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Abstract 

Background  Motor difficulties are common in many, but not all, autistic individuals. These difficulties can co-occur 
with other problems, such as delays in language, intellectual, and adaptive functioning. Biological mechanisms under-
pinning such difficulties are less well understood. Poor motor skills tend to be more common in individuals carrying 
highly penetrant rare genetic mutations. Such mechanisms may have downstream consequences of altering neuro-
physiological excitation-inhibition balance and lead to enhanced behavioral motor noise.

Methods  This study combined publicly available and in-house datasets of autistic (n = 156), typically-developing (TD, 
n = 149), and developmental coordination disorder (DCD, n = 23) children (age 3–16 years). Autism motor subtypes 
were identified based on patterns of motor abilities measured from the Movement Assessment Battery for Children 
2nd edition. Stability-based relative clustering validation was used to identify autism motor subtypes and evaluate 
generalization accuracy in held-out data. Autism motor subtypes were tested for differences in motor noise, opera-
tionalized as the degree of dissimilarity between repeated motor kinematic trajectories recorded during a simple 
reach-to-drop task.

Results  Relatively ‘high’ (n = 87) versus ‘low’ (n = 69) autism motor subtypes could be detected and which general-
ize with 89% accuracy in held-out data. The relatively ‘low’ subtype was lower in general intellectual ability and older 
at age of independent walking, but did not differ in age at first words or autistic traits or symptomatology. Motor 
noise was considerably higher in the ‘low’ subtype compared to ‘high’ (Cohen’s d = 0.77) or TD children (Cohen’s 
d = 0.85), but similar between autism ‘high’ and TD children (Cohen’s d = 0.08). Enhanced motor noise in the ‘low’ sub-
type was also most pronounced during the feedforward phase of reaching actions.

Limitations  The sample size of this work is limited. Future work in larger samples along with independent replication 
is important. Motor noise was measured only on one specific motor task. Thus, a more comprehensive assessment 
of motor noise on many other motor tasks is needed.

Conclusions  Autism can be split into at least two discrete motor subtypes that are characterized by differing levels 
of motor noise. This suggests that autism motor subtypes may be underpinned by different biological mechanisms.
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Background
The core of the autism phenotype is centered around 
early developmental difficulties in the domains of social-
communication (SC) and restricted repetitive behav-
ior (RRB). Despite the core SC and RRB commonalities, 
autistic individuals markedly vary in the domain of motor 
development. It has been estimated that anywhere from 
34 to 80% of autistic individuals show some form of 
motor impairment and/or delay [1–5]. Motor difficulties 
in autism are often associated with language delay [6–8], 
cognitive impairment [9–11], poorer developmental out-
comes [12], and reduced life quality [13–15]. Because 
motor difficulties may affect a large percentage of autis-
tic individuals, a recent debate has emerged regarding 
whether these difficulties should be added to the diagnos-
tic criteria [1, 16–19]. However, the way in which motor 
abilities are affected in autism is quite heterogeneous. 
Motor difficulties range from delays in attaining early 
motor milestones to severe deficits in motor coordination 
that hinder daily living and adaptive functioning [14, 20]. 
Thus, a discussion regarding global motor impairment in 
autism is not sufficient and may not be helpful in the con-
text of precision medicine and personalized intervention 
[21, 22]. A characterization of heterogeneous motor pro-
files in autistic individuals is needed and may help link to 
other latent profiles that extend into other key domains 
such as language, intellectual and adaptive functioning.

Understanding motor issues in autism may also be key 
to honing in on biological mechanisms that affect some 
autistic individuals. At a genetic level, it is known that 
individuals with highly penetrant but rare protein trun-
cating de novo mutations associated with autism, also 
tend to show delays in the acquisition of early motor 
milestones (e.g., age at walking) [23–28]. Many of these 
rare highly penetrant mutations are known to converge 
on a final common pathway of dysregulated neurophysi-
ological balance between excitatory and inhibitory (E:I) 
neuronal signaling in the brain [29, 30]. Synaptic E:I 
imbalance can attenuate signal-to-noise ratio in neural 
circuitry and enhance neural noise [31]. The higher level 
of noise in the brain could be reflected in the higher level 
of noise in motor circuitry. We hypothesize that a down-
stream consequence of higher neural noise specifically in 
the motor circuitry could lead to a behavioral prediction 
of enhanced motor noise—that is, increased variability 
when performing the same motor action repeatedly [32]. 
While variability is a ubiquitous and healthy feature of 
neuronal circuits [32–34], enhanced neural and motor 
noise has been proposed to be more pronounced on-
average in autism [35–41].

In this work we investigated the hypothesis of whether 
stratification of autism by clinical motor profiles leads to 
enhanced precision in parsing apart individuals that may 

be differentially affected by motor noise. First, we use an 
unbiased data-driven approach to identify whether there 
are discrete motor subtypes in autism, using clinical pro-
files of motor behavior assessed with a standardized test 
of motor ability—the Movement Assessment Battery for 
Children—2nd edition (MABC2). Second, we apply sub-
type labels to motor kinematics data from a simple reach-
to-drop motor task (Fig.  1C) [42, 43] and test whether 
subtypes differ in terms of motor noise. Lastly, we divided 
the kinematic task into feedback and feedforward com-
ponents [44] to assess whether motor noise is expressed 
differently by the subtypes in each segment.

