genome build hg19 
was performed with STAR (RRID:SCR_004463; ref. 38). Cufflinks 
(RRID:SCR_014597) was used to assemble transcript-level expression 
data from filtered alignments (39). Differential gene expression analysis 
was conducted using DESeq2 (36). 

Methylated DNA immunoprecipitation sequencing 
Methylated DNA immunoprecipitation sequencing (MeDIP- 

seq) was performed on tissue and plasma following published 
methods (15–18). Library preparation was performed on 10 ng of 
DNA using the KAPA HyperPrep Kit (KAPA Biosystems). We 
then performed end-repair, A-tailing, and ligation of NEBNext 
adaptors (NEBNext Multiplex Oligos for Illumina kit, New En-
gland BioLabs). Libraries were digested using the USER enzyme 
(New England BioLabs). λ DNA, consisting of unmethylated and 
in vitro methylated DNA, was added to prepared libraries to 
achieve a total amount of 100 ng DNA. Methylated and unme-
thylated Arabidopsis thaliana DNA (Diagenode) was added for 
quality control. MeDIP was performed using the MagMeDIP Kit 
(Diagenode) following the manufacturer’s protocol. Samples were 
purified using the iPure Kit v2 (Diagenode). Success of the im-
munoprecipitation was confirmed using qPCR to detect recovery 
of the spiked-in Arabidopsis thaliana methylated and unmethy-
lated DNA. KAPA HiFi Hotstart ReadyMix (KAPA Biosystems) 
and NEBNext Multiplex Oligos for Illumina (New England Biol-
abs) were added to a final concentration of 0.3 μmol/L and li-
braries were amplified. Samples were pooled and sequenced 
(Novogene Corporation) on Illumina HiSeq 4,000 to generate 
150 bp paired-end reads. 

Quality and quantity of raw MeDIP-seq reads were examined using 
FastQC version 0.11.5 (http://www.bioinformatics.babraham.ac.uk/ 
projects/fastqc) and MultiQC version 1.7 (40). Raw reads were quality 
and adapter trimmed using Trim Galore! version 0.6.0 (http:// 
www.bioinformatics.babraham.ac.uk/projects/trim_galore/) using de-
fault settings in paired-end mode. The trimmed reads then were aligned 
to hg19 using Bowtie2 version 2.3.5.1 in paired-end mode and all other 
settings default (41). The SAMtools version 1.10 software suite was used 
to convert SAM alignment files to BAM format, sort and index reads, 
and remove duplicates (42). The R package RSamtools version 2.2.1 was 
used to calculate the number of unique mapped reads. Saturation ana-
lyses to evaluate reproducibility of each library were carried out using the 
R Bioconductor package MEDIPS version 1.38.0 (43). 

Cell-free ChIP-seq 
One microgram of antibody was coupled with 10 μL protein A 

(Invitrogen, cat #10002D) and 10 μL protein G (Invitrogen, cat 
#10004D) for at least 6 hours at 4°C with rotation in 0.5% BSA 
(Jackson Immunology, cat #001-000-161) in PBS (Gibco, cat 
#14190250), followed by blocking with 1% BSA in PBS for 1 hour 
at 4°C with rotation. The following antibodies were used: 
H3K27ac (Abcam #ab4729) and H3K4me3 (Thermo Fisher 
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Scientific #PA5-27029). A total of 800 μL of thawed plasma was 
centrifuged at 3,000 g for 15 minutes at 4°C. The supernatant was 
precleared with the magnetic beads with 20 μL protein A and 
20 μL protein G for 2 hours at 4°C. Then, the precleared and 
conditioned plasma was subjected to antibody-coupled magnetic 
beads overnight with rotation at 4°C. The reclaimed magnetic 
beads were washed with 1 mL of each washing buffer twice. Three 
washing buffers were used in following order: low salt washing buffer 
(0.1% SDS, 1% Triton X-100, 2 mmol/L EDTA, 150 mmol/L NaCl, 20 
mmol/L Tris-HCl pH 7.5), high salt buffer (0.1% SDS, 1% Triton X-100, 
2 mmol/L EDTA, 500 mmol/L NaCl, 20 mmol/L Tris-HCl 
pH 7.5), and LiCl washing buffer (250 mmol/L LiCl, 1% NP- 
40, 1% Na Deoxycholate, 1 mmol/L EDTA, 10 mmol/L Tris-HCl 
pH 7.5). Subsequently, the beads were rinsed with TE buffer 
(Thermo Fisher Scientific, cat #BP2473500) and resuspended and 
incubated in 100 μL of DNA extraction buffer containing 
0.1 mol/L NaHCO3, 1% SDS, and 0.6 mg/mL Proteinase K 
(Qiagen, cat #19131) and 0.4 mg/mL RNaseA (Thermo Fisher 
Scientific, cat #12091021) for 10 minutes at 37°C, for 1 hour at 
50°C and for 90 minutes at 65°C. DNA was purified through 
phenol extraction (Invitrogen, cat #15593031) and ethanol pre-
cipitation was performed with 3 mol/L NaOAc (Ambion, cat 
#AM9740) and glycogen (Ambion, cat #AM9510). Cell-free 
ChIP-seq (cfChIP-seq) libraries were prepared with ThruPLEX 

