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ABSTRACT Coinfections with human pegivirus 1 (HPgV-1) are common in chronic 
hepatitis C virus (HCV) patients. However, little is known about whether HPgV-1 is 
affected by direct-acting antivirals during HCV treatment. Metagenomic analysis and 
reverse transcriptase-quantitative PCR (RT-qPCR) were performed on RNA from the 
plasma of 88 selected chronic HCV patients undergoing medical treatment. Twenty 
(23%) of these HCV patients had HPgV-1 coinfections and were followed by RT-qPCR 
during treatment and follow-up to investigate HPgV-1 RNA titers. Recovered sequen
ces could be assembled to complete HPgV-1 genomes, and most formed a genotype 
2 subclade. All HPgV-1 viral genomic regions were under negative purifying selec
tion. Glecaprevir/pibrentasvir treatment in five patients did not consistently lower the 
genome titers of HPgV-1. In contrast, a one log10 drop of HPgV-1 titers at week 2 
was observed in 10 patients during treatment with sofosbuvir-containing regimens, 
sustained to the end of treatment (EOT) and in two cases decreasing to below the 
detection limit of the assay. For the five patients treated with ledipasvir/sofosbuvir with 
the inclusion of pegylated interferon, titers decreased to below the detection limit at 
week 2 and remained undetectable to EOT. Subsequently, the HPgV-1 titer rebounded to 
pretreatment levels for all patients. In conclusion, we found that HCV treatment regimens 
that included the polymerase inhibitor sofosbuvir resulted in decreases in HPgV-1 titers, 
and the addition of pegylated interferon increased the effect on patients with coinfec
tions. This points to the high specificity of protease and NS5A inhibitors toward HCV and 
the more broad-spectrum activity of sofosbuvir and especially pegylated interferon.

IMPORTANCE Human pegivirus 1 coinfections are common in hepatitis C virus (HCV) 
patients, persisting for years. However, little is known about how pegivirus coinfections 
are affected by treatment with pangenotypic direct-acting antivirals (DAAs) against 
HCV. We identified human pegivirus by metagenomic analysis of chronic HCV patients 
undergoing protease, NS5A, and polymerase inhibitor treatment, in some patients with 
the addition of pegylated interferon, and followed viral kinetics of both viruses to 
investigate treatment effects. Only during HCV DAA treatment regimens that inclu
ded the more broad-spectrum drug sofosbuvir could we detect a consistent decline 
in pegivirus titers that, however, rebounded to pretreatment levels after treatment 
cessation. The addition of pegylated interferon gave the highest effect with pegivirus 
titers decreasing to below the assay detection limit, but without clearance. These results 
reveal the limited effect of frontline HCV drugs on the closest related human virus, but 
sofosbuvir appeared to have the potential to be repurposed for other viral diseases.
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H uman pegivirus 1 (HPgV-1) is a single-stranded positive-sense RNA virus of the 
Pegivirus genus within the Flaviviridae family (1, 2). It was formerly known as GB 

virus C or hepatitis G virus and is the closest related human virus to hepatitis C virus 
(HCV). HCV causes chronic liver infection, and long-term persistent infection can result 
in liver cirrhosis and hepatocellular carcinoma leading to up to 300,000 deaths annually, 
worldwide (3, 4). HCV is a positive-sense RNA virus with one open reading frame (ORF) 
coding for a polyprotein that is subsequently cleaved into 10 mature proteins (5); HPgV-1 
is believed to have a similar genome organization. HPgV-1 infections in humans are 
commonly seen with prevalence in healthy blood donors of 1%–4% (1, 6). Usually, 
HPgV-1 infections last for more than 6 months, but more than 50% of infected individuals 
will experience viral clearance within 2 years (7–9). Infection with this prevalent virus has 
not been definitively associated with any acute or chronic human diseases (10, 11). Nor 
did it lead to hepatitis or any other symptoms in experimentally infected chimpanzees 
(12). However, it has been reported to increase the risk for non-Hodgkins lymphoma (13–
16). Further, it has been suggested to be associated with encephalitis in a few patients 
(17). HPgV-1 and HCV share the same transmission routes, and coinfection is, therefore, 
frequently seen with a reported prevalence between 10% and 25% (18, 19). Recently, the 
advances in sequencing technology and the use of metagenomic unbiased approaches 
have allowed the identification of diverse viral infections (20), and in addition, this 
approach can detect and sequence HPgV-1 (19). No correlation between coinfection and 
HCV disease progression or effect on the outcome of HCV treatment with antivirals has 
been found (21).