Methods
NDA dataset
For the purposes of building a motor stratification model 
of autism, in March 2020 we downloaded all publicly 
available data from the National Institute of Mental 
Health Data Archive (NDA; https://​nda.​nih.​gov) that 
included autistic (n = 62; n = 12 female), typically-devel-
oping (TD; n = 56; n = 12 female), or developmental coor-
dination disorder (DCD; n = 23; n = 9 female) children 
aged 8–16  years old (mean age = 11.2; SD age = 1.73) 
whom also had a complete Movement Assessment Bat-
tery for Children—2nd Edition (MABC2) [45]. Available 
data originated from 3 different NDA collections: 2566 
n = 38, 2254 n = 88, 2799 n = 15. A fourth data collection 
(collection ID = 2093) was identified yet excluded for the 
unusual data distribution (i.e., most of the individuals 
included had a score at the lower end of the MABC2 total 
score scale). NDA MABC2 data were then filtered to only 
include individuals between 3 and 16 years of age. Dupli-
cate data were identified and dropped. Finally, if more 
than one MABC2 subscale domain was missing, the sub-
ject was dropped from the analysis. Global unique identi-
fiers and collection IDs for all data utilized from NDA are 
reported in Supplementary Table 1.

IRCCS‑MEDEA dataset
In addition to data from NDA, we also compiled an in-
house dataset which used the MABC2. The in-house 
dataset consisted of n = 94 (n = 17 female) autistic and 
n = 93 (n = 23 female) typically-developing (TD) chil-
dren aged 3–12 years old (mean age = 7.34; SD age = 2.4), 
recruited at the Scientific Institute IRCCS Eugenio 
Medea (IRCCS-MEDEA) in Italy [46]. The autistic indi-
viduals had been recruited while undergoing either a 
clinical assessment (diagnostic or follow-up) or com-
prehensive rehabilitation program at the Child Psy-
chopathology Unit of IRCCS-MEDEA, where all the 
testing occurred. The experimental procedure included 
the administration of the MABC2 [45] and the perfor-
mance of 10 trials of a reach-to-drop motor task [42, 43, 

https://nda.nih.gov
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46] while kinematic data were recorded with an opto-
electronic system. Moreover, additional information was 
retrieved from each autistic individual’s closest clinical 
record. They included information about: early develop-
ment (i.e. the age at independent walk and the age of the 
first words), intellectual abilities (tested with the Griffith 
Mental Developmental Scales—3rd Edition (GMDS-3) 
[47], the Wechsler Preschool and Primary Scale of Intel-
ligence—III (WPPSI-III) [48], the Wechsler Intelligence 
Scale for Children (WISC) 3rd and 4th edition [49, 50]) 
and autism core symptoms severity (using the Calibrated 
Severity Score (CSS), for the Total, the Social Affect 
(SA) and the Restricted and Repetitive Behavior (RRB) 
domains of the Autism Diagnostic Observation Scales- 
2nd edition (ADOS-2) [51] and the Social Responsive-
ness Scales—SRS [52]). Supplementary Table 2A provides 
a description of the sample size for each of the investi-
gated features.

To evaluate our second aim of whether motor noise was 
enhanced specifically within an autism motor subtype, 

we utilized kinematics data recorded using an optoelec-
tronic system while children performed 10 repetitions of 
a simple upper-limb reach-to-drop motor task [42, 43]. 
Twenty-four autistic individuals and 14 typically devel-
oping did not complete all the 10 trials of the task  and 
thus were excluded from the analysis.

Movement Assessment Battery for Children—2nd edition 
(MABC2)
To assess motor profiles in young children we used the 
MABC2 [45]. MABC2 is a gold standard clinical test for 
the diagnosis of DCD in children aged 3 to 16 years old. 
However, it can be useful in assessing motor proficiency 
in a variety of developmental conditions, and it has been 
extensively used in the autistic population [3, 46, 53]. 
The MABC2 is composed of 3 subscales investigating 
specific aspects of motor coordination: the Manual Dex-
terity (MD) subscale, which refers to fine-motor coor-
dination tasks; the Aiming and Catching (AC) subscale 
that includes oculo-motor activities; and the Balance 

Fig. 1  Overview of motor stratification and kinematic data analysis workflow. Panel A shows how IRCCS-MEDEA and NDA datasets are combined 
and how the initial preprocessing steps are implemented to remove confounding effects of originating study ID, MABC2 module, and sex. Panel 
B shows the workflow for stability-based relative clustering validation (reval) analyses that aimed to identify the optimal number of clusters (best 
k) that minimizes normalized stability in independent splits of the data (training and validation) and estimate the generalization accuracy of such 
optimal (best k) clustering solution. Panel C shows the analysis workflow for how we estimated motor noise from kinematics data acquired 
during a simple reach-to-drop task from the IRCCS-MEDEA dataset. Within this task, 10 repeat trials were administered and we used multivariate 
dynamic time warping (DTW) to align and compare motor kinematic trajectories across repeat trials. Motor noise is operationalized as the median 
similarity across trials (DTW dist norm) whereby higher estimates are indicative of more motor noise (i.e., increased dissimilarity between repeat 
trials). Panel D indicates the final step of hypothesis testing for subtype differences in motor noise
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(BL) subscale that tests both static and dynamic bal-
ance abilities. To cover a wide age range, the MABC2 is 
divided into 3 age bands (referred to hereafter as mod-
ules - module 1: 3–6 years; module 2: 7–10 years, mod-
ule 3: 11–16 years) that assess the very same skills using 
age-appropriate tasks and activities. The advantages of 
using the MABC2 in autism is that the task’s instructions 
include a practical demonstration that can be followed by 
non-verbal autistic individuals. Furthermore, MABC2 is 
known to have high internal consistency (0.90) and excel-
lent test–retest reliability (intraclass correlation coeffi-
cient = 0.97) in a DCD sample [54].

