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Abstract: 
 
Brain computer interfaces (BCIs) have the potential to restore communication to people who have lost the 
ability to speak due to neurological disease or injury. BCIs have been used to translate the neural correlates of 
attempted speech into text1–3. However, text communication fails to capture the nuances of human speech 
such as prosody, intonation and immediately hearing one’s own voice. Here, we demonstrate a “brain-to-voice” 
neuroprosthesis that instantaneously synthesizes voice with closed-loop audio feedback by decoding neural 
activity from 256 microelectrodes implanted into the ventral precentral gyrus of a man with amyotrophic lateral 
sclerosis and severe dysarthria. We overcame the challenge of lacking ground-truth speech for training the 
neural decoder and were able to accurately synthesize his voice. Along with phonemic content, we were also 
able to decode paralinguistic features from intracortical activity, enabling the participant to modulate his BCI-
synthesized voice in real-time to change intonation, emphasize words, and sing short melodies. These results 
demonstrate the feasibility of enabling people with paralysis to speak intelligibly and expressively through a 
BCI. 
 
Introduction: 
 
Speaking is an essential human ability, and losing the ability to speak is devastating for people living with 
neurological disease and injury. Brain computer interfaces (BCIs) are a promising therapy to restore speech by 
bypassing the damaged parts of the nervous system through decoding neural activity4. Recent demonstrations 
of BCIs have focused on decoding neural activity into text on a screen2,3 with high accuracy1. While these 
approaches offer an intermediate solution to restore communication, communication with text alone falls short 
of providing a digital surrogate vocal apparatus with closed-loop audio feedback and fails to restore critical 
nuances of human speech including prosody. 
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These additional capabilities can be restored with a “brain-to-voice” BCI that decodes neural activity into 
sounds in real-time that the user can hear as they attempt to speak. Developing such a speech synthesis BCI 
poses several unsolved challenges: the lack of ground truth training data, i.e., not knowing how and when a 
person with speech impairment is trying to speak; causal low-latency decoding for instantaneous voice 
synthesis that provides continuous closed-loop audio feedback; and a flexible decoder framework for 
producing unrestricted vocalizations and modulating paralinguistic features of the synthesized voice. 
 
A growing literature of studies have reconstructed voice offline from able-bodied speakers using previously 
recorded neural signals measured with electrocorticography (ECoG)5–11, stereoencephalography (sEEG)12, and 
intracortical microelectrode arrays13,14. Decoders trained on overt speech of able speakers could synthesize 
unintelligible speech during miming, whispering or imaging speaking tasks online8,15 and offline16. Recently, 
intermittently intelligible speech was synthesized seconds after a user with ALS spoke overtly (and 
intelligibly)17 from a six-word vocabulary. While the aforementioned studies were done with able speakers, a 
study 3 with a participant with anarthria adapted a text decoding approach to decode discrete speech units 
acausally at the end of the sentence to synthesize speech from a 1,024-word vocabulary. However, this is still 
very different from healthy speech, where people immediately hear what they are saying and can use this to 
accomplish communication goals such as interjecting in a conversation. In this work, we sought to synthesize 
voice continuously and with low latency from neural activity as the user attempted to speak, which we refer to 
as “instantaneous” voice synthesis to contrast it with earlier work demonstrating acausal delayed synthesis.  
 
Here, we report an instantaneous brain-to-voice BCI using 256 microelectrodes chronically placed in the 
precentral gyrus of a man with severe dysarthria due to amyotrophic lateral sclerosis (ALS). We did not have 
ground-truth voice data from this participant. To overcome this, we generated synthetic target speech 
waveforms from the prompt text and time-aligned these with neural activity to estimate the participant’s 
intended speech. We were then able to train a deep learning model that synthesized his intended voice in real-
time by decoding his neural activity causally within 10 ms. The resulting synthesized voice was often (but not 
consistently) intelligible and human listeners were able to identify the words with high accuracy. This flexible 
brain-to-voice framework – which maps neural activity to acoustic features without an intermediary such as 
discrete speech tokens or limited vocabulary – could convert participant’s neural activity to a realistic 
representation of his pre-ALS voice, demonstrating voice personalization, and it enabled the participant to 
speak out-of-dictionary pseudo-words and make interjections.  
 
We also found that in addition to previously-documented phonemic information1,2, there is substantial 
paralinguistic information in the intracortical signals recorded from ventral precentral gyrus. These features 
were causally decoded to enable the participant to modulate his BCI voice to change intonation in order to ask 
a question or emphasize specific words in a sentence, and to sing melodies with different pitch targets. Finally, 
we investigated the dynamics of the neural ensemble activity, which revealed that putatively output-null neural 
dimensions are highly active well before each word is vocalized, with greater output-null activity present when 
there were more upcoming words planned and when the upcoming word needed to be modulated.  
 
Results: 
 
Continuous speech synthesis from intracortical neural activity with immediate auditory feedback 
  
We recorded neural activity from four microelectrode arrays with a total of 256 electrodes placed in the ventral 
premotor cortex (6v), primary motor cortex (M1) and middle precentral gyrus (55b) (see Fig. 1a,b) as 
estimated using the Human Connectome Project pipeline1,18 in BrainGate2 clinical trial participant ‘T15’ 
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(Extended Data Fig. 1). T15 was a 45-year-old man with ALS and severe dysarthria. He retained some 
orofacial movement and an ability to vocalize but was unable to produce intelligible speech (Video 1).  
 

 
Fig. 1. Closed-loop voice synthesis from intracortical neural activity in a participant with ALS. a. Schematic of the 
brain-to-voice neuroprosthesis. Neural features extracted from four chronically implanted microelectrode arrays were 
decoded in real-time and used to directly synthesize voice. b. Array locations on the participant’s left hemisphere and 
typical neuronal action potentials from each microelectrode. Color overlays are estimated from a Human Connectome 
Project cortical parcellation. c. Closed-loop causal voice synthesis pipeline: voltages were sampled at 30 kHz; threshold-
crossings and spike-band power features were extracted from 1 ms segments; these features were binned into 10 ms 
non-overlapping bins, normalized and smoothed. The Transformer-based decoder mapped these neural features to a low-
dimensional representation of speech involving Bark-frequency cepstral coefficients, pitch, and voicing, which were used 
as input to a vocoder. The vocoder then generated speech samples which were continuously played through a speaker. 
d. Lacking T15’s ground truth speech, we first generated synthetic speech from the known text cue in the training data 
using a text-to-speech algorithm, and then used the neural activity itself to time-align the synthetic speech on a syllable-
level with the neural data time-series to obtain a target speech waveform for training the decoder. e. A representative 
example of causally synthesized speech from neural data, which matches the target speech with high fidelity.  
 
We developed a real-time neural decoding pipeline (Fig. 1c) to synthesize T15’s voice instantaneously from 
intracortical neural activity, with continuous audio feedback, as he attempted to speak sentences cued on a 
screen at his own pace. Since the participant could not speak intelligibly, we did not have the ground truth for 
how and when he attempted to speak. Therefore, to generate aligned neural and voice data for training the 
decoder, we developed an algorithm to identify putative syllable boundaries directly from neural activity. This 
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allowed us to generate target speech that was time-aligned to neural recordings as a proxy to T15’s intended 
speech (Fig. 1d).  
 
We trained a multilayered Transformer-based19 model to causally predict spectral and pitch features of the 
target speech every 10 ms using the preceding binned threshold crossings and spike-band power. The base 
Transformer model architecture was augmented to compensate for session-to-session neural signal 
nonstationarities20 and to lower the inference time for instantaneous voice synthesis. The entire neural 
processing, from signal acquisition to synthesis of speech samples, occurred within 10 ms, enabling nearly-
instantaneous speech synthesis (Extended Data Fig. 2 shows end-to-end timings). The resulting audio was 
synthesized into voice samples by a vocoder21 and continuously played back to T15 through a speaker (Fig. 
1e). 
  
Flexible and accurate closed-loop voice synthesis 
  
We first tested the brain-to-voice BCI’s ability to causally synthesize voice from neural activity while T15 
attempted to speak cued sentences (Fig. 2a and Video 2). Each trial consisted of a unique sentence which 
was never repeated in the training or evaluation trials. The synthesized voice was similar to the target speech 
(Fig. 2b), with a Pearson correlation coefficient of 0.89±0.04 across 40 Mel-frequency bands (Extended Data 
Fig. 3a reports Mel-cepstral distortion). We quantified intelligibility by asking 15 human listeners to match each 
of the 956 evaluation sentences with the correct transcript (choosing from 6 possible sentences of the same 
length). The mean and median accuracies were 94.34% and 100%, respectively (Fig. 2i). The instantaneous 
voice synthesis accurately tracked T15’s pace of attempted speech (Extended Data Fig. 4), which – due to his 
ALS – meant slowly speaking one word at a time. These results demonstrate that the real-time synthesized 
speech recapitulates the intended speech to a high degree, and can be identified by non-expert listeners. We 
also demonstrated that this brain-to-voice speech neuroprosthesis could be paired with our previously-reported 
high accuracy brain-to-text decoder1, which essentially acted as closed-captioning (Video 3). 
 