The development of direct-acting antivirals (DAAs) for HCV has led to a revolution in 
treatment with cure rates above 90% (22, 23). The treatment regimens always contain 
an NS5A inhibitor [pibrentasvir (PIB), velpatasvir (VEL), or ledipasvir (LED)] and either 
a NS3/4A protease inhibitor glecaprevir (GLE) (name used in clinic Maviret) or the 
nucleotide analog sofosbuvir (SOF) inhibiting NS5B (name used in clinic Epclusa or 
Harvoni). A triple combination is also available containing all three classes of drugs 
[voxilaprevir (VOX), velpatasvir, and sofosbuvir; name used in clinic Vosevi] (24). While the 
NS5A inhibitors are greatly diminished in potency for the related rat hepacivirus (RHV) 
and NS3/4A protease inhibitors had no effect, sofosbuvir could suppress RHV replication 
(25). In addition, it was reported that NS3/4A protease inhibitors had no effect on the 
protease activity of HPgV-1 (26). Since HPgV-1 has homologs of HCV mature proteins 
NS3/4A, NS5A, and NS5B, the virus could potentially be affected by HCV treatment or 
immune system activation during HCV clearance. In the era before the introduction of 
DAAs, interferon was used alone or in combination with ribavirin (RBV) to treat HCV. In 
that connection, coinfection studies with HPgV-1 found that interferon had the potential 
to clear the pegivirus coinfection (27–30).

In this study, we investigated coinfections of HPgV-1 in chronic HCV-infected patients, 
identified and analyzed by a metagenomic approach or reverse transcriptase-quanti
tative PCR (RT-qPCR), and quantitively measured longitudinally by RT-qPCR. In these 
patients, it was possible to investigate the effect of several different DAA regimens 
on plasma HPgV-1 viral titers due to longitudinal sampling before, under, and after 
treatment. In addition, we could compare regimens with and without sofosbuvir, 
ribavirin, or pegylated interferon (PEG-INF), considered more broad-spectrum antivirals, 
and their effect on HPgV-1.

MATERIALS AND METHODS

Chronic hepatitis C patients and treatment history with DAA

A subset of the patients included in this study (group 1) were originally from a random
ized trial to investigate the sustained virological response at week 12 (SVR12) following 4 
weeks of treatment with GLE/PIB ± RBV; treatments did not include PEG-INF (31). In this 
article, the patient IDs for these patients are marked with an A as a prefix in the text and 
figures. All included patients were treatment-naïve and had an absence of liver fibrosis 
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defined as liver stiffness measurement by transient elastography <8 kPa. No patients 
had any coinfection with hepatitis B virus or HIV, and 75% had a history of intravenous 
drug use. All patients with virological relapse were characterized as treatment failures 
and retreated with 12 weeks of sofosbuvir-containing regimens. Similarly, patients were 
included from a prior trial (group 2) to disseminate SVR12 following 4 weeks of treatment 
with LED/SOF with RBV and ± PEG-INF (32). This study was conducted at an outreach 
drug treatment center where included participants were individuals with a history of 
intravenous drug use with the same inclusion criteria as group 1, but HCV baseline viral 
load should be below 2,000,000 IU/mL. The IDs of these patients are marked with a W 
as a prefix in text and figures. From a third cohort (group 3), which includes patients 
with chronic hepatitis C who are treated with DAAs at the Department of Infectious 
Diseases, Copenhagen University Hospital, Hvidovre, patients were selected who had 
plasma samples available at the baseline, week 2, the end of treatment (EOT), and 12 
weeks after EOT. For 28 patients, HCV RNA sequence data were available from previous 
HCV genotyping at the Department of Microbiology, Copenhagen University Hospital, 
Hvidovre. Pegivirus-positive patients from this group are marked with a T as a prefix in 
the text and figures. Two patients had liver cirrhosis and were treated with SOF/VEL for 
12 weeks, while one patient had mild fibrosis with a transient elastography of 5.4 kPa and 
was treated with GLE/PIB/SOF for 12 weeks. None of the patients were coinfected with 
HIV or hepatitis B virus, and all patients achieved SVR12.