DNA-Seq Kit (Takara Bio, cat #R400675) following the manu-
facturer’s instructions. After library amplification, the DNA was 
purified by AMPure XP (Beckman coulter, cat# A63880). The 
size distribution of the purified libraries was examined using 
Agilent 2100 Bioanalyzer with a high sensitivity DNA Chip 
(Agilent, cat #5067-4626). The library was submitted for the 
150 base-pair paired-end sequencing on an Illumina Nova-
Seq6000 system (Novogene Corporation). 

Generation of cfDNA SCLC risk scores 
For cfDNA histone data, we computed reads per kilobase per 

million mapped reads for each cfChIP-seq library using bed files of 
the SCLC-enriched and LUAD-enriched peaks in the PDXs (FDR- 
adjusted P < 0.001 and log2 fold-change >2). We excluded the top 
and bottom 0.5% of sites based on the average signal across all 
cfChIP-seq samples. For cfDNA methylation data, we used the 
MeDIPs R package to calculate CpG-normalized relative methyla-
tion scores across 300 bp windows across the genome for each cell- 
free methylated DNA immunoprecipitation and sequencing 
(cfMeDIP-seq) library (43, 44). We then summed relative methyl-
ation scores in cfDNA at SCLC-enriched and LUAD-enriched dif-
ferentially methylated regions from the PDXs (FDR-adjusted P < 1.0 
� 10�6 and log2 fold-change >3) for each cfDNA sample and 
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Figure 1. 
Overview of the experimental approach to perform comprehensive epigenomic profiling of lung cancer PDXs and multianalyte epigenomic profiling of cfDNA 
from 1 mL of patient plasma and noninvasively detect SCLC transformation in patients with EGFRm LUAD. (Created with BioRender.com). 
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Comprehensive epigenomic profiling of LUAD, tSCLC, and de novo SCLC reveals widespread epigenomic reprogramming in small transformation. A, Principal 
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normalized this value to the sum of rms values across all 300 bp 
windows (18). For the cfDNA chromatin accessibility analysis, we 
applied Griffin (v0.1.0), a computational tool that profiles nucleo-
some protection and accessibility from cfDNA, to all LPWGS li-
braries (19). Fragments aligning to the region within ±5,000 bp from 
the site of interest [defined as differential assay for transposase- 
accessible chromatin sequencing (ATAC-seq) peaks between SCLC 
and LUAD PDXs] were extracted. Duplicate and low-quality 
alignments (mapping quality <20) were filtered out. Fragments 
within the nucleosome size range (140–250 bp) were preserved. We 
then extracted the “mean window coverage” at the SCLC-enriched 
and the LUAD-enriched regions of open chromatin in the PDXs 
(FDR-adjusted P < 0.001 and log2 fold-change >2). For each data 
type, the SCLC risk score was calculated as the ratio of signal at the 
SCLC-enriched sites over the LUAD-enriched sites. This value was 
normalized to the median score across all samples for that data type 
and the log2 value was calculated, which was reported as the cfDNA 
SCLC risk score. To generate the integrated epigenomic SCLC risk 
score, we first calculated Z-scores for each sample within each in-
dividual data type (DNA methylation, H3K27ac, and chromatin 
accessibility). The integrated epigenomic cfDNA SCLC risk score 
was calculated as the sum of the Z-scores for each of the individual 
cfDNA SCLC risk scores for each sample. 

Statistical tests 
χ2 test was used to calculate the P value for the correlation of 

epigenomic features with differentially expressed genes. All statis-
tical tests were two-sided except where otherwise indicated. 

Data availability 
The PDX epigenomic data have been deposited in Gene Ex-

pression Omnibus (GSE269746). The cfDNA data generated from 
patient samples that support the findings of this study are available 
upon request from the corresponding authors (J.E. Berchuck, M.L. 
Freedman) to comply with the DFCI ethics regulations to protect 
patient privacy. All requests for raw and analyzed data will be 
promptly reviewed by the Belfer Office for Dana-Farber Innovations 
to verify if the request is subject to any intellectual property or 
confidentiality obligations. Any data and materials that can be 
shared will be released via a Data Transfer Agreement. 