All four arrays showed significant speech-related modulation and contributed to voice synthesis, with the most 
speech-related modulation on the v6v and 55b arrays and much less speech-related modulation on the d6v 
array (Extended Data Fig. 4). Thanks to this high neural information content, the brain-to-voice decoder could 
be trained even with limited data, as shown by an online demonstration using a limited 50-word vocabulary on 
the first day of neuroprosthesis use (Video 14). Lastly, we compared this instantaneous voice synthesis 
method to an acausal method3 that decoded a sequence of discrete speech units at the end of each sentence 
(Audio 1). As expected, acausal synthesis – which benefits from integrating over the entire utterance – 
generated high quality voice (MCD 2.4±0.03); this result illustrates that instantaneous voice synthesis is a 
substantially more challenging problem.  
 
People with neurodegenerative diseases may eventually lose their ability to vocalize all together, or may find 
vocalizing tiring. We therefore tested the brain-to-voice BCI during silent “mimed” speech where the participant 
was instructed to attempt to mouth the sentence without vocalizing. Although the decoder was only trained on 
attempted vocalized speech, it generalized well to mimed speech: the Pearson correlation coefficient was 
0.89±0.03, which was not statistically different from voice synthesis during vocalized attempted speech (Fig. 
2c, d and Video 4). Extended Data Fig. 3b shows human perception accuracy of synthesized speech during 
miming. T15 reported that he found attempting mimed speech less tiring compared to vocalized speech. 
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Fig. 2. Voice neuroprosthesis allows a wide range of vocalizations. a. Spectrogram and waveform of an example trial 
showing closed-loop synthesis during attempted speech of a cued sentence (top) and the target speech (bottom). The 
Pearson correlation coefficient (r) is computed across 40 Mel-frequency bands between the synthesized and target 
speech. b. Pearson correlation coefficients (mean ± s.d) for attempted speech of cued sentences across research 
sessions. Sessions in blue were predetermined as evaluation sessions and all performance summaries are reported over 
these sessions. c. An example mimed speech trial where the participant attempted to speak without vocalizing and d. 
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mimed speech Pearson correlations across sessions. e. An example trial of self-guided attempted speech in response to 
an open-ended question and f. self-guided speech Pearson correlations across sessions. g. An example personalized 
own-voice synthesis trial. h, j, k. Example trials where the participant said pseudo-words, spelled out words letter by letter, 
and said interjections, respectively. The decoder was not trained on these words or tasks. i. Pearson correlation 
coefficients of own-voice synthesis, spelling, pseudo-words and interjections synthesis. l. Human perception accuracy of 
synthesized speech where 15 naive listeners for each of the 956 evaluation sentences selected the correct transcript from 
6 possible sentences of the same length. Individual points on the violin plot show the average matching accuracy of each 
evaluation sentence (random vertical jitter is added for visual clarity). The bold black line shows median accuracy (which 
was 100%) and the thin blue line shows the (bottom) 25th percentile.  
 
The aforementioned demonstrations involved T15 attempting to speak cued sentences. Next, we tested if the 
brain-to-voice BCI could synthesize unprompted self-initiated speech, more akin to how a neuroprosthesis 
would be used for real-world conversation. We presented T15 with questions on the screen (including asking 
for his feedback about the voice synthesis), which he responded to using the brain-to-voice BCI (Fig. 2e). We 
also asked him to say whatever he wanted (Video 5). The accuracy of his free response synthesis was slightly 
lower than that of cued speech (Pearson correlation coefficient 0.84±0.1, Fig. 2f, Wilcoxon rank-sum, p=10-6, 
n1=57, n2=933). We speculate that this reflected him using a different attempted speech strategy (with less 
attention to enunciating each phoneme) that he commonly used for his personal use with the brain-to-text 
BCI1. 
   
This brain-to-voice decoder directly predicts acoustic speech features, which allows the user to produce a 
variety of expressive sounds, including non-word sounds and interjections, which are not possible with 
language- and vocabulary-dependent speech BCIs. To demonstrate this flexibility, we instructed T15 to use the 
brain-to-voice BCI to say made-up pseudo-words and interjections (e.g., “aah”, “eww”, “ooh”, “hmm”, “shoo”) 
(Fig. 2h, k and Videos 7, 8). The neuroprosthesis also enabled T15 to spell out words one letter at a time (Fig. 
2j and Video 9). The brain-to-voice decoder was not trained on pseudo-words, spellings or interjections tasks 
but was able synthesize these sounds with a Pearson correlation coefficient of 0.90±0.01 (Fig. 2i).  
 
Voice is an important element of people’s identities, and synthesizing a user’s own voice could further improve 
the restorative aspect of a speech neuroprosthesis. We therefore demonstrated that the instantaneous brain-
to-voice framework was personalizable and could approximate T15’s pre-ALS voice (Fig. 2g and Video 6). To 
achieve this, we trained the brain-to-voice decoder on target speech produced by a voice cloning text-to-
speech algorithm22 that sounded like T15. The participant used the speech synthesis BCI to report that 
listening to his own voice “made me feel happy and it felt like my real voice” (Fig. 2e). The accuracy of the 
own-voice synthesis was similar to the default voice synthesis (Pearson correlation coefficient of 0.87±0.04, 
Fig. 2i).  
 
Through these varied speech tasks, we demonstrated that the brain-to-voice BCI framework is flexible and 
generalizable, enabling the participant to synthesize a wide variety of vocalizations.  
 
Online decoding of paralinguistic features from neural activity  
  
Paralinguistic features such as pitch, cadence, and loudness play an important role in human speech, allowing 
us to be more expressive. Changing the stress on different words can change the semantic meaning of a 
sentence; modulating intonations can convey a question, surprise or other emotions; and modulating pitch 
allows us to sing. Incorporating these paralinguistic features into BCI-synthesized voice is an important step 
towards restoring naturalistic speech. We investigated whether these paralinguistic features are encoded in the 
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neural activity in the ventral precentral gyrus and developed algorithms to decode and modulate these speech 
features during closed-loop voice synthesis. 
 
Since the brain-to-voice decoder causally and immediately synthesizes voice, it inherently captures the natural 
pace of T15’s speech. To quantify this, T15 was asked to speak sentences at either a faster or slower speed. 
The voice synthesized by the neuroprosthesis reflected his intended speaking speed (Fig. 3a). Fig. 3b shows 
the differing distributions of durations of synthesized words attempted at fast (average speed of 0.97±0.19 s 
per word) and slow (average speed of 1.46±0.31 s per word) speeds. Additionally, we were able to decode 
quiet or loud attempted speech loudness from the neural features with 90% accuracy (Extended Data Fig. 5). 
  

 
Fig. 3. Modulating paralinguistic features in synthesized voice. a. Two example synthesized trials are shown where 
the same sentence was spoken at faster and slower speeds. b. Violin plots showing significantly different durations of 
words instructed to be spoken fast and slowly (Wilcoxon rank-sum, p=10-14, n1=72, n2=57). The bold black horizontal line 
shows the median value of the synthesized word duration and thin colored horizontal lines show the range between 25th 
and 75th percentiles. c. Trial-averaged normalized spike-band power (each row in a panel is one electrode) during trials 
where the participant emphasized each word in the sentence “I never said she stole my money”, grouped by the 
emphasized word. Trials were aligned using dynamic time warping and the mean activity across all trials was subtracted 
to better show the increased neural activity around the emphasized word. The emphasized word’s onset is indicated by 
the arrowhead at the bottom of each condition. d. Spectrograms and waveforms of two synthesized voice trials where the 
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participant says the same sentence as a statement and as a question. The intonation decoder output is shown below 
each trial. An arrowhead marks the onset of causal pitch modulation in the synthesized voice. The white trace overlaid on 
the spectrograms shows the synthesized pitch contour, which is constant for a statement and increases during the last 
word for a question. e. Confusion matrix showing accuracies for closed-loop intonation modulation during real-time voice 
synthesis. f. Spectrograms and waveforms of two synthesized voice trials where different words of the same sentence are 
emphasized, with pitch contours overlaid. Emphasis decoder output is shown below. Arrowheads show onset of emphasis 
modulation. g. Confusion matrix showing accuracies for closed-loop word emphasis during real-time voice synthesis. h. 
Example trial of singing a melody with three pitch targets. The pitch decoder output that was used to modulate pitch 
during closed-loop voice synthesis is shown below. The pitch contour of the synthesized voice shows different pitch levels 
synthesized accurately for the target cued melody. i. Violin plots showing significantly different decoded pitch levels for 
low, medium and high pitch target words (Wilcoxon rank-sum, p=10-14 with correction for multiple comparisons, n1=122, 
n2=132, n3=122). Each point indicates a single trial. j. Example three-pitch melody singing synthesized by a unified brain-
to-voice model. The pitch contour of the synthesized voice shows that the pitch levels tracked the target melody. k. Violin 
plot showing peak synthesized pitch frequency achieved by the inbuilt pitch synthesis model for low, medium and high 
pitch targets. Synthesized high pitch was significantly different from low and medium pitch (Wilcoxon rank-sum, p=10-3, 
n1=106, n2=113, n3=105). Each point shows an individual trial.  
 