HCV and HPgV-1 RT-qPCR

For patient groups 1 and 2, HCV RNA viral load was determined from plasma samples 
using the Cobas HCV assay, run on the 6800/8800 systems (Roche Molecular System, 
Inc.), as described previously (31, 32). All analyses were performed according to the 
manufacturer’s instructions. The lower detection limit of the Cobas HCV assay was 
15 IU/mL. HCV RNA in plasma samples from the patients in group 3 was quantified 
using the Aptima HCV Quant Dx Assay (Hologic Inc, San Diego, CA, USA) with a lower 
limit of quantification at 10 IU/mL, as previously described (33). For HPgV-1, RNA was 
extracted as described earlier (34). The RT-qPCR procedure for HPgV-1 was adapted from 
reference (35) to TaqMan Fast Virus 1-Step Master Mix (ThermoFisher, Waltham, MA, 
USA). The assay was run on a Lightcycler 96 (Roche, Basel, Switzerland) and analyzed 
with the Lightcycler 96 software (Roche, Basel, Switzerland) version 1.10.1320. HPgV-1 
genome equivalents per milliliter (GE/mL) were calculated by interpolation for an in-run 
standard curve. The in-run standard was patient RNA run in a 10-fold dilution series with 
the absolute concentration extrapolated from RNA-seq sequence coverage of both HCV 
and HPgV-1 from group 1 and HCV RNA titers measured by RT-qPCR determined above.

Viral genome sequencing and data analysis

As reported earlier, RNA was extracted from the patient plasma samples (31, 34) 
and sequenced on an Illumina NextSeq or Miseq platform (31). Sequencing was 
performed for all patients at the baseline and the time of virological relapse in those 
with HCV treatment failure. Data were analyzed by initial human sequence depletion 
and subsequent de novo assembly identifying both HCV and HPgV-1 genomes, and 
subsequently, reads were mapped on the assembled genome to further refine the 
sequence and investigate the viral population (36–39). ORF sequences of the pegivi
ruses were aligned with relevant reference sequences using MAFFT, and phylogeny was 
built by PhyML applying the general time reversible substitution model. One hundred 
bootstraps were performed to consolidate the phylogeny. Population selection analysis 
was performed using the SNPGenie tool with a sliding window range of 15 amino acids, 
in order to calculate pairwise distances.
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RESULTS

Metagenomic analysis of RNA-seq data from HCV patients revealed frequent 
HPgV-1 coinfections

Samples from 32 chronic hepatitis C patients (group 1) treated with 4 weeks of GLE/PIB 
± RBV (31), 28 patients (group 2) treated with 4 weeks of LED/SOF + RBV ± PEG-INF (32), 
and 28 patients (group 3) with various DAA treatments were analyzed by metagenomics 
and RT-qPCR. The vast majority of these 88 patients had samples available for analysis 
before, during, and after treatment for chronic hepatitis C.

Sequencing data from the 32 samples from patients in group 1 underwent human 
genomic sequence depletion and subsequent de novo assembly to create contigs. 
Besides the HCV contigs described previously (31), we found that 10 (31%) had non-HCV 
contigs above 9 kb with sufficient coverage (Table 1).

Among the 28 group 2 patients, 8 (28%) were found positive for HPgV-1 by RT-
qPCR, and the 7 patients with samples available throughout treatment were similarly 
sequenced as the 10 group 1 patients described above (Table 1).

Finally, 28 patients in group 3 were HCV-genotyped by RNAseq and screened for 
HPgV-1, and 3 (11%) patients were found positive for HPgV-1 (Table 1).

When taking all the above patients into consideration, the HPgV-1 coinfection status 
was not known when the HCV treatment was initiated but discovered in the subsequent 
sequence analysis and by RT-qPCR. All non-HCV sequences were identified as HPgV-1 
(Fig. 1A), and almost the entire genome was covered, except for the last bases at the 3′ 
end, and for all 20 HPgV-1 samples, a mean sequencing depth of coverage from 5,000 
to over 100,000 was observed except for two samples that fell below 5,000; these two 
sequences were not analyzed in the data shown in Fig. 1B and C (Table 1).