Results 
Epigenomic characterization of tSCLC 

We first sought to comprehensively characterize the epigenomic 
landscape of tSCLC relative to LUAD and de novo SCLC. We per-
formed this analysis on PDXs developed from biopsies obtained 
from patients with LUAD, de novo SCLC, and tSCLC. We chose this 
model system for several reasons. First, compared to primary tumor 
biopsies whose cellular content often contains a high proportion of 
stromal cells, PDXs facilitate analysis of pure tumor cell populations 
to more cleanly study tumor-intrinsic molecular features. Second, 
PDXs can produce large tumor volumes to facilitate molecular an-
alyses that would be infeasible to perform on primary tumor bi-
opsies, which often produce insufficient material for the epigenomic 
profiling studies performed herein. Importantly, we previously 
demonstrated that the PDXs in this study recapitulate their original 
tumor molecular profiles (24). Our analysis focused on 26 lung 
cancer PDXs, comprising LUAD (n ¼ 13), tSCLC (n ¼ 4), and de 
novo SCLC (n ¼ 9) tumors (Supplementary Table S1). The SCLC 
tumors were predominantly ASCL1 (SCLC-A) and/or NEUROD1 

(SCLC-N) subtype, with one sample each of the POU2F3 (SCLC-P) 
and YAP1 [SCLC-Y, also referred to as triple negative or inflamed 
(SCLC-I)] subtype (Supplementary Fig. S1; refs. 45–47). Consistent 
with prior reports, all tSCLC PDXs exhibited loss of TP53 and/or 
RB1 (Supplementary Table S2; refs. 11–14). For each PDX, we 
performed ChIP-seq to profile the histone modifications H3K27ac 
(a mark of active gene promoters and enhancers), H3K4me3 (a 
mark of active gene promoters), and H3K27me3 (a mark of re-
pressed regulatory elements), MeDIP-seq to profile DNA methyla-
tion, and ATAC-seq to profile chromatin accessibility, resulting in 
126 epigenome-wide libraries (Fig. 1; Supplementary Fig. S2; refs. 
23, 24). We also performed bulk RNA-seq on PDXs for which this 
data had not already been generated (23, 24). 

Across every epigenomic feature assessed, unsupervised analyses 
demonstrated that tSCLC tumors clustered with de novo SCLC tu-
mors and were distinct from LUAD tumors (Fig. 2A; Supplemen-
tary Fig. S3). tSCLC tumors exhibited a gain of signal associated 
with active gene transcription—e.g., open chromatin, promoter 
H3K27ac and H3K4me3, gene body methylation, and loss of gene 
body H3K27me3—at neural lineage-defining genes, such as ASCL1, 
NEUROD1, and DLL3 (Fig. 2B). Likewise, more of the H3K27ac 
ChIP-seq and ATAC-seq peaks in tSCLC PDXs were also peaks in 
de novo SCLC than in LUAD PDXs (Supplementary Fig. S4). Col-
lectively, these data affirm a prior report of shifts in DNA methyl-
ation and gene expression (11) and demonstrate that histologic 
transformation from LUAD to SCLC is characterized by widespread 
epigenomic reprogramming, converging on a profile that resembles 
de novo SCLC. 

Development of a tissue-informed epigenomic liquid biopsy 
approach to detect tSCLC 

We sought to leverage these divergent epigenomic profiles to 
develop a diagnostic test to detect SCLC transformation in patients 
with EGFRm LUAD through epigenomic analysis of cfDNA. 
Building upon our prior work that tissue-informed analysis im-
proves the detection of tumor-specific epigenomic features in 
cfDNA (18), we first identified epigenomic features enriched in 
tSCLC compared to EGFRm LUAD. Given the similarity in epi-
genomic profiles of EGFRm and non-EGFRm LUAD, and tSCLC 
and de novo SCLC, we included all 26 PDXs in this analysis (Sup-
plementary Fig. S3). Comparative analysis of the LUAD and SCLC 
tumors resulted in a set of 24,424 H3K27ac, 2,272 H3K4me3, 3,298 
DNA methylation, and 16,352 accessible chromatin sites with sig-
nificantly greater signal in one or the other histologic subtypes. To 
identify features that would be clinically informative for a liquid 
biopsy, we removed sites with peaks in white blood cells (WBC), the 
primary source of background contamination. This step removed 
50% of all sites across features, resulting in 10,907 H3K27ac, 833 
H3K4me3, 1,210 DNA methylation, and 9,995 accessible chromatin 
sites enriched in SCLC or LUAD without signal in WBCs (Fig. 3A; 
Supplementary Fig. S5). Importantly, these epigenomic features 
strongly correlated with transcriptional activity. There was a strong 
association of upregulated genes in one histologic subtype having a 
nearby H3K27ac, H3K4me3, or open chromatin peak in that sub-
type (Fig. 3B; Supplementary Fig. S6). 