Next, we decoded the intent to modulate intonation to ask a question or to emphasize a specific word. We 
recorded neural activity while T15 attempted to speak the same set of sentences as either statements (no 
extra modulation in pitch) or as questions (with increasing pitch at the end of the sentence). This revealed 
increased neural activity recorded on all four arrays towards the end of the questions (Extended Data Fig. 6). 
To study the effect of attempted word emphasis on neural activity, in a different experiment we asked T15 to 
emphasize one of the seven words in the sentence “I never said she stole my money” by increasing that word’s 
pitch. This sentence, modeled after 23, changes its semantic meaning for each condition whilst keeping the 
phonemic content the same. Similar to the effect observed during the question intonation task, we observed 
increased neural activity around the emphasized word (Fig. 3c) on all four arrays (Extended Data Fig. 7) 
starting ~350 ms prior to the onset of the word. 
 
As a proof-of-principle that these paralinguistic features could be captured by a speech neuroprosthesis, we 
trained two separate binary decoders to identify the change in intonation during these question intonation and 
word emphasis tasks. We then applied these intonation decoders in parallel to the brain-to-voice decoder to 
modulate the pitch and amplitude of the synthesized voice in closed loop, enabling T15 to ask a question or 
emphasize a word (Extended Data Fig. 8). Fig. 3d shows two example closed-loop voice synthesis trials, 
including their pitch contours, where T15 spoke a sentence as a statement and as a question. The synthesized 
speech pitch increased at the end of the sentence during question intonation (Video 10). Fig. 3f shows two 
example synthesized trials of the same sentence where different words were emphasized (Video 11). Across 
all closed-loop evaluation trials, we decoded and modulated question intonation with 90.5% accuracy (Fig. 3e) 
and word emphasis with 95.7% accuracy (Fig. 3g).  
 
After providing the aforementioned binary intonation control for questions or word emphasis, we investigated 
decoding multiple pitch levels from neural activity. We designed a three-pitch melody task where T15 
attempted to “sing” different melodies consisting of 6 to 7 notes of low, medium and high pitch (e.g., low-mid-
high-high-mid-low). These data were used to train a two-stage Transformer-based pitch decoder. During 
closed-loop voice synthesis, this pitch decoder ran simultaneously with the brain-to-voice decoder to modulate 
its pitch output; visual feedback of the decoded pitch level was also provided on-screen (Video 12). T15 was 
able to control the synthesized melody’s pitch levels (Fig. 3h). Fig. 3i shows three distinct distributions of pitch 
levels decoded from neural activity across all singing task evaluation trials, demonstrating that the pitch and 
phonemic content of speech could be simultaneously decoded from neural activity in real-time. 
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In the preceding experiments, we used a data-efficient separate discrete decoder to modulate the synthesized 
voice because the vast majority of our training data consisted of neutral sentences without explicit instructions 
to modulate intonation or pitch. However, a more generalizable approach would be to develop a unified (single) 
brain-to-voice decoder that takes into account these paralinguistic features. We demonstrated the feasibility of 
such an approach by training our regular brain-to-voice decoder model architecture with the time-aligned target 
speech consisting of different pitch levels for target notes in the three-pitch singing task. This enabled the 
decoder to implicitly learn the mapping between neural features and the desired pitch level in addition to 
learning the mapping from neural activity to phonemic content (as before). During continuous closed-loop voice 
synthesis evaluation, this unified “pitch-enhanced” brain-to-voice decoder was able to synthesize different pitch 
levels as T15 attempted to sing different melodies (Video 13 and Fig. 3j, k). This demonstrates that the brain-
to-voice BCI framework has an inherent capability to synthesize paralinguistic features if provided with training 
data where the participant attempts the desired range of vocal properties (in this case, pitch).  
 
Rich output-null neural dynamics during speech production 
 
Instantaneous brain-to-voice synthesis provides a unique view into neural dynamics with high temporal 
precision. We noticed that neural activity increased prior to and during the utterance of each word in a cued 
sentence, but that the aggregate neural activity decreased over the course of the sentence (Fig. 1d, Extended 
Data Fig. 4). Yet despite this broad activity decrease, the synthesis quality remained consistent throughout the 
sentence (Extended Data Fig. 9). This seeming mismatch between overall neural activity and voice output 
suggested that the “extra” activity – which preceded voice onset for each word and also gradually diminished 
towards the end of a sentence – could be a form of output-null neural subspace activity previously implicated in 
movement preparation24, feedback processing25, and other computational support roles26.  
 
We estimated the output-null and output-potent neural dimensions by linearly decomposing the population 
activity into a subspace that best predicted the speech features (output-potent dimensions, which putatively 
most directly relate to behavioral output) and its orthogonal complement (output-null dimensions, which 
putatively have less direct effect on the behavioral output). Both subspaces contained substantial speech-
related information: the Pearson correlation coefficients of decoding speech using only the output-potent 
dimensions (which captured 2.5% of total variance) or only the output-null dimensions (97.5% of total variance) 
were 0.79±0.08 and 0.84±0.05, respectively. Fig. 4a shows output-null and output-potent components of 
neural activity around the onset of each word in sentences of different lengths. A clear decrease in output-null 
activity can be seen over the course of a sentence regardless of its length, whereas the output-potent activity 
remains consistent (Fig. 4c). An exception to this was the very last word, which tended to have an increase in 
output-null activity, especially as the last word was being finished. We do not know why the end of the 
sentence exhibited this effect but speculate that it is related to an end-of-trial cognitive change (e.g., the 
participant assessing his performance).  
 
We also examined the putative output-null and output-potent activity when the participant volitionally 
modulated his intonation. We found that the output-null activity increased significantly (p=10-21) for the word 
that was modulated (Fig. 4b, d) as compared to the words that preceded or followed it, explaining the 
previously-noted increase in overall neural activity preceding intonation-emphasized words (Fig. 3c, Extended 
Data Fig. 6).  
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Fig. 4. Output-null and output-potent neural dynamics during speech production. a. Average approximated output-
null (orange) and output-potent (blue) components of neural activity during attempted speech of cued sentences of 
different lengths. Output-null activity gradually decayed over the course of the sentence, whereas the output-potent 
activity remained consistent irrespective of the length of the sentence. b. Average output-null and output-potent activity 
during intonation modulation (question-asking or word emphasis); data are trial-averaged aligned to the emphasized word 
(center) and the words preceding and/or following that word in the sentence. The output-null activity increased during 
pitch modulation as compared to the words preceding or following it. c. Panel a data are summarized by taking the 
average null/potent activity ratios for words in the first-quarter, second-quarter, third-quarter, and fourth-quarter of each 
sentence (mean ± s.e.). d. Panel b data are summarized by calculating average null/potent activity ratios of the intonation 
modulated word (beige) and the words preceding or following it (gray) (mean ± s.e.). The null/potent ratios of modulated 
words were significantly different from that of non-modulated words (Wilcoxon rank-sum, p= 10-21, n1=460, n2=922). 
Extended Data Fig. 10 shows these analyses for each array individually. 
 