Kinematic task—data acquisition and preprocessing
Motor kinematic data was collected during a simple 
reach-to-drop task previously described by Forti et  al. 
[43] and Crippa et al. [42]. Kinematic data were collected 
at IRCSS-MEDEA. Each trial started with the child’s 
hand resting in a set position at a distance equal to 80% 
of each child’s forearm length from the ball support. 
The child was asked to complete 2 subsequential move-
ments: (1) grasp a rubber ball (6-cm diameter), placed 
over a small support, and (2) drop it in a plastic “castle” 
with a 7  cm diameter hole on the top. The “castle” was 
a see-through square box (21 cm high and 20 cm wide) 
large enough not to require fine movements while drop-
ping the ball. Task instructions were provided by a practi-
cal demonstration with no verbal cues so that non-verbal 
and minimally verbal autistic individuals could take part 
in the experiment. The same experimenter was present 
for all sessions in order to avoid any possible confounds 
due to the practical demonstration. Practice trials, the 
number of which varied according to each  individual, 
were given to participants before recording in order to 
verify the child’s understanding of the task. The partici-
pants were allowed to interrupt the experiment at will in 
order to rest.

Each movement was recorded using an optoelectronic 
system (the SMART D from BTS Bioengineering—Gar-
bagnate Milanese, Italy). Three-dimensional kinematic 
data was collected by eight infrared-motion analysis 
cameras at 60  Hz (spatial accuracy: 0.2  mm), located 
four per side at 2.5  m away from the participants. Pas-
sive markers (1  cm) were attached to the elbow, ulnar 
and radial surfaces of the participants’ wrists and to 
the hand dorsum on the fourth and fifth metacarpals 
(Fig.  1C). This resulted in a total of four body parts for 
kinematic trajectories to be recorded from. Subsequently, 
a dedicated software system (Smart Tracker, BTS Bio-
engineering—Garbagnate Milanese, Italy) was used to 
track and reconstruct the acquired movement by nam-
ing each single moving point recorded by the cameras in 
each time-frame. This allowed for frame-wise definition 

of a movement trajectory in 3-dimensional space coor-
dinates (x, y, z). Data were then preprocessed in MAT-
LAB (Mathworks—Natick, MA, USA) using a fifth-order 
Butterworth (8-Hz) low-pass filter. Although the task 
was presented to all children, 24 autistic and 14 TD chil-
dren did not complete all 10 trials of the task, or chose to 
change hand (e.g., from left to right) during the task and 
were  removed  from the analysis. The final  analysis was 
undertaken on n = 70 autistic and n = 79 TD individuals.

Dataset combination and batch correction
For our first aim to stratify autism by MABC2 pro-
files, we first combined the IRCCS-MEDEA and NDA 
datasets to get the largest possible sample size for the 
stratification analysis. The final sample size was n = 328 
individuals, aged 3 to 16  years old, split into n = 156 
autistic (n = 29 females), n = 23 DCD (n = 9 females) and 
n = 149 TD (n = 35 females) children (Supplementary 
Table 2A–B). Because data originated from multiple sites 
(e.g., IRCCS-MEDEA and 3 other NDA datasets), we first 
implemented a batch correction technique to control for 
the variance attributed to factors that might introduce 
some systematic biases in the following analysis, such the 
originating study ID, the MABC2 module used and sex 
of participant (Fig. 1A). This batch correction was imple-
mented as a linear model with each MABC2 subscale or 
total standardized score as the dependent variable and 
the originating study ID, MABC2 module, sex, and diag-
nosis as independent variables. Beta coefficients for origi-
nating study ID, MABC2 module and sex were used to 
project out variance related to those features before any 
further downstream statistical analysis. For the subse-
quent stratification model analysis, only the autistic sub-
jects were utilized. For full reproducible analyses of all 
results presented in this work, please see https://​github.​
com/​IIT-​LAND/​motor_​strat​ifica​tion_​paper.

Stability‑based relative clustering validation analysis 
(reval)
To identify robust, stable, and reproducible subtypes 
based on motor profiles from the MABC2, we used a sta-
bility-based relative clustering validation approach called 
reval (https://​github.​com/​IIT-​LAND/​reval_​clust​ering) 
[55]. Practically, reval takes as input independent train-
ing and validation sets and selects the optimal number 
of clusters by looping across a range of possible clusters 
solutions (k = range[2:10]). For each clustering solution 
reval applies a  repeated n cross-validation scheme that 
partions  the training set repeatedly into the internal-
training and internal-testing sets and then implements a 
clustering algorithm on each. A classifier is then fit to 
the  internal-training set and is used to predict the clus-
ters labels of the internal-testing set, which then allows 