We next performed multianalyte epigenomic cfDNA profiling on 
48 plasma samples collected from 32 patients with metastatic lung 
cancer. This cohort comprised 20 patients with EGFRm LUAD who 
never developed tSCLC (EGFRm LUAD) and 12 patients with 
EGFRm LUAD following diagnosis of biopsy-proven tSCLC 
(tSCLC), 6 of whom also had plasma collected prior to being 
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diagnosed with tSCLC (Supplementary Table S3). Consistent with 
prior reports, all of the tumors from patients with tSCLC included 
in this cohort exhibited loss of TP53 and/or RB1 (Supplementary 
Table S2; refs. 11–14). On all plasma samples, we generated 
epigenome-wide data for four analytes—H3K27ac, H3K4me3, DNA 
methylation, and chromatin accessibility—from 1 mL of plasma 
(Fig. 1). In brief, we utilized a novel assay (cfChIP-seq) to identify 
nucleosomal cfDNA fragments bound to H3K27ac and H3K4me3, 
respectively (22). We then performed cfMeDIP-seq to profile 
cfDNA methylation (15–18). Finally, we performed LPWGS and 
utilized Griffin to infer regions of open chromatin based on cfDNA 
coverage patterns (19, 20). All subsequent analyses include samples 
with detectable circulating tumor DNA, defined as estimated tumor 
fraction >3% based on the lower limit of detection of ichorCNA 
applied to LPWGS data (27). More than 95% of plasma samples 
collected from patients with EGFRm LUAD progressing on osi-
mertinib have cfDNA tumor fraction >3% using this method, 

supporting the clinical relevance of this criteria (48). Notably, there 
was no difference in cfDNA tumor fraction between samples from 
patients with tSCLC and EGFRm LUAD (P ¼ 0.10; Supplementary 
Table S3). Filtering based on this cut-off and quality control metrics 
resulted in a final set of 105 epigenomic cfDNA libraries, which 
were included in subsequent analyses (Supplementary Fig. S7). 

To evaluate the ability to noninvasively detect tSCLC in patients 
with EGFRm LUAD, we developed individual SCLC risk scores for 
each epigenomic analyte based on cfDNA signals at the SCLC- and 
LUAD-enriched sites in the PDXs for that feature (Fig. 1; Supple-
mentary Fig. S5). The following SCLC risk scores were calculated as 
the normalized ratio of signals at the SCLC- versus LUAD-enriched 
sites (see “Materials and Methods”). 

cfDNA nucleosome analysis to detect tSCLC 
We first assessed the ability to accurately detect tSCLC through 

cfDNA nucleosome profiling. We observed significantly higher 

LUAD

SCLC
A

U
p 

in
 S

C
LC

(n
 =

 5
,8

86
)

D
iff

er
en

tia
l H

3K
27

ac
 P

ea
ks

LUAD tSCLC De novo SCLC

U
p 

in
 L

U
A

D
(n

 =
 5

,0
55

)
Signal
Intensity 

1.0

0.6

0.4

0.2

0.0

0.8

0

20

40

–l
og

10
 a

dj
us

te
d 
P

-v
al

ue 30

10

–10 –5 0 5 10

log2 fold-change

B

Higher gene
expression in SCLC

Higher gene
expression in LUAD

H3K27ac peak in LUAD SCLC

P < 2.2 × 10–16
P < 2.2 × 10–16

Figure 3. 
Comparative analysis identifies a robust set of highly differential epigenomic features between LUAD and SCLC. A, Heatmap of normalized H3K27ac tag 
densities at differential H3K27ac sites between LUAD and SCLC tumors (FDR-adjusted P < 0.001 and log2 fold-change > 2) located ±2 kb from peak center. B, 
Volcano plot showing overlap of the log2 fold-change differentially expressed genes between LUAD and SCLC PDXs with respective differential H3K27ac peaks 
enriched in LUAD (blue) and SCLC (red). Two-sided P values were corrected for multiple hypothesis testing (FDR-adjusted P < 0.05). 

3804 Clin Cancer Res; 30(17) September 1, 2024 CLINICAL CANCER RESEARCH 

El Zarif et al. 