Discussion: 
 
This study demonstrated a “brain-to-voice” neuroprosthesis that directly mapped the neural activity recorded 
from four microelectrode arrays spanning ventral precentral gyrus into acoustic features. A man with severe 
dysarthria due to ALS used the system to synthesize his voice in real-time as he attempted to speak in both 
highly structured and open-ended conversation. The resulting voice was often intelligible. The decoding 
models were trained for a participant who could no longer speak intelligibly (and thus could not provide a 
ground truth speech target), and could be adjusted to emulate his pre-ALS voice. Unlike prior studies3,17, this 
brain-to-voice neuroprosthesis output sounds as soon as the participant tried to speak, without being restricted 
to a small number of words17 and without a constrained intermediate representation of discrete speech units 
that were generated after completion of each sentence3. To demonstrate the flexibility conferred by this direct 
voice synthesis BCI, the participant used it to synthesize various vocalizations including unseen words, 
interjections, and made-up words. 
 
Furthermore, this study demonstrates that a brain-to-voice neuroprosthesis can restore additional 
communication capabilities over existing brain-to-text BCIs1–3,27. Neuronal activity in precentral gyrus encoded 
both phonemic and paralinguistic features simultaneously. Beyond providing a more immediate way to say 
words, this system could decode the neural correlates of loudness, pitch, and intonation. In online 
demonstrations, the neuroprosthesis enabled the participant to control a variety of aspects of his instantaneous 
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digital vocalization, including the duration of words, emphasizing specific words in a sentence, ending a 
sentence as either a statement or a question, and singing three-pitch melodies. This represents a step towards 
restoring the ability of people living with speech paralysis to regain the full range of expression provided by the 
human voice. 
 
We note that participant T15, who had been severely dysarthric for several years at time of this study, reported 
that he found it difficult to try to precisely modulate the tone, pitch, and amplitude of his attempted speech. 
Thus, we propose that using discrete classifiers to generate real-time modulated voice (which provides 
feedback to the participant that helps them mentally “hone in” on how to modulate their voice) can provide an 
intermediate set of training data useful for training a single unified decoder capable of continuous control of 
phonemic and paralinguistic vocal features. We demonstrated a proof of concept of this unified approach by 
training a single core decoder to intrinsically synthesize voice with different pitch levels, which the participant 
used for singing melodies.  
 
A functional neuroanatomy result observed in this study that would not be predicted from prior ECoG23,28–30 and 
microstimulation studies31,32 is that the neural activity is correlated with paralinguistic features across all four 
microelectrode arrays, from ventral-most precentral gyrus to the middle precentral gyrus. We also observed 
that cortical activity across all four arrays increased well before attempted speech. We hypothesize that this 
reflects output-null preparatory activity24,26, and note that its presence is particularly fortuitous for the goal of 
causally decoding voice features because it gives the decoder a “sneak peek” shortly before intended 
vocalization. A particularly interesting observation was that this output-null activity seems to decrease over the 
course of a sentence. This may indicate that the speech motor cortex has a “buffer” for the whole sentence, 
which is gradually emptied out as the sentence approaches completion. We also observed an increase in 
output-null activity preceding words that were emphasized or modulated, which we speculate may be a 
signature of the additional neural computations involved in changing how that word is said. These results hint 
at considerable richness in speech-related motor cortical ensemble activity, beyond just the activity that is 
directly linked to driving the articulators. These phenomena represent an opportunity for future study, including 
leveraging the computation through dynamics framework and neural network modeling which have helped 
explain the complexity of motor cortical activity for preparing and producing arm and hand movements 
(reviewed in 26).  
 
Limitations 
This study was limited to a single participant with ALS. It remains to be seen whether similar brain-to-voice 
performance will be replicated in additional participants, including those with other etiologies of speech loss. 
The participant’s ALS should also be considered when interpreting the study’s scientific results. Encouragingly, 
however, prior studies have found that neural coding observations related to hand movements have 
generalized across people with ALS and able-bodied animal models33 and across a variety of etiologies of BCI 
clinical trial participants34,35. Furthermore, the phonemic and paralinguistic tuning reported here at action 
potential resolution has parallels in meso-scale ECoG measurements over sensorimotor cortex in able 
speakers being treated for epilepsy23,28.  
 
Although the performance demonstrated compares favorably with prior studies, the synthesized words were 
still not consistently intelligible. We also anecdotally observed that the participant’s energy level and 
engagement on a given block, as well as whether he attempted to enunciate the words clearly and fully, 
influenced synthesis quality. Brain-to-voice evaluations performed during the research sessions provided 
limited opportunity for practice-based improvement (i.e., sensorimotor learning). It remains an open question 
whether consistent long-term use will result in improved accuracy due to additional training data and/or 
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learning. Separately, we predict that accuracy improvement is possible with further algorithm refinement and 
increasing the number of electrodes, which was previously shown to improve brain-to-text decoding 
accuracy1,2. 
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Methods: 
 
Participant 
 
A participant with amyotrophic lateral sclerosis (ALS) and severe dysarthria (referred to as ‘T15’), who gave 
informed consent, was enrolled in the BrainGate2 clinical trial (ClinicalTrials.gov Identifier: NCT00912041). 
This pilot clinical trial was approved under an Investigational Device Exemption (IDE) by the US Food and 
Drug Administration (Investigational Device Exemption #G090003). Permission was also granted by the 
Institutional Review Boards at the University of California, Davis (protocol #1843264) and Mass General 
Brigham (#2009P000505). T15 consented to publication of photographs and videos containing his likeness. 
This manuscript does not report any clinical trial-related outcomes; instead, it describes scientific and 
engineering discoveries that were made using data collecting in the context of the ongoing clinical trial. 
 
T15 was a left-handed 45-year-old man. His ALS symptoms began five years before enrolment into this study. 
At the time of enrolment, he was non-ambulatory, had no functional use of his upper and lower extremities, and 
was dependent on others for activities of daily living (e.g., moving his wheelchair, dressing, eating, hygiene). 
T15 had mixed upper and lower-motor neuron dysarthria and an ALS Functional Rating Scale Revised 
(ALSFRS-R) score of 23 (range 0 to 48 with higher scores indicating better function). He retained some neck 
and eye movements but had limited orofacial movement. T15 could vocalize but was unable to produce 
intelligible speech (see Video 1). He could be interpreted by expert listeners in his care team, which was his 
primary mode of communication.  
 
Four chronic 64-electrode, 1.5 mm-length silicon microelectrode arrays coated with sputtered iridium oxide 
(Utah array, Blackrock Microsystems, Salt Lake City, Utah) were surgically placed in T15’s left precentral gyrus 
(putatively in the ventral premotor cortex, dorsal premotor cortex, primary motor cortex and middle precentral 
gyrus; Fig. 1b). The array placement locations were estimated based on pre-operative scans using the Human 
Connectome Project pipeline1,18. Voltage measurements from the arrays were transmitted to a percutaneous 
connection pedestal. An external receiver (Neuroplex-E, Blackrock Neuro) connected to the pedestal digitized 
and processed the measurements and sent information to a series of computers used for neural decoding. 
Data reported here are from post-implant days 25-342. 
 
Real-time neural feature extraction and signal-processing 
  
Raw neural signals (voltage time series filtered between 0.3 to 7.5 kHz and sampled at 30 kHz with 250nV 
resolution) were recorded from 256 electrodes and sent to the processing computers in 1 ms packets. We 
developed the real-time signal processing and neural decoding pipeline using the custom-made BRAND 
platform36, where each processing step was conducted in a separate “node” running asynchronously. 
  
We extracted neural features of action potential threshold crossings and spike-band power from each 1 ms 
incoming signal packet (30 samples) within 1 ms to minimize downstream delays. First, each packet was band 
pass filtered between 250 to 5000 Hz (4th order zero-phase non-causal Butterworth filter) by adding 1 ms 
padding on both sides (from previous samples on one side and a constant mean value of the current samples 
on the other side) to minimize discontinuities at edges and denoised using Linear Regression Referencing 
(LRR)37. Then, threshold crossings were detected when the voltage dropped below -4.5 times the root mean 
squared (RMS) value for each channel (electrode). Spike-band power was computed by squaring and taking 
the mean of the samples in the filtered window for each channel and was clipped at 50k μV2 to avoid outliers. 
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Neural features were binned into 10 ms non-overlapping bins (counting threshold crossings and taking the 
mean spike-band power across 10 consecutive feature windows, such that each of the 256 electrodes 
contributed two features). Each bin was first log-transformed, then normalized using rolling means and s.d. 
from the past 10 s for that feature. Each feature was then causally smoothed using a sigmoid kernel of length 
1.5 s of the past activity. Thus, a vector of 1x512 binned neural features was sent to the brain-to-voice decoder 
every 10 ms. After each “block” of neural recording (a contiguous period of task performance), we re-computed 
RMS thresholds and LLR weights to be used in the next block. This helped in minimizing nonstationarities in 
the neural signals. 
 