https://github.com/IIT-LAND/motor_stratification_paper
https://github.com/IIT-LAND/motor_stratification_paper
https://github.com/IIT-LAND/reval_clustering
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for obtaining a performance metric -  the misclassifica-
tion error. reval uses the average of the misclassification 
error obtained across the n cross-validation repetitions 
for each of the possible k to select the optimal k, defined 
as the one having the lowest normalized stability (i.e., a 
measure that combines the classifier’s misclassification 
error with the misclassification after random labeling). 
The general idea is that the optimal cluster solution in 
terms of the number of clusters (k) is the most reproduc-
ible, hence a classifier trained on a first independent set 
(interval-training set) should be able to accurately clas-
sify the observation of another independent set (inter-
nal- testing set) resulting in higher classification accuracy 
and a lower misclassification error. Once the optimal k 
has been identified, reval applies that k as the number of 
clusters to identify in the held-out test set. It then trains 
a classifier on the original training set and uses it to pre-
dict the held-out test set labels. This classifier accuracy 
is called generalization accuracy and it is a performance 
metric that allows for interpreting if the clustering solu-
tion is thoroughly reproducible in independent datasets. 
For more details about reval please refers to our prior 
published work [55].

With respect to this work, preprocessed MABC2 data 
from autistic individuals was used as input for the reval 
analysis. A total of n = 156 autistic individuals were first 
split into train and validation sets using a 70–30 split 
scheme, while also balancing for originating study ID, sex, 
and MABC2 module. Before being entered as input fea-
tures for reval, the three MABC2 subscales were scaled 
to a mean of 0 and a standard deviation of 1 (sklearn.
preprocessing.StandardScaler) and then transformed 
using Uniform Manifold Approximation and Projection 
(UMAP) (n_neighbors = 30, min_dist = 0.0, n_compo-
nents = 2, random_state = 42, metric = Euclidean). Those 
steps were done by fitting the models on the train set and 
applying them to both train and validation sets. Cluster-
ing and classification models were fit using k-means clus-
tering and k-nearest neighbor classifier algorithms from 
the python scikit-learn library. To identify the optimal 
number of clusters via minimizing normalized stability, 
we used a twofold cross-validation scheme on the train 
dataset and searched through cluster solutions 2 through 
10. The cross-validation scheme was repeated 100 times 
to ensure robustness. The identified optimal number of 
clusters was then used for clustering on the validation 
set. A classifier was then trained on the train set and uti-
lized to predict the labels on the validation set to test the 
reproducibility of the cluster solution in a held-out sam-
ple. The accuracy of the classifier on the validation set is 
called generalization accuracy and describes how well the 
classification model fit to the train dataset can identify 
similar labels in the independent validation set (Fig. 1B). 

While stability-based relative clustering validation in 
reval tells us about the stability of clustering solutions, 
it does not test whether the actual solution is indicative 
of true clusters. Therefore, we followed up on the reval 
analysis by using the sigclust library in R to test whether 
the observed clustering solution significantly differs from 
the null hypothesis that the data originates from a single 
multivariate Gaussian distribution [56].

Testing subtypes for differences in non‑motor domains
Autism motor subtypes were examined for a number of 
phenotypic differences such as autism symptom severity, 
autistic traits, intelligence, and age at acquisition of devel-
opmental milestones such as walking and first words. For 
this analysis, only individuals from the IRCCS-MEDEA 
dataset were analyzed, since this was the only dataset that 
had presence of variables measuring these features. To 
measure intelligence, we utilized combined standardized 
scores (mean 100, SD = 15) across measures such as the 
GMDS-3 [57], WPPSI-III, and WISC 3rd and 4th edition 
[49, 50]. Autism symptom severity was measured with 
ADOS-2 SA and RRB calibrated severity scores (CSS) 
[51]. Autistic traits were measured with the SRS [52]. 
Age at achievement of early developmental milestones 
(i.e., age at independent walking, age at first words) were 
retrieved from clinical history data collected by clinicians 
during initial examination. Those measures were avail-
able for a portion of the entire IRCCS-MEDEA sample, 
hence the sample size for each hypothesis test changes 
accordingly (see Supplementary Table  2A). Hypoth-
esis tests were conducted via Welch two-sample t-tests 
or Wilcoxon signed-rank tests when data significantly 
deviated from a Gaussian distribution (Supplementary 
Table 3A).

Motor kinematic analyses
Motor noise was assessed via analysis of kinematic data 
from a simple reach-to-drop task from the IRCCS-
MEDEA dataset. Here we defined motor noise as the 
degree of variability in movement trajectories between 
repeated trials on this task [32, 58]. To estimate variabil-
ity between the 10 repeat trials of the task, we utilized 
multivariate dynamic time warping (DTW) implemented 
with the dtw function in the dtw library in R (distance 
metric: Euclidean, step pattern: Symmetric2, begin 
and end: close). For each individual, DTW resulted in a 
10 × 10 similarity matrix. We defined motor noise as the 
median distance between trials, computed as the median 
in this 10 × 10 DTW similarity matrix. Larger values on 
this measure indicate higher levels of motor noise due to 
higher dissimilarity in movement trajectories between 
the 10 repeated trials (Fig.  1C). Given that the move-
ments were already segmented so that data for each trial 
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started and ended with the starting and ending of the 
movement, the DTW algorithm was forced to match the 
first and the last timeframe while comparing trials. More-
over, to avoid any bias given by the velocity in performing 
the movement, the normalized distance output was used 
for the subsequent analysis which represents the differ-
ence in the trajectories normalized by the total duration 
of the movement. Hypothesis tests for group differences 
in motor noise (e.g., DTW normalized distance) were 
examined with ANOVA and post hoc Welch two-sample 
t-tests.