H3K27ac SCLC risk scores in cfDNA samples from patients with 
tSCLC than those with EGFRm LUAD (P ¼ 0.0042; Fig. 4A). 
H3K27ac SCLC risk scores discriminated between plasma samples 
from patients with tSCLC versus EGFRm LUAD with an area 
under the receiver operating characteristic curve (AUROC) of 0.87 
(P ¼ 0.0056). H3K4me3 SCLC risk scores trended in the same 
direction, but did not achieve statistical significance (AUROC ¼
0.70; P ¼ 0.073; Fig. 4B). We hypothesized that the superior 
performance of H3K27ac relative to H3K4me3 was due in large 
part to the presence of more than 13 times the number of dif-
ferential H3K27ac sites (n ¼ 10,907) between SCLC and LUAD 
than H3K4me3 sites (n ¼ 833), since both features mark active 
promoters, but only H3K27ac marks active enhancers as well. This 
is illustrated by the distribution of these two histone modifications 
near INSM1, a neural lineage–defining gene, wherein an H3K4me3 
peak marks the gene promoter and H3K27ac peaks mark the 
promoter as well as the two most proximal enhancers in tSCLC 
(GH20J020396 and GH20J020399; Supplementary Fig. S8). In 
cfDNA, H3K27ac not only marked neural-lineage genes but also 
potential SCLC therapeutic targets such as DLL3 (Supplementary 
Fig. S9). These data demonstrate the ability to noninvasively detect 
tSCLC and potentially therapeutic target expression, through 
cfDNA nucleosome profiling and highlight the value of profiling 
gene enhancers in addition to promoters. 

To further validate the ability of the PDX-derived H3K27ac SCLC 
risk score to discriminate between histology subtypes, we performed 
H3K27ac ChIP-seq on 20 LUAD cell lines and 13 SCLC cell lines 
(Supplementary Table S4). Notably, all four molecular subtypes of 
SCLC were represented, including SCLC-A (n ¼ 5), SCLC-N (n ¼
3), SCLC-P (n ¼ 3), and SCLC-Y (n ¼ 2; ref. 49). H3K27ac SCLC 
risk scores were significantly higher in the SCLC than the LUAD cell 
lines (P ¼ 9.5 � 10�7) and achieved an AUROC of 0.95 (P ¼ 1.4 �
10�5) for accurate discrimination of the two histologic subtypes 
(Supplementary Fig. S10A and S10B). Notably, the SCLC-A (P ¼ 3.8 �
10�5), SCLC-N (P ¼ 0.0011), and the SCLC-P (0.0023) cell lines all 
individually exhibited higher SCLC risk scores than the LUAD cell lines. 
In contrast, the SCLC risk scores for the SCLC-Y cell lines were not 
different from the LUAD cell lines (P ¼ 0.36) and were significantly 
lower than the scores for the other three SCLC subtypes (P ¼ 0.026; 
Supplementary Fig. S10A). When excluding the SCLC-Y cell lines, the 
SCLC risk score achieved an AUROC of 0.995 (P ¼ 6.8 � 10�6) for 
accurately discriminating SCLC-A, SCLC-N, and SCLC-P cell lines 
from LUAD cell lines (Supplementary Fig. S10C). 

cfDNA methylation and chromatin accessibility analysis to 
detect tSCLC 

cfDNA methylation and chromatin accessibility analysis also 
discriminated between patients with tSCLC and those with EGFRm 
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Noninvasive detection of tSCLC via tissue-informed epigenomic cfDNA analysis. Box plots show cfDNA SCLC risk scores for plasma samples from patients with 
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LUAD. We again observed significantly higher SCLC risk scores in 
cfDNA samples from patients with tSCLC than those with EGFRm 
LUAD for both DNA methylation (P ¼ 0.00090; Fig. 4C) and 
chromatin accessibility (P ¼ 0.0023; Fig. 4D) data. Classifiers based 
on signal in cfDNA at differential methylation and chromatin ac-
cessibility sites between SCLC and LUAD tumors discriminated 
between patients with tSCLC and EGFRm LUAD with AUROCs of 
0.85 (P ¼ 0.0015) and 0.82 (P ¼ 0.0033), respectively. These data 
add to a growing body of literature demonstrating that cfDNA 
methylation and chromatin accessibility analysis can detect clini-
cally actionable tumor biology (15–17, 19, 20, 50, 51). 

Multianalyte epigenomic cfDNA classifier to detect tSCLC 
We hypothesized that integrated cfDNA analysis of multiple 

epigenomic features would improve our ability to discriminate be-
tween patients with EGFRm LUAD and tSCLC. To characterize the 
extent to which multiple epigenomic features would provide addi-
tive versus redundant information, we assessed the overlap of dif-
ferential sites between SCLC and LUAD PDXs for H3K27ac, 
methylation, and open chromatin. Of the 20,079 differential sites 
across the three features without background signal in WBCs, the 
vast majority (90%; n ¼ 18,078) were unique to one epigenomic 
data type (Fig. 5A). The number of combined sites was 1.8, 2.0, and 
16.6 times greater than the number of H3K27ac, accessible chro-
matin, and DNA methylation sites, respectively, and spanned more 
than 60 Mb—approximately two times the number of base pairs in 
the protein-coding genome. Given the largely non-overlapping in-
formation from these three epigenomic features, we tested a multi- 
analyte classifier integrating H3K27ac, DNA methylation, and 
chromatin accessibility data. This integrated epigenomic SCLC risk 
score discriminated between cfDNA samples from patients with 

tSCLC and EGFRm LUAD with greater accuracy than any of the 
individual analytes (AUROC ¼ 0.94; P ¼ 0.0095; Fig. 5B). The 
optimal diagnostic cut-off (�0.029) demonstrated 89% sensitivity 
and 91% specificity to identify cfDNA samples from patients with 
tSCLC versus EGFRm LUAD (likelihood ratio of 9.8). 