Experimental paradigm 
  
This study comprises multiple closed-loop speech tasks used to develop and evaluate a voice synthesis 
neuroprosthesis. Research sessions were structured as a series of blocks of ~50 trials of a specific task. Each 
trial began with a “delay” period of 1.5-4 s in which a red square and a text cue was shown on the screen 
During this period, the participant was instructed to read the cue and prepare to speak. This was followed by a 
“go” period (indicated by a green square) where the participant was instructed to attempt to speak the cued 
text at his own pace after which he ended the trial using an eye tracker by looking at a “Done” icon on the 
screen. Closed-loop instantaneous voice synthesis was active during the “go” period. There was then a short 
1-1.5 s interval before the start of the next trial. 
  
The participant performed the following speech tasks using the above trial structure: 1) attempting to speak 
cued sentences; 2) miming (without vocalizing) cued sentences; 3) responding to open-ended questions in his 
own words or saying anything he wanted; 4) spelling out words letter by letter; 5) attempting to speak made-up 
pseudo-words; 6) saying interjections; 7) speaking cued sentences in fast or slow speeds; 8) speaking quietly 
or at a normal loudness; 9) modulating intonation to say a sentence as a statement or as a question; 10) 
emphasizing certain words in a sentence; and 11) singing melodies with different pitch level targets (this task 
had a prompted reference audio cue for the melody which was played during the delay period). 
  
After the initial eight research sessions with a mix of open-loop and closed-loop blocks, all cued sentence trials 
in the rest of the sessions were conducted with either closed-loop voice synthesis, closed-loop text decoding1 
or both to improve participant’s engagement in the task. All other types of tasks had closed-loop voice 
synthesis feedback. In a typical research session, we recorded ~150-350 structured trials. 
 
Closed-loop continuous brain-to-voice synthesis 
 
Target speech generation for decoder training 
Since T15 was unable to produce intelligible speech, we did not have a ground-truth reference of his speech to 
match with the neural activity required for training a decoder to causally synthesize voice. Hence, we 
generated a “target” speech waveform aligned with neural activity as an approximation of T15’s intended 
speech. 
  
We first generated synthetic speech waveforms from the known text cues in the training data using text-to-
speech algorithm (native TTS application on MacOS version 13.5.1). Next, we identified putative syllable 
boundaries of T15’s attempted speech from the corresponding neural activity and aligned the synthetic speech 
by dynamically time stretching it to match these syllable boundaries to obtain the time-aligned target speech. 
The target speech was aligned at syllable level because syllables are the fundamental units of prosody in 
human speech38. During our first research session, there was no prior neural data available, so we used 
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coregistered microphone recordings of T15’s attempted (unintelligible) speech to segment word boundaries 
and generate time-aligned target speech (i.e., unlike for later sessions, the session 1 time-alignment was done 
at a word rather than syllable level). This was done programmatically by identifying word boundaries based on 
the voice amplitude envelope of the participant's attempted speech waveform, which was then adjusted 
manually if required. In subsequent sessions, we relied solely on neural data to estimate syllable boundaries: 
we used a brain-to-voice model trained on past neural data to synthesize speech and used its envelope to 
automatically segment syllable boundaries39, which were manually reviewed and occasionally adjusted if 
required. We then used dynamic time warping to align the envelope of the synthetic TTS speech to the 
envelope of the neurally predicted speech to create a mapping between their syllable boundaries. Then, the 
TTS segment within each syllable boundary was time-stretched to have the same duration as the 
corresponding segment of neurally predicted speech. This produced the target speech, which was now time-
aligned with neural activity and suitable for training the new brain-to-voice decoder for the current session. This 
process was repeated iteratively for each session.  
 
Brain-to-voice decoder architecture 
The core brain-to-voice model was adapted from the Transformer architecture19. The model had two main 
components: an input embedding network and a base Transformer. Separate input embedding networks 
consisting of 2 fully-connected dense layers (512 and 128 units respectively, ReLU activation) were used for 
each week of neural data recording to compensate for week-to-week nonstationarities. The output from the 
input embedding network was passed into the base Transformer model consisting of 8 Transformer encoder 
blocks (head size 128, number of heads 4, a dropout of 0.5 after multi-head attention layer, each of the two 
feed-forward layers with 256 and 128 units respectively, and a normalization layer at the beginning and the 
end). Positional encoding was added before the first Transformer block. Additionally, we included residual 
connections between each Transformer block (separate from the residual connections within each block). The 
output sequence from Transformer blocks was pooled by averaging and passed to two dense layers (1024, 
512 units, ReLU activation) and finally through a dense layer of size 20 to output 20-dimensional predicted 
speech features. 
  
At each step, an input to the brain-to-voice decoder was a 600 ms window of binned neural features (threshold 
crossings and spike-band power) of shape 60x512 (60 bins of 10 ms with 256 channels x 2 features). The first 
layer of the model averaged two adjacent bins of the input sequence to reduce the sequence length by half 
whilst preserving the temporal information. The output of the decoder was a vector of 20 predicted speech 
features (which were then sent to a vocoder to generate synthesized speech samples in closed-loop blocks, 
described later). The decoder ran every 10 ms to produce a single 10 ms frame of voice samples. All the 
model hyperparameters were tuned manually with special consideration given to minimize the inference time 
for instantaneous closed-loop voice synthesis. 
 
Decoder training 
We trained a new decoder for each session using all cued sentence trials (which were unique) from all 
previous research sessions. To train the decoder robustly, we used 4-20 augmented copies of each trial. 
Neural features were augmented using three strategies: adding white noise (mean 0, s.d. 1.2) to all timepoints 
of all channels independently, a constant offset (mean 0, s.d. 0.6) to all spike-band channels independently 
and its scaled version (x0.67) to threshold crossings, and the same cumulative (random walk) noise (mean 0, 
s.d. 0.02) to all channels along the time course of the trial. We extracted a 600 ms sliding window (shifted by 
10 ms from step to step) from continuous neural features and its corresponding 10 ms frame of output target 
speech features (20-dimensional vector) as a single training sample. These 20-dimensional output speech 
features (18 Bark cepstral coefficients, pitch period and pitch strength) for every 10 ms of target speech 
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waveform were extracted from the time-aligned TTS target voice using the encoder for the pretrained LPCNet 
vocoder21. Each acoustic feature in the 20-dimensional vector was normalized independently based on the min 
and max of that feature (obtained from the training TTS dataset) to bring different acoustic features to the 
same scale (having all output features have a similar numeric range helps with accurate prediction). The 
features were then temporally smoothed before sending this vector as output in a batch for training the 
decoder.  
  
The model was trained for ~15-20 epochs with a batch size of 1024 samples (each epoch had ~50k batches), 
a constant learning rate of 5x10-4, Adam optimizer (β1=0.9, β2=0.98, ε=1e-9) and Hubert loss (δ=1.35) which 
affords the advantage of both L1 and L2 losses and is less sensitive to outliers. The training took between 20 
and 40 hrs on three NVIDIA GeForce RTX 3090 GPUs depending on the amount of data used for training. 
  
On the first session of neural recording, we collected 190 open-loop trials of attempted speech from a 50-word 
vocabulary to train the decoder and were able to synthesize voice in closed-loop with audio feedback on the 
same day. Although the closed-loop synthesis on this data was less intelligible due to the model not being 
optimized on the first day, we later demonstrated offline that with an optimized model, we could achieve 
intelligible synthesis with this small amount of neural data and a limited vocabulary (Video 14). 
  
In subsequent sessions, we collected more attempted speech trials with a large vocabulary and iteratively 
optimized our brain-to-voice decoder architecture to improve the synthesis quality. Here, we report the 
performance of closed-loop voice synthesis from neural activity using the “final” brain-to-voice decoder 
architecture for predetermined evaluation sessions. For each of these sessions, the decoder was trained on all 
the data collected up to one week prior (total of ~5500-8900 trials). 
 
For training the personalized-own voice synthesis model, we first generated time-aligned target speech that 
sounded like T15’s pre-ALS voice using the StyleTT2 text-to-speech model22 fine-tuned on T15’s voice 
samples prior to developing ALS. The rest of the process for decoder architecture and training was the same 
as above. 
 