When linking the treatment outcome in the 32 patients treated for 4 weeks with 
GLE/PIB ± RBV, we found 5 coinfections out of 11 (46%) experiencing HCV treatment 
failure and 5 coinfections out of 21 (24%) with SVR, but this difference was not signifi
cant.

Phylogenetic analysis at baseline revealed that the identified human pegiviruses 
belong to genotypes 1 and 2, and we observed a monophyletic group within genotype 2 
only distantly related to the rest of the genotype 2 sequences, which could form a 
regional cluster found in Denmark (Fig. 1A). Patients A117, A125, and W133 were found 
to have sequences of such close relatedness that it could indicate a common transmis
sion cluster. Selection analysis at baseline within the virus populations revealed the 
HPgV-1 genome to be under negative selective pressure with no obvious hotspots for 
adaptation (Fig. 1B). Individual mature proteins all showed similarly low dN/dS ratios 
with no distinction between them, except NS4A, that seems to be under less strict 
negative selection although not significant (Fig. 1C).

HCV DAA treatment regimens containing the nucleotide analog sofosbuvir 
and especially pegylated interferon had the greatest influence on HPgV-1 
titers

All 20 HPgV-1 coinfections were confirmed by RT-qPCR with titers of between 107 and 108 

GE/mL, except one sample that was below 106 GE/mL. For the five HCV SVR patients, HCV 
RNA titers became undetectable at the end of the 4 weeks of GLE/PIB ± RBV treatment. 
However, no clear pattern of decrease in titer was observed for HPgV-1 RNA at the EOT, 
with three patients having a fivefold drop while two patients had a small titer increase, 
even with the addition of RBV to the treatment (Fig. 2, 3A and B). For the 10 patients 
treated with SOF-containing regimens, longitudinal samples were available for analysis 
by RT-qPCR before, during (week 2), at EOT, and at follow-up of the SOF-containing 
treatment. HCV RNA in the plasma became undetectable between week 2 and EOT for all 
patients. Further, for all 10 patients, a 10-fold drop in the HPgV-1 RNA titers compared to 
baseline could be observed at week 2, and the titers decreased further to about 20-fold 
at EOT and in two cases to below the detection level (Fig. 3A and B, Fig. 4). During 
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FIG 1 Phylogenetic and selection analysis of the human pegivirus genome population. (A) Phylogenetic tree of full-length human pegivirus ORF sequences 

recovered from 20 HCV patients included in this study and relevant pegivirus reference sequences of genotypes 1–6. The tree is midpoint-rooted, and pegivirus 

genotypes are indicated at the tips. The scale bar depicts changes per site, and branch labels represent bootstrap support (n = 100). The prefix letters A, W, and 

T correspond to the three patient study groups defined in Materials and Methods. (B) New synonymous and non-synonymous π (pairwise distance) across the 

complete pegivirus ORF; the data are averaged for HPgV-1 recovered from the 18 out of 20 included HPgV-1/HCV coinfected patients (W101 and W130 were 

not included since they did not have sufficient coverage to be included, below 5,000 on average as seen in Table 1) in a sliding window of 15 amino acids. A 

junction of each predicted mature protein is indicated as vertical dotted lines with the protein label shown above. The small space between the translation start 

and E1 is considered the core region. (C) dN/dS ratios of each predicted mature pegivirus protein shown as averages of the HPgV-1 recovered from 18 out of 20 

HPgV-1/HCV coinfected HCV patients (W101 and W130 were not included since they did not have sufficient coverage as stated above) with SEM depicted as error 

bars.
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follow-up, HPgV-1 RNA rebounded to titers as observed before treatment for the nine 
patients with samples available (Fig. 3A and B, Fig. 4). In contrast, the five patients treated 
with LED/SOF+ RBV + PEG-INF had a dramatic drop in HPgV-1 titers that fell to below the 
detection limit at week 2 during treatment and stayed below detection at EOT at week 4 
(Fig. 3A and B, Fig. 5). However, the titers rebounded in the follow-up to pretreatment 
levels. Thus, permanent clearance of HPgV-1 was not detected in any of the treated 
patients.