Association of cfDNA SCLC risk score with tumor fraction 
Circulating tumor DNA levels are a critical factor in the ability of 

liquid biopsies to accurately detect and characterize cancers. As 
such, we assessed the relationship of the integrated epigenomic 
cfDNA SCLC risk score with cfDNA tumor content. We observed 
that SCLC risk scores strongly correlated with cfDNA tumor frac-
tion in patients with tSCLC (R2 ¼ 0.79; P ¼ 4.5E�5) but not in 
patients with EGFRm LUAD (R2 < 0.01; P ¼ 0.99; Fig. 5C). This 
finding suggests that the SCLC risk score reflects tumor biology 
(i.e., the amount of signal in cfDNA at the site of epigenomic fea-
tures enriched in a histologic subtype) rather than solely reflecting 
levels of circulating tumor DNA. 

Longitudinal epigenomic cfDNA profiling in patients with 
EGFRm tSCLC 

A unique feature of our cohort is plasma samples collected prior 
to and at the time of small cell transformation in 2 patients with 
EGFRm LUAD, providing the opportunity to correlate longitudinal 
assessment of the integrated epigenomic cfDNA SCLC risk scores 
with the emergence of tSCLC. The first patient (Fig. 6A) was a 73- 
year-old woman diagnosed with metastatic LUAD with EGFR exon 
19 deletion involving the brain. She was started on first-line erlo-
tinib and remained in remission 36 months later when the first 
plasma timepoint was collected showing an SCLC risk score of �0.4. 
Four months later, she experienced radiographic progression with 
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cfDNA analysis showing an EGFR T790M mutation. A second 
plasma sample at this timepoint showed an SCLC risk score of �1.0. 
Treatment was switched from erlotinib to osimertinib. A third 
plasma timepoint collected 10 months later showed a marked in-
crease in the SCLC risk score to 5.2. Scans at that time revealed new 
liver metastases and a liver biopsy showed tSCLC. The second pa-
tient (Fig. 6B), a 62-year-old woman, was diagnosed with metastatic 
LUAD with EGFR exon 19 deletion involving the liver, bone, and 
brain for which she was started on first-line osimertinib. The first 
two plasma samples collected 3 months apart at the time of minor 
radiographic progression on osimertinib showed SCLC risk scores 
of �2.6 and �1.1, respectively. A third plasma sample 3 months 
later showed an increase in the SCLC risk score to 0.6. Scans at that 
time revealed new liver metastases and a liver biopsy showed tSCLC. 
Notably, the rise in the SCLC risk score preceded clinical diagnosis 
of tSCLC by 92 days in this patient. These patient vignettes illustrate 
that longitudinal epigenomic cfDNA analysis reflects the emergence 
of tSCLC in patients with EGFRm LUAD. 

Discussion 
Histologic transformation to SCLC is an aggressive, clinically 

actionable resistance phenotype that emerges in a subset of patients 
with EGFRm LUAD. Limitations of current clinical tools result in 
delays in diagnosis and underdiagnosis of tSCLC, and consequently, 

missed opportunities to deliver optimal guideline-recommended 
histology-directed systemic therapy. Herein, in the largest study to 
date of cfDNA samples from patients with tSCLC, we demonstrate 
for the first time the ability to non-invasively detect small cell 
transformation in patients with EGFRm LUAD through epigenomic 
profiling of 1 mL of plasma. With the limitations of tissue biopsy 
resulting in fewer than half of patients with metastatic EGFRm 
LUAD undergoing histologic tumor assessment at the time of EGFR 
TKI resistance, these data highlight the potential to advance diag-
nostic and therapeutic precision for patients with advanced lung 
cancer by augmenting the current diagnostic paradigm with epi-
genomic cfDNA analysis. 

Liquid biopsies are now widely utilized in clinical oncology to 
detect cancer recurrence and inform therapeutic decisions. How-
ever, most commercially-available cfDNA assays only detect tumor 
genomic alterations. The lack of genomic alterations exclusive to 
tSCLC limits the utility of these genomic-based cfDNA approaches 
to detect small cell transformation in patients with EGFRm LUAD. 
To address this limitation, we and others have developed tools to 
analyze several tumor epigenomic features from patient plasma, 
including DNA methylation (15–18), chromatin accessibility (19, 
20), and histone modifications (21, 22). Several recent studies 
highlight the potential of epigenomic cfDNA profiling to provide 
dynamic insights into tumor biology in patients with advanced lung 
cancer. Haq and colleagues analyzed cfDNA methylation profiles 
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A–B, Patient vignettes highlight the ability to noninvasively detect small cell transformation in patients with EGFRm LUAD through cfDNA epigenomic profiling. 
Longitudinal assessment of the integrated epigenomic cfDNA SCLC risk score in 2 patients with EGFRm LUAD who experienced biopsy-proven SCLC. 