Examining motor noise during feedforward and feedback 
phases of reaching
It is well known in the literature that reaching actions 
can be characterized by two phases [44, 59–64]: (1) a first 
feedforward phase defined by the first deceleration peak 
after the max peak velocity, and (2) a subsequent feed-
back phase preceding the grasping of the object (Fig. 4A). 
These phases are thought to be underpinned by distinct 
neurocomputational mechanisms and thus are impor-
tant to separate and examine for differences between 
autism motor subtypes. Therefore, in addition to examin-
ing motor noise for the entire reach-to-drop action, we 
also examined motor noise for these specific phases of 
the reach action. All of the same methods used to esti-
mate motor noise with multivariate dynamic time warp-
ing were used in these analyses. The primary difference 
is that the movement trajectories were segmented into 
feedforward and feedback phases via identifying the first 
deceleration peak (DP) after the max velocity peak for the 
reaching action. The feedforward segment starts from the 
beginning of the reaching phase of the task up until the 
first deceleration peak, while the feedback phase starts 
with the first deceleration peak and ends with the reach-
ing (Fig. 4A). Because the two phases of the reach action 
can be thought of as a within-subject factor, we mod-
eled between-group differences as potential group*phase 
interactions within a linear mixed effect model that 
treated group and phase as fixed effects and modeled 
random intercepts grouped by subject ID. For n = 6 autis-
tic individuals and n = 6 typically developing children we 
could not identify the 1st peak of deceleration after the 
1st peak of velocity, hence the segmentation was not pos-
sible and they were dropped for this analysis step.

Results
Identification of autism motor subtypes with data‑driven 
clustering
The primary goal of this work was to examine how motor 
behavior in autism may vary and to test whether there 
are distinct autism motor subtypes. Notably, the variabil-
ity in motor performance within the autistic population 

is substantial, ranging from severely impaired to within 
the normative range (Fig. 2A). Before digging into analy-
ses that explore this heterogeneity, it is crucial to first 
describe how autism can be characterized through a 
case–control comparison involving both a typically 
developing (TD) group and a non-autistic comparison 
group with specific motor impairments, such as Devel-
opmental Coordination Disorder (DCD). To achieve 
this goal, we first compiled publicly available data from 
NDA with our own in-house dataset (IRCCS-MEDEA) 
that utilize MABC2 (autism n = 156, DCD n = 23, TD 
n = 93; Fig. 1A; Supplementary Table 2A–B). Large group 
differences are apparent in MABC2 total standardized 
score (F = 148, p = 2.01e−46), which can be described 
as lower scores in autism compared to TD (t = − 16.37, 
p = 1.42e−43, Cohen’s d = 1.87), but no case–control dif-
ferences when autism is compared to DCD (t = 0.29, 
p = 0.77, Cohen’s d = 0.05) (Fig. 2A).

The case–control analyses may indicate that very 
prominent motor impairments are a key characteris-
tic of autism as a whole. However, before making this 
interpretation, it is important to analyze whether the 
autism group could be split into robust, stable, and 
reproducible subtypes [65, 66]. Evidence supporting 
the notion that autism can be split into subtypes may 
help refine the precision of our interpretations about 
motor skills for specific types of autistic individuals. To 
test this, we analyzed multivariate clinical motor pro-
files from the MABC2 for evidence of robust, stable, 
and reproducible autism subtypes with stability-based 
relative clustering validation (reval) analysis [55, 67] 
(Fig.  1B). Our analysis revealed the existence of two 
autism motor subtypes with high generalization accu-
racy (89%) in independent data (Fig.  2B). Evidence of 
cluster separation can be discerned by comparing the 
data to simulated data originating from a single multi-
variate Gaussian null distribution. This analysis shows 
robust evidence of separated clusters that highly devi-
ated from the single multivariate Gaussian null distribu-
tion (SigClust p = 9.999e−05) [56]. The subtypes can be 
described as relatively ‘High’ (56%, N = 87) versus ‘Low’ 
(44%, N = 69) levels of motor proficiency, with sub-
scales such as MD (Cohen’s d for the training set = 1.55, 
validation set = 2.18) and BL (Cohen’s d for the training 
set = 2.06, validation set = 1.73) showing the largest dif-
ferentiation between the subtypes (Fig. 2C–D), whereas 
much less differentiation exists between subtypes in 
the AC subscale (Cohen’s d for the training set = 0.43, 
validation set = 0.54). Notably, the subtypes are iden-
tified with high generalization accuracy without vis-
ible evidence of hard cutoffs (Fig.  2C–D). However, it 
is apparent that when data is plotted with traditional 
MABC2 cutoffs for motor impairment, the relatively 
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‘Low’ subtype scores at or below this threshold while 
the relatively ‘High’ subtype is largely above this cutoff 
for a majority of individuals (Fig. 2C–D).

With robust and stable subtype labels known, we can 
re-evaluate our model of group differences consider-
ing the autism subtypes along with TD and DCD. Using 
the Akaike Information Criterion (AIC) statistic [68], 
the subtype model better explains variance in the total 
MABC2 standardized scores (ΔAIC = 137). We can also 
describe how the ‘Low’ and ‘High’ subtypes compare rela-
tive to the TD and DCD comparison groups. The ‘Low’ 
subtype is more than 3 standard deviations below the TD 
group (t = − 26.98, p = 4.43e−70, Cohen’s d = 3.22) and is 
also more impaired than the DCD group, even though 
the effect size is much less pronounced (t = − 2.99, 
p = 0.005, Cohen’s d = 0.89). In contrast, the ‘High’ sub-
type still shows lower on-average scores compared to 
TD (t = − 11.81, p = 2.19e−25, Cohen’s d = 1.46), but score 
higher than DCD (t = 4.94, p = 2.69e−5, Cohen’s d = 1.3). 
This indicates that the overall lack of case–control differ-
ence between autism and DCD was driven primarily by 
the ‘Low’ autism subtype.