DISCUSSION

In this study, we identified HCV and HPgV-1 coinfections in patients with chronic HCV by 
metagenomic analysis and confirmed findings by RT-qPCR targeting the individual 
viruses. A subset of patients had received 4 weeks of the GLE/PIB ± RBV (Maviret) 
protease/NS5A inhibitor combination, and patients with treatment failure and viral 
relapse were retreated with polymerase inhibitor SOF-containing regimens either with 
NS5A inhibitor velpatasvir (in Epclusa) or velpatasvir and protease inhibitor voxilaprevir 
(in Vosevi) (24). In addition, patients treated with 4 weeks of NS5A inhibitor LED and 
polymerase inhibitor SOF (in Harvoni) + RBV ± PEG-INF were analyzed (32). Finally, HCV 
patients coinfected with HPgV-1, identified from the clinic, and treated with SOF-
containing regimens were included. This allowed the assessment of the antiviral effect of 
these different treatments on the coinfecting HPgV-1 virus.

Metagenomic analysis of viral coinfections is a powerful tool, and having sufficient 
read depth not only permitted robust detection, as shown by others (19, 40), but also 
allowed us to address viral population composition and evolution. We found a high 
prevalence of coinfections with HPgV-1 in patient groups 1 and 2, with frequencies of 
31% and 28%, respectively, compared to other reports where they found 10%–25% (18, 
19). This probably reflects the fact that the majority of these patients have high-risk 
behavior, such as a history of intravenous drug use. In contrast, we only identified 11% 
coinfections when screening patients from group 3, which could reflect the overall 
prevalence in the HCV-infected patients from Denmark. While there clearly was a cluster 
of HPgV-1 sequences within genotype 2 that could form a Danish clade, only three 

TABLE 1 Patient HPgV-1 sequencing contig and coverage parameters

Patient ID HCV treatment 
outcome

Genotype Length of 
contig

Coverage of 
genome (%)

Average 
depth

GenBank 
accession no.

A102 SVR 2 9,367 99.7 8,138 PP783765
A103 SVR 2 9,380 99.9 144,268 PP783766
A106 Failure 1 9,386 99.9 171,647 PP783767
A112 SVR 2 9,395 99.9 268,890 PP783768
A117 Failure 2 9,383 99.9 245,100 PP783769
A119 Failure 1 9,386 99.9 66,103 PP783770
A123 SVR 2 9,391 99.9 186,664 PP783771
A124 Failure 2 9,383 99.9 140,452 PP783772
A125 Failure 2 9,386 99.9 174,703 PP783773
A126 SVR 2 9,387 99.9 357,073 PP783774
W101 SVR 2 9,204 98.0 617 PP783778
W108 SVR 2 9,228 98.2 5,820 PP783779
W130 SVR 2 8,664 92.7 2,410 PP783780
W133 SVR 2 8,929 95.1 5,576 PP783781
W136 Failure 2 9,384 99.9 45,367 PP783782
W143 SVR 2 9,371 99.8 12,361 PP783783
W145 SVR 2 9,378 99.8 33,304 PP783784
T134 SVR 2 9,345 99.5 13,057 PP783775
T167 SVR 2 9,376 99.8 12,998 PP783776
T213 SVR 2 9,362 99.7 27,432 PP783777
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patients had sequences of such close relation that this could indicate a transmission 
event. The rest were scattered within genotypes 1 and 2 that reflect the worldwide 
HPgV-1 genotype distribution with genotype 2 being the most prevalent in Europe (41).

We found 24% and 46% HPgV-1 coinfections in SVR and failure patients, respectively, 
treated with 4 weeks of GLE/PIB ± RBV. Although there was no significant difference in 
the coinfection frequency observed between the groups, there is a possibility that 
coinfections could affect 4 weeks of GLE/PIB treatment. However, out of the 28 patients 
treated with LED/SOF + RBV ± PEG-INF, only one coinfected patient (W136) experienced 
treatment failure, thus further not supporting any connection between outcome and 
coinfection status. This is in accordance with a previous study (21). However, no screen
ing was performed before treatment initiation, and therefore, we cannot rule out that 
HCV patients with HPgV-1 coinfections might be less susceptible to GLE/PIB treatment. 
This contrasts coinfections with HIV, where a correlation between less severe disease 
outcomes and HPgV-1 infection was reported (42). Larger patient data sets are needed to 
further evaluate the influence of HPgV-1 coinfection on HCV treatment outcomes. 