AACRJournals.org Clin Cancer Res; 30(17) September 1, 2024 3807 

Epigenomic cfDNA Detection of tSCLC 

https://aacrjournals.org/


from patients with advanced de novo SCLC, identifying two 
methylation-defined subsets that associate with distinct tumor bi-
ology and clinical prognosis (52). Heeke and colleagues (50) and 
Chemi and colleagues (51) demonstrated that SCLC subtypes (based 
upon predominant transcription factor expression, i.e., ASCL1, 
NEUROD1, POU2F3) harbor distinct methylation profiles that can 
be detected through cfDNA methylation analysis. Our study is 
distinct in that we demonstrate for the first time that epigenomic 
cfDNA profiling can be used to detect small cell transformation in 
patients with EGFRm LUAD progressing on EGFR TKIs. Diag-
nosing tSCLC by cfDNA profiling would be immediately clinically 
actionable, as guidelines recommend that tSCLC be treated with a 
de novo SCLC regimen of platinum-etoposide chemotherapy which 
would not otherwise be used in patients with LUAD (1, 53). 

An accurate and easily implementable diagnostic test to detect 
tSCLC in the clinic, would not only facilitate timely delivery of 
standard of care therapy but could also potentially identify patients 
for tSCLC-directed therapeutic clinical trials. The first cohort of 
clinical trials designed specifically for patients with tSCLC are currently 
enrolling, testing addition of programmed death-ligand 1 inhibitors in 
combination with either platinum-etoposide chemotherapy or poly- 
ADP ribose polymerase 1 inhibitors (NCT04538378; NCT05957510; 
NCT03944772). Notably, we present data supporting the ability of 
epigenomic cfDNA analysis to noninvasively detect expression of 
potential therapeutic targets for tSCLC, such as DLL3, the target of 
tarlatlamab, a bispecific antibody that recently demonstrated a 40% 
response rate in patients with previously treated de novo SCLC (53). 
Finally, the potential feasibility of detecting an emerging signal of 
tSCLC histology with our assay lends itself to the possibility of early 
adaptive treatment strategies to prevent or delay outright SCLC 
transformation, similar to the concept behind an ongoing trial 
(NCT03567642) treating patients with EGFRm LUAD at higher 
risk for SCLC transformation (concurrent TP53/RB1 mutations) 
with four cycles of platinum/etoposide chemotherapy in addition 
to osimertinib. 

A major strength of our study is the breadth and depth of epi-
genomic data generated from tSCLC tumors. To our knowledge, only 
one study has previously investigated the epigenomic landscape of 
tSCLC (11). This multiomic analysis of tSCLC tumors by Quintanal- 
Villalonga and colleagues found that small cell transformation is 
primarily driven by transcriptional reprogramming, with integrated 
methylation analysis providing insights into epigenomic changes that 
underlie histologic transformation. Our work builds upon this ob-
servation, generating epigenome-wide data on DNA methylation, 
chromatin accessibility, and three histone modifications involved in 
gene regulation on a series of 26 LUAD, de novo SCLC, and tSCLC 
PDXs. These data affirmed that the observed transcriptional reprog-
ramming that accompanies histologic transformation is characterized 
by widespread epigenomic reprogramming, converging on an epi-
genomic profile that resembles de novo SCLC. While the focus of this 
manuscript was to develop a tumor-informed cfDNA-based epi-
genomic classifier to detect tSCLC, we believe that this publicly 
available epigenomic-transcriptomic dataset will be a valuable re-
source to further our understanding of the biology that underlies 
histologic transformation in lung cancer and clinically relevant dif-
ferences between de novo and transformed SCLC. 