We next tested for subtype differences on skills out-
side of the motor domain. Data for this follow-up analy-
sis were available only for the IRCCS-MEDEA dataset. 
Subtypes did not significantly differ by age (Wilcoxon 
Z = 1270, p = 0.2). Regarding other general intellectual 
ability and achievement of early developmental mile-
stones, we discovered that the relatively ‘Low’ motor 
skill autism subtype shows significantly lower scores 
in general intellectual ability (t = 3.3, p = 0.001, Cohen’s 
d = 0.7) and higher age at independent walking (Wil-
coxon Z = 417, p = 0.015, Cohen’s d = 0.67). However, no 
significant difference was apparent for age at first words 
(Wilcoxon Z = 343.5, p = 0.95). Similarly, no significant 
differences were apparent for ADOS-2 CSS scores [69] or 
the SRS [52] (Fig. 3; Supplementary Table 3A).

Autism motor subtypes are differentiated by motor noise
Thus far, we have demonstrated that autism can be sepa-
rated into at least two subtypes by clinical motor profiles. 
The second aim of this work was to test whether such 
subtypes are highly differentiated in terms of motor noise. 
To estimate motor noise we analyzed motor kinematics 

Fig. 2  Autism motor subtypes. Panel A plots the MABC2 total standardized score for typically-developing (TD; yellow-orange), autistic (blue), 
and Developmental Coordination Disorder (DCD; maroon) individuals. The horizontal solid black and red lines represent cutoffs for ‘at risk of having 
a motor impairment’ (solid black line) and ‘have a motor impairment’ (solid red line) according to the MABC2 manual. With stability-based relative 
clustering validation (reval) analyses, the optimal clustering solution identified was k = 2, indicating two subtypes that could be identified with 89% 
accuracy in independent data. The two subtypes (Autism High, light blue; Autism Low, dark blue) are described with respect to total MABC2 score, 
and the MD, AC, and BL subscales of the MABC2 in the Training (C) and Validation (D) sets
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acquired during repetitions of a simple reach-to-drop 
task (Fig. 1C) [42, 43, 46] from the IRCCS-MEDEA data-
set (n = 149, autism High n = 37, autism Low n = 33, TD 
n = 79). We operationalized motor noise for each subject 
as the degree of variability between movement trajec-
tories during 10 repeat executions of the task [32]. We 
used multivariate DTW to estimate the variability. DTW 
output measures the distance between trial trajectories. 
Higher DTW (normalized) distance between trajectories 
indicates more variability and, as a result, higher levels 
of motor noise. For each individual, we apply DTW in a 
pair-wise fashion across the 10 trials resulting in a 10 × 10 
similarity matrix. We defined motor noise as the median 
distance between trials, computed as the median in this 
10 × 10 DTW similarity matrix. We find highly signifi-
cant differences between groups in motor noise (F = 8.7, 
p = 2.5e−4), driven by enhanced motor noise in the rela-
tively ‘Low’ subtype compared to the relatively ‘High’ sub-
type (t = − 3.2, p = 0.002, Cohen’s d = 0.77) and compared 
to TD children (t = − 4.1, p = 1.33e−4, Cohen’s d = 0.85). 
In contrast, there was no difference between the rela-
tively ‘High’ subtype and TD children (t = − 0.4, p = 0.66, 
Cohen’s d = 0.08) (Fig. 4B). This result reflects poorer pre-
cision, and thus higher variability, in repeat executions of 
the action that is specific to the relatively ‘Low’ subtype. 
Illustrative examples of this effect can be seen in Fig. 4D, 
E. It is visually evident that the individual in the ‘High’ 
subtype shows very similar trajectories for each of the 10 
repeated executions. In contrast, the example individual 

in the ‘Low’ subtype shows much more variable trajecto-
ries for each execution.

Enhanced motor noise during the feedforward phase 
of reaching
The reaching component of our task can be broken 
down into two functionally separable components—
feedforward and feedback phases. The transition 
between these phases is demarcated by the end-point 
(i.e., wrist) transport deceleration peak [63]. There-
fore, we re-examined motor noise when the data is 
split into these two phases. Linear mixed effect mod-
eling was able to identify a significant group*phase 
interaction (F = 3.5, p = 0.03; Supplementary Table  4) 
which is indicative of group differences in motor noise 
that are dependent on the phase (feedforward or feed-
back). Follow-up tests showed that the autism sub-
types are highly differentiated during the feedforward 
phase (t = − 3.56, p = 7e−4, Cohen’s d = 0.87), but were 
not different during the feedback phase (t = − 1.55, 
p = 0.12, Cohen’s d = 0.39) (Fig.  4C). Examination of 
motor noise for the drop action also indicated that 
the ‘Low’ subtype showed more motor noise than the 
‘High’ subtype (t = − 2.05, p = 0.045, Cohen’s d = 0.51) 
(Fig. 4C). Comparing the autism subtypes to TD chil-
dren, we observed similar levels motor noise in the 
relatively ‘High’ subtypes in both feedforward and 
feedback phase and in the drop action. In contrast, 
motor noise of the relatively ‘Low’ subtype was always 