Closed-loop voice synthesis 
During closed-loop real-time voice synthesis, we first extracted neural features every 1 ms. These were then 
binned, log-transformed, causally normalized and smoothed and aggregated into 600 ms causal sliding 
windows. This neural feature sequence was decoded by the brain-to-voice model into 20 acoustic speech 
features at each time step as described above. Inference was done on a single NVIDIA RTX A6000 GPU. The 
predicted speech features were rescaled back to their original range before normalization based on previously 
computed min and max of each feature (recall that during training, each acoustic speech feature was 
normalized independently such that all features were on the same scale and thus, the brain-to-voice decoder 
predicted normalized speech features which therefore needed rescaling for synthesis by the vocoder). The 
LPCNet vocoder requires 16 additional linear predictive coding (LPC) features in addition to the 20 acoustic 
features, but these are not independent and were derived from the 18 predicted cepstral features that were 
amongst the 20 decoded acoustic features. This resulted in a 36-feature vector (20 +16), which was 
synthesized into a single 10 ms frame of speech waveform (sampled at 16 kHz) using the pretrained LPCNet 
vocoder every 10 ms. The entire pipeline from neural signal acquisition to reconstruction of speech samples of 
a single frame took less than 10 ms (Extended Data Fig. 2). These samples were sent to the audio playback 
computer as they were generated, where they were played through a speaker continuously, thereby providing 
closed-loop audio feedback to the participant. We focused our engineering efforts on reducing the inference 
latency, which fundamentally bounds speech synthesis latency. However, pragmatically, we found that the 
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largest latency occurred due to the audio playback driver (Extended Data Fig. 2). We were able to 
subsequently substantially lower these playback latencies and predict that further reductions are possible with 
additional optimization in interfacing with sound drivers. All results reported in this study are for closed-loop 
voice synthesis unless specified otherwise. 
  
Evaluation of synthesized speech 
We evaluated synthesized speech by measuring the Pearson correlation coefficient between the synthesized 
and TTS-derived target (fully intelligible) speech. We computed average Pearson correlations across 40 Mel-
frequency bands of audio sampled at 16 kHz. The Mel-spectrogram with 40 Mel-frequency bands was 
computed using sliding (Hanning) windows of 50 ms with 10 ms overlap and converted to decibel units. We 
also computed Mel-cepstral distortion between the synthesized speech and the target speech using the 
method described in 27. 
  
To evaluate human perception of BCI-synthesized speech, we asked 15 naïve listeners to listen to each 
synthesized speech trial and identify the transcript that matched the audio from six possible sentences of the 
same length. We used the crowd analytics platform Amazon Mechanical Turk to evaluate 1,014 synthesized 
sentences (vocalized and mimed trials) each by 15 individuals. To test if the crowd workers actually listened to 
the audio, we included a fully intelligible control audio clip with each synthesized audio. We rejected any trials 
with wrong answers for the control audio and resubmitted these trials for evaluation until we had 15 accepted 
answers per evaluation sentence. 
 
Decoding paralinguistic features for modulating synthesized voice 
  
Decoding intonation intent from neural activity 
We collected task blocks where T15 was instructed (1) to modulate his attempted speech intonation to say 
cued sentences as statements (no change in pitch) or (2) as questions (by changing the pitch from low to high 
towards the end of the sentence) or (3) to emphasize capitalized words in cued sentences (by increasing pitch 
with slight increase in loudness for emphasis). We analyzed question and word emphasis tasks separately but 
followed the same decoding procedure. We did not have the ground truth of when exactly T15 modulated his 
intonation to train the intonation decoders. Hence, trials were grouped by the cue sentence and their neural 
data aligned using dynamic time warping40. The average of these aligned trials was subtracted from each trial 
to reveal changes in neural activity (example, Fig. 3c). These trial-averaged data were used to manually label 
segments of neural data from each (warped) single trial as intonation modulation (class 1) or no modulation 
(class 0) for subsequent use in training intonation decoders.  
 
For intonation decoding, we only used the spike-band power feature due to its higher signal-to-noise ratio 
(eliminating the threshold crossings helped reduce the feature size, which was helpful for this more data-limited 
decoder training). Sliding windows of 600 ms shifted by 10 ms were derived from binned neural activity to 
generate samples for decoder training. For each window, we took the mean of two adjacent bins to reduce the 
sequence length in half (to 30 bins from 60 bins), whilst preserving the temporal information. This sequence of 
features was then flattened to obtain a single 7,680-dimensional feature vector (30 x 256) as input to the two-
class decoder. A binary logistic regression decoder was trained to classify the neural feature vectors into ‘no 
change in intonation’ (0) or ‘change in intonation’ (1). During closed-loop trials, this intonation decoder ran in 
parallel to the brain-to-voice decoder, and was used to predict intonation from features from the preceding 600 
ms of neural activity, every 10 ms. Separate binary decoders were trained to detect intonation modulation for 
asking questions and for word emphasis. For a given task (questions or word emphasis), the intonation 
decoders ran simultaneously with the main brain-to-voice decoder.  
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Closed-loop intonation modulation in the synthesized voice 
One of the speech features predicted by the brain-to-voice decoder characterizes the pitch component, which 
is used by the LPCNet vocoder to synthesize a speech waveform. To adjust the synthesized voice’s intonation 
in real-time, we artificially modified this feature’s value (relative to what the brain-to-voice decoder output) upon 
detection of a change in intonation from neural activity by the parallel intonation decoder. For the question 
intonation task, when the binary intonation decoder detected the question intonation (defined as when more 
than 60% of bins in the previous 700 ms window were classified as positive), it sent a trigger to modulate the 
pitch feature predicted by the brain-to-voice decoder according to a predefined pitch profile for asking a 
question (gradually increasing the pitch of the word from low to high). Each intonation modulation trigger was 
followed by a refractory period of 1.5 s to avoid consecutive duplicate triggers. The (now modified) speech 
features were then synthesized by the vocoder as previously described (see Extended Data Fig. 8).  
  
Similarly, for emphasizing certain words in a sentence in closed-loop, the binary emphasis decoder sent a 
trigger (defined as when more than 60% of bins in the previous 800 ms window were classified as positive) to 
modulate pitch features predicted by the brain-to-voice decoder according to a predefined pitch profile for word 
emphasis – modulating the pitch from high to low – and increasing the volume of synthesized speech by 20%. 
We intentionally chose pitch profiles that were exaggerated so that the participant could clearly tell whether or 
not the intention modulation was working during the closed-loop tasks. However, these can trivially be adjusted 
in the future to avoid the resulting somewhat artificial-sounding exaggerated intonation. 
  
We computed the accuracy of closed-loop intonation modulation by calculating what fraction of individual 
words in a sentence were modulated appropriately (i.e., matching the prompt).  
 
Loudness decoding 
The same architecture as for decoding intonation was followed to train a loudness decoder to classify neural 
data as belonging to quiet (class 0) speaking and normal speaking (class 1) from neural activity. Here the data 
labels were based on the task instruction. This decoder was evaluated offline by randomizing all the trials and 
splitting them into 13% heldout evaluation trials and 87% training trials.  
 
Discrete pitch decoding for singing melodies 
We collected neural data while T15 attempted to sing three-pitch melodies comprised of 6-7 notes of three 
pitch levels (e.g., low-mid-high-high-mid-low). Each note consisted of a short word to be sung in the target 
pitch level. At the start of each trial, an audio cue of the melody was played during the delay period for 
reference only. However, we did not instruct the participant to match the frequencies of the three notes used in 
these cued melodies because it was difficult for T15 to precisely modulate his pitch due to his severe 
dysarthria. Rather, he was instructed to try to make three distinct “low”, “medium”, and “high” pitch notes of his 
own choice. 
  
We used a two-stage pitch decoding approach to decode pitch intent from spike-band power. A first 
Transformer-based decoder (same architecture as above, but with only two Transformer blocks and no input 
embedding network) was used to identify the participant’s intention to speak (i.e., classify between silence and 
intent to sing, based on training labels where ‘intent to sing’ was from 600 ms before the start of a note to the 
end of the note). A second Transformer-based decoder then decoded his intended pitch level (1-low, 2-mid, 3-
high) if (and only if) an intention to sing was detected. Both decoders were trained using the categorical cross 
entropy loss. Since the results of the previous intonation modulation tasks showed that changes in 
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paralinguistic features can be detected in advance of speech onset, labels for each pitch level were assigned 
to the neural data from 600 ms prior to the note onset to the end of the note attempted at that pitch. 
 
During the closed-loop singing task, this two-staged pitch decoder ran simultaneously with the core brain-to-
voice decoder. The output of the pitch decoder was smoothed with a moving average of a prior 800 ms window 
and then used to continuously modulate the predicted brain-to-voice pitch feature in real-time, which was then 
vocoded as usual (see Fig. 3h, i and Extended Data Fig. 8). Thus, the participant was able to sing melodies 
consisting of both phonemic content and three different pitches (e.g., “la la la”) through his synthesized voice. 
Additionally, we provided a closed-loop visual feedback on the screen by showing the decoded pitch level and 
interactive target cues for the note in the melody that T15 was singing (Video 13). 
  