FIG 2 Viremia development of human pegivirus during glecaprevir/pibrentasvir treatment in HCV patients with SVR. RNA titer measurements from HCV patients 

treated with GLE/PIB of HCV and HPgV-1 in plasma are shown at the y-axis as international units per milliliter (IU/mL) or genome equivalents per milliliter 

(GE/mL), respectively, and time in weeks at the x-axis. The gray boxes indicate periods during antiviral treatment with the type of treatment indicated at the top. 

Ribavirin addition to the treatment is indicated as RBV. Each panel represents an SVR patient. A red titer line at the y-axis represents undetectable HCV RNA titers 

(limit of detection 15 IU/mL). A blue titer line at the y-axis represents undetectable HPgV-1 RNA titers (limit of detection 100 GE/mL).
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FIG 3 Human pegivirus viremia development during treatment of HCV with DAA without or with sofosbuvir. (A) Individual 

patient HPgV-1 RNA titer in plasma shown as connected dots with timepoint indicated on the x-axis in SVR HCV patients 

during GLE/PIB treatment, HCV patients during sofosbuvir-containing treatment referred to as SOF*, including LED/SOF, 

VEL/SOF, VOX/VEL/SOF, GLE/PIB/SOF, and HCV patients during LED/SOF plus PEG-INF. (B) HPgV-1 RNA titer changes in treated 

patients compared to their respective baseline samples shown as log10 GE/mL drop on the y-axis and depicted as violin plots. 

Groupings are identical to (A).
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FIG 4 RNA titer decrease of HCV and HPgV-1 in HCV patients during treatment with sofosbuvir-containing regimens. RNA 

titer measurements in plasma of HCV and HPgV-1 are shown at the y-axis as international units per milliliter (IU/mL) or 

genome equivalents per milliliter (GE/mL), respectively, and time at the x-axis. The gray boxes indicate periods during 

antiviral treatment with the type of treatment indicated at the top. Each panel represents a patient treated with regimens 

containing SOF, including LED/SOF, VEL/SOF, VOX/VEL/SOF, and GLE/PIB/SOF. A red titer line representing HCV RNA at the 

y-axis represents undetectable HCV RNA titers (limit of detection 15 IU/mL except for patients T134, T167, and T213 with limit 

of detection 10 IU/mL). Ribavirin addition to the treatment is indicated as RBV. A blue titer line representing HPgV-1 RNA at the 

y-axis represents undetectable HPgV-1 RNA titers (limit of detection 100 GE/mL).
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However, it is not easy to explain the mechanism of how coinfections could affect the 
treatment outcome due to the different compartments of replication of HCV and HPgV-1.

Overall, the HPgV-1 genomes of different patients were under negative selection with 
most of the intra-population diversity being synonymous mutations, and no hotspots 
of non-synonymous changes could be observed. This is in concordance with previous 
analysis of viral evolution also showing similar dN/dS ratios (19) and points toward the 
HPgV-1 virus presence being undetected by the immune system and, therefore, not 
developing escape mutations. This was further supported by sequence analysis from 
horses experimentally infected with the equine pegivirus (43). Particularly, the proposed 
small core region had almost no diversity, indicating a vital function in viral assembly and 
high sequence conservation important for assembly, as previously proposed (44).

While the 4 weeks of GLE/PIB ± RBV treatment cured 66% (21/32) of the HCV patients 
(31), none of the 10 coinfected cleared their HPgV-1 infection. In addition, of the five 
patients with HCV SVR, HPgV-1 viremia titer decreased to 1/5 after 4 weeks (at EOT) 
for three patients while HPgV-1 viremia titer did not decrease for two patients. This 
pointed toward the limited efficacy of protease inhibitor GLE and NS5A inhibitor PIB 
toward HPgV-1. The addition of RBV did not show any effect on the HPgV-1 titers and has 
shown only a slight effect on HCV titers in monotherapy (45). In contrast, treatment with 