Fig. 3  Characterization of autism motor subtypes by age, general intellectual level, early developmental milestones, and autistic traits 
and symptom severity. In this figure we describe subtypes (Autism High, light blue; Autism Low, dark blue) in terms of age, general intellectual 
level, age at acquisition of early developmental milestones (age at independent walking and first words), and autistic trait and symptom severity 
as measured by the SRS and ADOS-2 respectively. Asterisks indicates p < 0.05
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higher with respect to TD children (Supplemen-
tary Table  5). Overall, these results demonstrate that 
enhanced motor noise is a specific characteristic of the 
relatively ‘Low’ motor skill autism subtype and that 
this effect could be most pronounced within neural 
circuitry that supports computations critical for feed-
forward processing.

Discussion
In this work we aimed to study heterogeneity in motor 
ability in autism. Past work has indicated that motor 
issues are a very prominent feature of autism and that it 
could be potentially important to consider adding this 
domain to the diagnostic criteria in the future [1, 17]. 
Congruent with these ideas, if one were to simply use 

Fig. 4  Enhanced motor noise specific to the poor motor skill autism subtype. Panel A shows the reach-to-drop task, segmented into reach 
and drop actions, and with the reach action split into feedforward and feedback phases according to the deceleration peak. The velocity plot 
represents the instantaneous velocity of the medial wrist marker of a random participant. Panel B shows group differences (TD, yellow-orange; 
Autism High, light blue; Autism Low, dark blue) when motor noise is measured across the entire reach and drop actions. Panel C shows group 
differences when the task is split into reach and drop actions and with the reach action split into feedforward and feedback phases. Panels D and E 
show the variability across trials for a randomly selected participant. Trajectories for one body part (lateral wrist) are displayed in their native 3D 
space (x, y, z). Panel D displays one example subject from the ’High’ subtype, whereas Panel E displays an example subject from the ’Low subtype’. 
Each colored line indicates one trial. Asterisks indicate p < 0.05
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cut-off scores on the MABC2, we would find that a large 
majority of autistic individuals in our sample (74%) show 
medium to severe motor impairments, while only 26% 
possess motor skills in line with age-expected norms. 
However, this way of analyzing the data does not rigor-
ously test whether autism is indeed a single group or a 
collection of different motor  subtypes. Our work shows 
first and foremost that when considering motor ability in 
autism, the data do not conform to a single unitary group. 
Rather, autism can be split in an unbiased and data-
driven manner into two subtypes—relatively ‘High’ ver-
sus ‘Low’ groups. These ‘High’ versus ‘Low’ subtype labels 
are intended as descriptive terms referencing the scores 
of MABC2 test and are not meant to be interpreted in 
relation to functioning level of each subtype. While the 
autism group shows on-average lower standardized 
scores on the MABC2, this lower level of motor ability is 
clearly driven by the ‘Low’ subtype, which considerably 
drives down the overall average score of the autism group. 
However, even the relatively ‘High’ subtype identified 
here is still on-average lower than the TD group (Cohen’s 
d = 1.46). Nevertheless, this relatively ‘High’ group is still 
higher than a non-autistic group of individuals with very 
pronounced motor impairments (e.g., the DCD group; 
Cohen’s d = 1.3). Finally, the percentages of individuals in 
these two subtypes (Low = 44%; High = 55%) do not eas-
ily conform to the percentages seen when one uses stand-
ardized cutoff scores on the MABC2 (e.g., 74% vs. 26%). 
This result illustrates the need to characterize autistic 
individuals not only by where they stand relative to TD 
norms, but also with regards to how they are grouped 
within the autism population [67].

After identifying autism motor subtypes, we next found 
that the relatively ‘Low’ autism motor subtype could be 
characterized by enhanced motor noise during a simple 
reach-to-drop task where fine-grained motor kinemat-
ics were measured. Motor noise is defined as the degree 
of variability in repeat motor actions [32] and is thought 
to be a downstream consequence of neural noise within 
motor circuitry [31]. The concept of neural noise can be 
linked to long-standing ideas in autism research, such as 
the E:I imbalance theory [29, 30]. It is known that many 
highly penetrant rare genetic mutations associated with 
autism also highly dysregulate E:I balance [29, 30] and 
these types of genetic mutations are often associated 
with delays in acquiring early motor milestones [23–28]. 
Enhanced motor noise specific to the relatively ‘Low’ 
autism motor subtype may be revealing of very differ-
ent neurobiological mechanisms linked to synaptic E:I 
imbalance in motor circuitry. With regards to how these 
insights could help drive future work, we suggest that 
new studies could utilize our motor stratification model 
to examine how these motor subtypes might be different 

with respect to biomarkers relevant to E:I imbalance in 
neuroimaging data [70]. If E:I imbalance is a key neu-
robiological issue in the ‘Low’ motor subtype, it may 
be important to utilize our stratification model in clini-
cal trials that target key E:I mechanisms [71–73]. Other 
future work could examine how rare variant or polygenic 
genomic architecture may affect motor circuitry in a dif-
ferential manner in phenotypically-defined autism sub-
types where motor skills are the central differentiating 
factor.