Inbuilt continuous pitch synthesis for singing melodies 
In the previous intonation and pitch modulation tasks, we used a separate decoder to detect changes in the 
paralinguistic features and modulate the synthesized voice accordingly. Here we developed a unified brain-to-
voice decoder that is inherently capable of synthesizing pitch in the melody singing task. To achieve this, we 
trained the regular brain-to-voice decoder now using neural data and target speech waveforms with varying 
pitch levels from the three-pitch singing task. These target waveforms were generated by first using the same 
time-aligned target speech generation algorithm described above from the TTS of the phonemic content of the 
note, and then adjusting the pitch to match the instructed pitch levels (low, mid, or high) of the notes in the 
cued melody (Fig. 3j). 
 
Output-null and output-potent analysis of neural activity 
  
To study the underlying neural dynamics of speech production, we decomposed the neural activity into two 
orthogonal output-null and output-potent components using methods adapted from25. To do this, we first 
adopted a simplified linear decoding approach. We fit a linear decoder 𝑦 = 𝑊𝑥, where 𝑥 is a vector of neural 
features, 𝑦 is a 20-dimensional vector of speech features, and 𝑊 is the linear decoder, using ordinary least-
squares regression. We trained a separate linear decoder for each session to account for session-to-session 
nonstationarities. The linear decoder matrix 𝑊 was then decomposed into orthogonal null- and row-subspaces. 
The neural activity x was projected onto the null space (putative output-null dimensions of the neural activity) 
and row space (putative output-potent dimensions of the neural activity). The change in neural activity for null 
and row space projections for each trial was obtained by computing the Euclidean distance of the projections 
from the baseline activity (first 500 ms of the trial) and normalizing it between 0 and 1 (min and max across that 
whole trial) to get output-null and output-potent components, respectively. This normalization was used to 
account for potential neural nonstationarities across a session and between datasets, since ultimately we were 
interested in the relative changes of these neural projections over the course of each sentence. 
  
Trial averaged output-null and output-potent neural activity components were obtained for all sentences of the 
same length between -700 ms to +1s from the onset of each word in a sentence (Fig. 4). This output-null and 
output-potent analysis was also performed on intonation modulation for questions and word emphasis tasks, 
and the output was compared with that of the regular cued attempted speech task.  
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Statistical testing 
  
We used a two-sided Wilcoxon rank-sum test to compare two groups of data. The p-values were corrected for 
multiple comparisons using Bonferroni correction where necessary. We used a non-parametric test because 
datasets being compared were of different size and normal distribution was not assumed because the actual 
underlying distribution was unknown. 
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Extended data figures: 
 

 
Extended Data Fig. 1: Microelectrode array placement. a. The estimated resting state language network 
from Human Connectome Project data overlaid on T15’s brain anatomy. b. Intraoperative photograph showing 
the four microelectrode arrays placed on the of T15’s precentral gyrus. 
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Extended Data Fig. 2: Latencies of closed-loop brain-to-voice synthesis. Cumulative latencies across 
different stages in the voice synthesis and audio playback pipeline are shown. Voice samples were 
synthesized from raw neural activity measurements within 10 ms and the resulting audio was played out loud 
continuously to provide closed-loop feedback. Note the linear horizontal axis is split to expand the visual 
dynamic range. We focused our engineering primarily on reducing the brain-to-voice inference latency, which 
fundamentally bounds the speech synthesis latency. As a result, the largest remaining contribution to the 
latency occurred after voice synthesis decoding during the (comparably more mundane) step of audio playback 
through a sound driver. The cumulative latencies with the audio driver settings used for T15 closed-loop 
synthesis are shown in dark gray. Audio playback latencies were subsequently substantially lowered through 
software optimizations (light gray) and we predict that further reductions will be possible with additional 
computer engineering.  
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Extended Data Fig. 3: Additional BCI speech synthesis performance metrics. a. Mel-cepstral distortion 
(MCD) is computed across 25 Mel-frequency bands between the closed-loop synthesized speech and the 
target speech. The four subpanels show MCDs (mean ± s.d) between the synthesized and target speech for 
different speech tasks in evaluation research sessions. b. Human perception accuracy of BCI synthesized 
voice during mimed speech trials. 15 naïve listeners selected the transcript matching the synthesized speech 
from 6 possible sentences of the same length for each of the 58 evaluation sentences. Individual points on the 
violin plot show the average matching accuracy of each evaluation sentence (random small vertical jitter is 
added for visual clarity). The bold black line shows median accuracy (which was 100%) and the thin blue line 
shows the (bottom) 25th percentile.  
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Extended Data Fig. 4: Example closed-loop speech synthesis trial. Spike-band power and threshold 
crossing spikes from each electrode are shown for one example sentence. These neural features are binned 
and causally normalized and smoothed on a rolling basis before being decoded to synthesize speech. The 
mean spike-band power and threshold crossing activity for each individual array are also shown. Speech-
related modulation was observed on all arrays, with the highest modulation recorded in v6v and 55b. The 
synthesized speech is shown in the bottom-most row. The gray trace above it shows the participant's 
attempted (unintelligible) speech as recorded with a microphone.   
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Extended Data Fig. 5: Loudness decoding from neural activity. Confusion matrix showing offline 
accuracies for classifying the loudness of attempted speech from neural activity using a binary decoder while 
the participant was instructed to speak either quietly or in his normal volume.   
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Extended Data Fig. 6: Neural modulation during question intonation. Trial-averaged normalized spike-
band power (each row in a group is one electrode) during trials where the participant modulated his intonation 
to say the cued sentence as a question. Trials with the same cue sentence (n=16) were aligned using dynamic 
time warping and the mean activity across trials spoken as statements was subtracted to better show the 
increased neural activity around the intonation-modulation at the end of the sentence. The onset of the word 
that was pitch-modulated in closed-loop is indicated by the arrowhead at the bottom of each example.  
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Extended Data Fig. 7: Paralinguistic features encoding recorded from individual arrays. a. Trial-
averaged spike-band power (mean ± s.e.), averaged across all electrodes within each array, for words spoken 
as statements and as questions. At every time point, the spike-band power for statement words and question 
words were compared using the Wilcoxon rank-sum test. The blue line at the bottom indicates the time points 
where the spike-band power in statement words and question words were significantly different (p<0.001, 
n1=970, n2=184). b. Trial averaged spike-band power across each array for non-emphasized and emphasized 
words. The spike-band power was significantly different between non-emphasized words and emphasized 
words at time points shown in blue (p<0.001, n1=1269, n2=333). c. Trial-averaged spike-band power across 
each array for words without pitch modulation and words with pitch modulation (from the three-pitch melodies 
singing task). Words with low and high pitch targets are grouped together as the ‘pitch modulation’ category 
(we excluded medium pitch target words where the participant used his normal pitch). The spike-band power 
was significantly different between no pitch modulation and pitch modulation at time points shown in blue 
(p<0.001, n1=486, n2=916). 
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Extended Data Fig. 8: Closed-loop paralinguistic features modulation. a. An overview of the paralinguistic 
feature decoder and pitch modulation pipeline. An independent paralinguistic feature decoder ran in parallel to 
the regular brain-to-voice decoder. Its output causally modulated the pitch feature predicted by brain-to-voice, 
resulting in a pitch-modulated voice. b. An example trial of closed-loop intonation modulation for speaking a 
sentence as a question. A separate binary decoder identified the change in intonation and sent a trigger 
(downward arrow) to modulate the pitch feature output of the regular brain-to-voice decoder according to a 
predefined pitch profile for asking a question (low pitch to high pitch). Neural activity of an example trial with its 
synthesized voice output is shown along with the intonation decoder output, time of modulation trigger 
(downward arrow), originally predicted pitch feature and the modulated pitch feature used for voice synthesis. 
c. An example trial of closed-loop word emphasis where the word “YOU” from “What are YOU doing” was 
emphasized. To emphasize a word, we applied a predefined pitch profile (high pitch to low pitch) along with a 
20% increase in the loudness of the predicted speech samples. d. An example trial of closed-loop pitch 
modulation for singing a melody with three pitch levels. The three-pitch classifier output was used to 
continuously modulate the predicted pitch feature output from the brain-to-voice decoder.  
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Extended Data Fig. 9: Pearson correlation coefficients over the course of a sentence. Pearson 
correlation coefficient (r) of individual words in sentences of different lengths (mean ± s.d.). The correlation 
between target and synthesized speech remained consistent throughout the length of sentence, indicating that 
the quality of synthesized voice was consistent throughout the sentence. Note that there were fewer longer 
evaluation sentences. 
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Extended Data Fig. 10: Output-null and output-potent neural dynamics during speech production in 
individual arrays. a-d. Average approximated output-null (orange) and output-potent (blue) components of 
neural activity during attempted speech of cued sentences of different lengths. Here the neural components 
are computed for each array independently by training separate linear decoders (i.e., repeating the analyses of 
Fig. 4 for individual arrays independently). A subset of sentence lengths are shown in the interest of space. 
Note that the d6v array had much less speech-related modulation. Bar plots within each panel show a 
summary of all the data (including the not-shown sentence lengths) by taking the average null/potent activity 
ratios for words in the first-quarter, second-quarter, third-quarter, and fourth-quarter of each sentence (mean ± 
s.e.). e-h. Average output-null and output-potent activity during intonation modulation (question-asking or word 
emphasis) computed separately for each array. Output-null activity shows an increase during intonation 
modulated word in all arrays. Null/potent activity ratios are summarized in bar plots of intonation-modulated 
word (red) and the words preceding or following it (gray) (mean ± s.e.). The null/potent ratios of modulated 
words were significantly different from that of non-modulated words for the v6v, M1 and d6v arrays (Wilcoxon 
rank-sum, v6v: p= 10-11, M1: p= 10-16, 55b: p= 0.3, d6v: p= 10-26, n1=460, n2=922). 
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Supplementary media: 
 