The platform developed and employed for cfDNA analysis in this 
study generated new insights into the feasibility and clinical utility 
of profiling multiple epigenomic features in cfDNA. Because epi-
genomic cfDNA profiling approaches have been developed inde-
pendently, it is not known whether integrating multiple epigenomic 

analytes is feasible in real-world patient samples or whether this 
results in better ability to detect clinically relevant tumor biology. 
We demonstrate for the first time the ability to generate high-quality 
epigenome-wide cfDNA data on DNA methylation, histone modi-
fications, and chromatin accessibility from 1 mL of patient plasma. 
Notably, some of the plasma samples included in this study were 
collected as long as 8 years prior to analysis. Combined with the 
minimal sample requirement, these technologies potentially unlock 
the ability to obtain multianalyte epigenome-wide cfDNA data from 
real-world plasma samples. Additionally, to our knowledge, this is 
the first study to suggest that combining multiple cfDNA epi-
genomic features may improve the ability to non-invasively detect a 
clinically actionable resistance phenotype. The observation that 
histology-specific H3K27ac, DNA methylation, and open chromatin 
sites were largely nonoverlapping led us to develop a multi-analyte 
classifier integrating these three epigenomic analytes that resulted in 
better diagnostic accuracy (AUROC of 0.94) than any of the indi-
vidual features (AUROC of 0.82–0.87). While further studies are 
needed to understand the value of multianalyte versus single-analyte 
epigenomic analysis, we demonstrate for the first time the feasibility 
of profiling multiple epigenomic features in cfDNA from 1 mL of 
real-world plasma samples with data suggesting that integrated 
multianalyte cfDNA profiling may improve the ability to non-
invasively detect clinically relevant tumor biology. 

We acknowledge important limitations of this study. First is the 
modest number of patient samples in the cfDNA cohort. While 
small in absolute terms, this represents the largest study to date of 
plasma samples from patients with pathologically confirmed tSCLC 
and the first to demonstrate the ability to noninvasively detect small 
cell transformation in patients with EGFRm LUAD through cfDNA 
analysis. Given the rarity of these specimens, plasma samples in this 
study were collected across 8 years at two institutions under dif-
ferent conditions, e.g., EDTA tubes for some samples and Streck 
tubes for others, and different plasma extraction methods. The re-
sults of the cfDNA analysis in this real-world cohort—despite the 
variability in the several pre-analytical conditions of the samples— 
demonstrate the robustness of the epigenomic assays deployed in 
this study. A second limitation is the lack of an independent vali-
dation cohort. Given the rarity of plasma samples from patients with 
biopsy-proven tSCLC, this was not feasible. We would like to 
highlight, however, that the epigenomic classifiers were developed 
solely from an independent cohort of tumors (i.e., comparative 
analysis of unrelated SCLC and LUAD PDXs) and applied to the 
cfDNA samples, thus the results are less subject to diagnostic biases, 
such as overfitting. Nevertheless, the performance of the described 
epigenomic classifiers, as well as the optimal cut-offs that maximize 
diagnostic accuracy for identifying patients with EGFRm LUAD 
who have undergone small cell transformation, need to be validated 
in independent cohorts. Additionally, further validation in cohorts 
with representation of all molecular subtypes of SCLC will be im-
portant (45–47). The majority of the SCLC PDXs from which the 
classifier was derived, and the tumors from patients with tSCLC in 
the cfDNA cohort, were of the SCLC-A or SCLC-N subtypes. En-
couragingly, the PDX-derived H3K27ac SCLC risk score demon-
strated excellent diagnostic accuracy for not only SCLC-A and 
SCLC-N, but also the SCLC-P in our cell line validation experiment. 
However, the inability of this classifier to distinguish SCLC-Y from 
LUAD is an important limitation. For now, tumor tissue biopsy 
remains the gold standard to diagnose histologic transformation in 
patients with advanced LUAD with liquid biopsy representing a 
complementary approach that may better assess intratumoral spatial 
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heterogeneity, can provide diagnostic information when tissue is 
unavailable, and allows for serial sampling over a patient’s disease 
course. Evaluation of the performance of the SCLC risk score in 
cfDNA cohorts from patients with annotated tSCLC tumor mo-
lecular subtypes is needed. Finally, the retrospective nature of our 
cohort resulted in variability in timing of collection of plasma 
samples relative to biopsy-proven tSCLC diagnosis, so we were 
unable to methodically determine how far epigenomic cfDNA-based 
identification of SCLC histology precedes clinical tissue diagnosis. 
Intriguingly, we observed in one patient that a rise in the cfDNA 
SCLC risk score preceded clinical diagnosis of tSCLC by more than 
3 months. To more formally evaluate this and other clinically rel-
evant questions around the clinical utility of epigenomic cfDNA- 
based diagnostics, we strongly encourage incorporation of plasma 
collection into prospective clinical trials. 

In summary, we observed widespread epigenomic reprogram-
ming in tSCLC tumors relative to EGFRm LUAD tumors and lev-
eraged these divergent molecular profiles to demonstrate for the first 
time the ability to non-invasively detect tSCLC in patients with 
EGFRm LUAD progressing on an EGFR TKI through epigenomic 
cfDNA analysis. With clinical validation, this epigenomic cfDNA- 
based approach to detect small cell transformation could usher in a 
new paradigm of diagnostic and therapeutic precision for patients 
with advanced lung cancer. 
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