FIG 5 Viremia development of HCV and HPgV-1 in HCV patients during treatment with a sofosbuvir and pegylated interferon-containing regimen. RNA titer 

measurements in plasma of HCV and HPgV-1 are shown at the y-axis as international units per milliliter (IU/mL) or genome equivalents per milliliter (GE/mL), 

respectively, and time at the x-axis. The gray boxes indicate periods during antiviral treatment with the type of treatment indicated at the top. Each panel 

represents a patient treated with LED/SOF plus RBV and PEG-INF. A red titer line representing HCV RNA at the y-axis represents undetectable HCV RNA titers (limit 

of detection 15 IU/mL). A blue titer line representing HPgV-1 RNA at the y-axis represents undetectable HPgV-1 RNA titers (limit of detection 100 GE/mL).
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SOF-containing regimens in ten HCV patients led to a 10-fold decrease in HPgV-1 viremia 
titer when compared to baseline at week 2 and a further small reduction to 20-fold at 
EOT or in two cases below the detection limit of the titer assay. Titers rebounded to 
pretreatment values after treatment was ended. Although these regimens also contained 
the NS5A inhibitors VEL and LED and in some cases the NS3 protease inhibitor VOX, 
these inhibitors are very similar to PIB and GLE in their mode of action, respectively, and, 
therefore, not likely to be the inhibiting factors. In addition, patient T167 treated with 
PIB/GLE and SOF had an almost 100-fold reduction at week 2 supporting SOF to be the 
effective agent. Taken together, the broad-spectrum nucleotide analog SOF appeared to 
exhibit the highest antiviral effect against HPgV-1, while the more HCVspecific protease 
and NS5A inhibitors had minimal antiviral effect on this virus. The activity of HCV 
protease inhibitors in severe acute respiratory syndrome coronavirus 2 has been shown 
in vitro (46). Although SOF, thus, seems to have some antiviral effect against HPgV-1, 
the potency of the drug is diminished indicating structural and functional differences in 
NS5B compared to HCV. This is similar to what has been reported for the HCV-related 
RHV virus, where only SOF had an effect on replication and could decrease viremia 
titers in rats (25, 47). A study reported similar effects of the SOF-containing regimens 
as we observed at EOT in coinfected HCV patients, with the only sustained suppression 
observed in two other patients treated with telaprevir/SOF and interferon (48). A case 
study of an HCV patient reported a reduction in HPgV-1 viral RNA during SOF-containing 
DAA treatment (40), and a similar drop during SOF treatment was reported for a few 
cases of HPgV-2 HCV coinfections (49). Sofosbuvir has been used in clinical studies to 
treat chronically infected hepatitis E patients; a pilot monotherapy clinical trial study 
showed only a 1 log drop in RNA titer and later viral rebound during treatment (50). 
No clearance was observed, but some effect was seen in the clinical parameters such as 
a drop in the alanine transaminase level, and resistance-associated variants seemed to 
arise in some of the patients (51). These results have also been supported by several 
single case studies (52–54). Sofosbuvir has also shown potential against tickborne 
encephalitis virus and yellow fever virus in cell culture with low IC50 ratios (55) and 
for yellow fever virus through in vivo mouse experiments (56). In addition, the drug has 
shown to positively affect disease outcomes in clinical yellow fever virus patients (57). 
The addition of PEG-INF had a clear effect on the LED/SOF treatment regimen with a 
drop in viremia below detection at week 2 and sustained until EOT, and interferon was 
reported to have the potential to clear pegivirus coinfections (27–30). However, 4 weeks 
seems to be too short a treatment period since we did not observe permanent clearance 
in any of the patients in our study. The lack of robust in vitro cell culture systems for HPgV 
challenges the systematic testing of the individual drugs.

The main limitation of the present study is the limited number of patients, as also 
mentioned above. However, these are unique patient samples that are matched and 
analyzed before, during, and after treatment. In addition, this was a special opportunity 
to explore HPgV-1, the closest related human virus to HCV, response to DAA treatment in 
patients and how HPgV-1 coinfection affects HCV treatment.

In summary, we found that 20 out of 88 (23%) screened HCV patients in this study 
had a HPgV-1 coinfection, belonging to genotypes 1 and 2. Sofosbuvir-containing 
regimens decreased the HPgV-1 viral titer in the blood. Further, our data confirmed a 
profound effect of PEG-INF on HPgV-1 viral titers. Whether HPgV-1 coinfection affects 
HCV disease progression or clearance remains elusive, and more research into this 
seemingly harmless HPgV-1 chronic infection is needed to determine if it is indeed 
harmless and what role it plays in coinfection. The limited effect observed of frontline 
HCV drugs, except for SOF, on the closest related human virus suggests primarily the 
potential of repurposing SOF against other viral infections.
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