While motor noise highly differentiated the subtypes 
for trajectories analyzed across the entire reach-to-drop 
task, we also discovered that enhanced motor noise in 
the ‘Low’ subtype may be most pronounced for the feed-
forward phase of the initial reach action. This result is 
consistent with previous studies that provided evidence 
for alterations in the feedforward-based phase [35, 74, 
75]. This result is also important with respect to the 
hypothesized different neurocomputational mechanisms 
that underlie feedforward versus feedback motor control. 
Motor control is based on the integration of feedforward 
action planning and feedback-based control processes. 
Feedforward processing derive from internal representa-
tions of the action that specify a relatively coarse motor 
output prior to its initiation, while feedback processes 
fine-tune the motor output on the fly, relying on sensory 
feedback and often applying corrective adjustments [76]. 
Action representations, as well as the neural machinery 
required to adapt them to incoming sensory information, 
are believed to rely on the cerebellum  [77, 78]. Altered 
cerebellar function during development might play a key 
role in contributing to both motor and non-motor altera-
tions in autism [79]. Altered feedforward and feedback 
mechanisms are also associated with the severity of com-
munication impairments in autism and could potentially 
reflect the respective contributions of the anterior and 
posterior cerebellum [80]. Reduced motor noise during 
the feedforward phase for the ‘High’ autism motor sub-
type suggests that this subgroup, rather than having bet-
ter feedback-based correction abilities, are characterized 
by relatively more preserved representation of actions.

In contrast to the sharp differences between autism 
motor subtypes in terms of general intellectual ability, 
acquisition of early motor milestones, and motor noise, 
these subtypes were not highly differentiated in terms 
of age, autistic traits, or autism symptom severity. This 
lack of differentiation in autistic traits and core autism 
symptom severity is important because it potentially 
underscores the orthogonal nature of motor versus core 
diagnostic features of autism (e.g., SC and RRB domains). 
An emerging literature is building indicating that the sin-
gle diagnostic label of autism is not enough for under-
standing clinical and biologically important features 
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within autistic individuals [66, 81]. Rather than looking to 
core SC and RRB features, it seems that a constellation 
of related features that do not represent the core features 
of autism—such as motor, language, intellectual, and 
adaptive functioning—may better separate out impor-
tant clinical and biological distinctions within the autism 
population. Supporting this statement, there is evidence 
showing that motor difficulties in autism tend to highly 
co-occur with language delay [6–8], cognitive impair-
ment [9–11], poorer developmental outcomes [12], and 
reduced life quality [13, 15]. While in this specific work 
we did not find a significance difference in terms of age at 
first words, other work reports that individuals with very 
poor early language outcome tend to also have extensive 
issues in motor, non-verbal cognitive ability, and adap-
tive functioning, and also have very different structural 
and functional neural mechanisms underpinning their 
difficulties [82–85]. A theoretical advance forward for 
the field would be to put together these findings under 
a model that supports the fact that a primary split in the 
autism population should be between individuals with 
very pronounced issues in this constellation of non-core 
features in motor, language, intellectual, and adaptive 
functioning. We have proposed such a theory and have 
provided initial evidence in support of this subtyping 
model [67]. The current work matches the predictions 
of our model and provides further empirical support for 
it. Furthermore, although this work cannot be directly 
translated into clinical practice, it may have some future 
clinical implications. The stratification of autism into 
motor-defined subtypes might help identify autistic indi-
viduals who require specialized intervention programs to 
improve their motor development. In this regard, we also 
suggest that our operationalization of motor noise might 
be a possible behavioral measure of motor intervention 
efficacy.

Limitations
Several limitations and caveats must be noted for this 
work. First, while our goal was to examine the larg-
est sample size available via combining all available 
MABC2 data from NDA and our in-house dataset 
(IRCCS-MEDEA), it may be that a larger sample size 
is needed to make stronger generalizations and cover 
the entire autism spectrum. Second, the MABC2 has 
been psychometrically evaluated with respect to DCD 
populations, but not in autism. A similar psychomet-
ric evaluation of MABC2 in the autism population is 
necessary for future work. Third, a more comprehen-
sive assessment of motor noise could be achieved with 
kinematics data across a variety of different motor tasks 
(e.g., gait, jumping, pointing, clapping) to test the gen-
eralizability of the operationalization of motor noise as 

kinematic variability across repeated trials of the same 
task. Fourth, the analysis of differences in intellectual 
abilities between subtypes relies solely on composite 
IQ scores. However, due to the variability among IQ 
subscales, further investigation is required to elucidate 
the influence of each index and to examine potential 
differences between subtypes. Lastly, genetic and elec-
trophysiological data was not available for the datasets 
analyzed in the current work. Thus, discussion about 
genomic mechanisms that potentially lead to E:I imbal-
ance is speculation for future work to test.

Conclusions
In conclusion, we have shown evidence that autism can 
be split into two subtypes based on clinical motor pro-
files measured by the MABC2. These subtypes show 
other differences in general intellectual ability, acquisi-
tion of early motor milestones, and motor noise. How-
ever, motor-defined subtypes are not different with 
regards to autistic symptomatology. Our findings fit with 
general findings that autism can be stratified into robust/
stable and discrete subtypes. Such motor subtypes may 
be very relevant within the bigger picture of autism sub-
types that share issues across language, intellectual, and 
adaptive functioning, but are likely orthogonal to issues 
within the core autism domains of SC and RRB.
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