Video 1: Dysarthric speech of the participant. This video shows the participant, who has severe dysarthria 
due to ALS, attempting to speak the sentences cued on the screen. The participant’s speech is unintelligible to 
naïve listeners. From post-implant day 27. 
Link to view online: https://ucdavis.box.com/s/p8197z804du92225ff0o06l263tjhxcb 
 
Video 2: Closed-loop voice synthesis during attempted vocalized speech. This video shows 13 
consecutive closed-loop trials of instantaneous voice synthesis as the participant attempted to speak cued 
sentences. The synthesized voice was played back continuously in real-time through a speaker. From post-
implant day 179. 
Link to view online: https://ucdavis.box.com/s/esulu85i7meojqnpphr65ioq9pui9xbq 
 
Video 3: Closed-loop voice synthesis with simultaneous brain-to-text decoding. This video shows 15 
consecutive closed-loop trials of instantaneous voice synthesis with simultaneous brain-to-text decoding that 
acted as closed-captioning when the participant attempted to speak cued sentences. From post-implant day 
110. 
Link to view online: https://ucdavis.box.com/s/mw6h5pzvvy6d9kzrt7ayzg1wiag7nxrv 
 
Video 4: Closed-loop voice synthesis during attempted mimed speech. This video shows 10 consecutive 
closed-loop trials of instantaneous voice synthesis with audio feedback as the participant “mimed” the cued 
sentences without vocalizing. The decoder was not trained on any mimed speech neural data. From post-
implant day 195. 
Link to view online: https://ucdavis.box.com/s/wpvbw5wogy5kvoalknomfgmf56kxnxmm 
 
Video 5: Closed-loop voice synthesis during self-initiated free responses. This video shows 9 closed-loop 
trials of instantaneous voice synthesis with audio feedback as the participant responded to open-ended 
questions or was asked to say whatever he wanted. We used this opportunity to ask the participant for his 
feedback on this brain-to-voice neuroprosthesis. A brain-to-text decoder was used simultaneously to help with 
understanding what the participant was saying. From post-implant days 172, 179, 186, 188, 193 and 195. 
Link to view online: https://ucdavis.box.com/s/bl24hf5kojnz5lm7b6rfq6ejxcm82f0o 
 
Video 6: Closed-loop own-voice synthesis during attempted speech. This video shows 9 consecutive 
closed-loop trials of instantaneous speech synthesis in a voice that sounds like the participant's own pre-ALS 
voice as he attempted to speak cued sentences. From post-implant day 286. 
Link to view online: https://ucdavis.box.com/s/0vbppq1bevhhblrdfs465fdwuvcn06nd 
 
Video 7: Closed-loop voice synthesis of pseudo-words. This video shows 5 consecutive trials of closed-
loop synthesis of made-up pseudo-words using the brain-to-voice decoder. The decoder was not trained on 
any pseudo-words. From post-implant day 179. 
Link to view online: https://ucdavis.box.com/s/4qhzyvr0i364xsvaej8zicaf5na4zr44 
  
Video 8: Closed-loop voice synthesis of interjections. This video shows 5 trials of closed-loop synthesis of 
interjections using the brain-to-voice decoder. The decoder was not trained on these words. From post-implant 
day 186. 
Link to view online: https://ucdavis.box.com/s/m234b9ilqpmmcv1yyrmqvchq1z8k3ttl 
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Video 9: Closed-loop voice synthesis for spelling words. This video shows 7 trials of closed-loop synthesis 
where the participant was spelling cued words one letter at a time using the brain-to-voice decoder. The 
decoder was not trained on this task. From post-implant day 186. 
Link to view online: https://ucdavis.box.com/s/cv8l2ef2t5u4i2km4lwi122z67mxckie 
 
Video 10: Closed-loop question intonation. This video shows 10 selected trials where the participant 
modulated his intonation to say a sentence as a question (indicated by ‘?’ in the cue) or as a statement by 
using an intonation decoder that modulated the brain-to-voice synthesis in closed-loop. From post-implant day 
286. 
Link to view online: https://ucdavis.box.com/s/67xnduo76355v93nzjuvez5utll5qung 
 
Video 11: Closed-loop word emphasis. This video shows 8 selected trials where certain (capitalized) words 
in the cued sentences were emphasized by the participant by using an emphasis decoder that modulated the 
brain-to-voice synthesis in closed-loop. From post-implant day 286. 
Link to view online: https://ucdavis.box.com/s/s7crvym9q9dro5mo9a6wmlltjuy0c88f 
 
Video 12: Singing three-pitch melodies in closed-loop. This video shows 3 consecutive trials where the 
participant sung short melodies with three pitch targets by using a pitch decoder that modulated the brain-to-
voice synthesis in closed-loop. At the start of each trial, an audio cue plays the target melody. The on-screen 
targets then turn from red to green to indicate that the participant should begin. The vertical bar on the left of 
the screen shows the instantaneous decoded pitch (low, mid, high). Additionally, interactive visual cues for 
each pitch target are shown on the screen. These visual feedback cues show the note in the melody that the 
participant is singing. From post-implant day 342. 
Link to view online: https://ucdavis.box.com/s/quj4z50adoibkfysgse21b6t5jzk7xmp 
 
Video 13: Singing three-pitch melodies in closed-loop using a unified brain-to-voice decoder. This video 
shows 3 trials where the participant sung short melodies with three pitch targets by using a single unified brain-
to-voice decoder that inherently synthesizes intended pitch in closed-loop. At the start of each trial, an audio 
cue plays the target melody. The vertical bar on the left of the screen shows the instantaneous decoded pitch 
(low, mid, high) for visual feedback only (i.e., this separately-decoded pitch, which is the same as in Video 12, 
is not used in the unified brain-to-voice model). Interactive visual cues show the note in the melody that the 
participant is singing, providing visual feedback. From post-implant day 342.  
Link to view online: https://ucdavis.box.com/s/qu5nwz8qg6hpxtqnvjqkxla1mhoic99c 
 
Video 14: Closed-loop voice synthesis in session 1. This video shows 3 closed-loop trials of instantaneous 
voice synthesis from the participant’s first day of neural recording (post-implant day 25). The brain-to-voice 
decoder was trained during this session using 190 sentence trials from a limited 50-word vocabulary recorded 
earlier on the same day. The second part of the video shows the same three trials reconstructed offline using 
an optimized brain-to-voice decoder (i.e., the algorithm used throughout the rest of this manuscript), which 
improved intelligibility. 
Link to view online: https://ucdavis.box.com/s/aw59fr2kddxkyagw7phmobg1d1hiwp9d 
 
Audio 1: Acausal speech synthesis by predicting discrete speech units. This audio shows 3 example 
trials of speech reconstructed offline using the approach of predicting discrete speech units acausally at the 
end of the sentence using CTC loss. From post-implant day 25. 
Link to view online: https://ucdavis.box.com/s/b0r5n00n0rss0fjdk4b1xuzf1gvy3mwn 
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