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Abstract 26 

Identifying general principles of brain function requires the study of structure-function 27 

relationships in a variety of species. Zebrafish have recently gained prominence as a model 28 

organism in neuroscience, yielding important insights into vertebrate brain function. Although 29 

methods have been developed for mapping neural activity in larval animals, we lack similar 30 

techniques for adult zebrafish that have the advantage of a fully developed neuroanatomy and 31 

larger behavioral repertoire. Here, we describe a pipeline built around open-source tools for 32 

whole-brain activity mapping in freely swimming adult zebrafish. Our pipeline combines recent 33 

advances in histology, microscopy, and machine learning to capture cfos activity across the 34 

entirety of the adult brain. Images captured using light-sheet microscopy are registered to the 35 

recently created adult zebrafish brain atlas (AZBA) for automated segmentation using advanced 36 

normalization tools (ANTs). We used our pipeline to measure brain activity after zebrafish were 37 

subject to the novel tank test. We found that cfos levels peaked 15 minutes following behavior 38 

and that several regions containing serotoninergic, dopaminergic, noradrenergic, and 39 

cholinergic neurons were active during exploration. Finally, we generated a novel tank test 40 

functional connectome. Functional network analysis revealed that several regions of the medial 41 

ventral telencephalon form a cohesive sub-network during exploration. We also found that the 42 

anterior portion of the parvocellular preoptic nucleus (PPa) serves as a key connection between 43 

the ventral telencephalon and many other parts of the brain. Taken together, our work enables 44 

whole-brain activity mapping in adult zebrafish for the first time while providing insight into 45 

neural basis for the novel tank test. 46 
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Introduction 56 

 A fundamental goal of neuroscience is to understand how patterns of brain activity give 57 

rise to behavior. Identifying general principles of brain function is facilitated by cross species 58 

comparisons. Over the past two decades, zebrafish have started contributing to our 59 

understanding of the brain, a trend that promises to continue due to their low cost, ease of 60 

genetic manipulation, and sophisticated behavioral repertoire (Gerlai, 2023; Kenney, 2020; 61 

Loring et al., 2020). Although several methods have been developed for whole-brain activity 62 

mapping in larval zebrafish (Ahrens et al., 2012; Portugues et al., 2014; Randlett et al., 2015; 63 

Shainer et al., 2023), equivalent approaches have yet to be developed for adult stage animals.  64 

Adult and larval zebrafish each have distinct advantages and disadvantages in the study 65 

of brain-behavior relationships. Whereas larval animals are amenable to high throughput work 66 

due to their small size and transparency, adults have the advantage of mature neuroanatomy 67 

and more extensive behavioral repertoire. This behavioral repertoire includes a wide variety of 68 

social behaviors (Gerlai, 2014; Jones and Norton, 2015; Kareklas et al., 2023), short and long-69 

term associative, non-associative, and spatial memories (Gerlai, 2020; Kenney, 2020), and 70 

different types of exploratory behaviors (Cachat et al., 2010; Rajput et al., 2022; Toms and 71 

Echevarria, 2014). Thus, to fully realize the utility of zebrafish as a model organism in 72 

neuroscience, methods for whole-brain mapping are also required for adult zebrafish. 73 

Whole-brain activity mapping can yield unexpected insights into brain function that may 74 

be lost using more targeted methods. Measuring neural activity across the entire brain also 75 

facilitates the use of powerful analytic tools, like network analysis, that captures complex 76 

interactions and improves predictions of brain-behavior relationships (Vetere et al., 2017; 77 

Wheeler et al., 2013). However, mapping whole-brain activity presents several technical 78 

challenges. One roadblock is that the brain of adult animals is not transparent, and thus requires 79 

the use of tissue clearing (Richardson et al., 2021). Imaging intact organs presents another 80 

technical hurdle due to the increased volume, a challenge met by the recent development of 81 

light-sheet microscopy (Hillman et al., 2019). Finally, whole-brain mapping results in large 82 

amounts of data that cannot be analyzed via traditional approaches like manual counting and 83 

segmentation. We tackled this challenge by combining advances in machine learning to 84 

automate cell detection (Tyson et al., 2021) and image registration (Gholipour et al., 2007) with 85 

the recently created digital adult zebrafish brain atlas (AZBA) (Kenney et al., 2021). Here, we 86 

describe how we have assembled these tools into a pipeline that enables whole-brain activity 87 

mapping in adult zebrafish for the first time. 88 
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Results 89 

Overview of strategy 90 

 We begin by giving an overview of our strategy for whole-brain activity mapping (figure 91 

1) before describing the results of each step in more detail. Following behavior, animals are 92 

euthanized and heads fixed in 4% paraformaldehyde overnight. Following careful dissection, 93 

brains are rendered optically transparent using iDISCO+ (Renier et al., 2016), which we 94 

modified to make it compatible with in situ hybridization chain reaction (HCR) for the detection of 95 

cfos mRNA (Choi et al., 2018; Kramer et al., 2018; Kumar et al., 2021). Imaging intact cleared 96 

brain tissue was done using light-sheet microscopy. To automatically identify cfos positive cells 97 

in the brain, we used the open source CellFinder package (Tyson et al., 2021) that is part of the 98 

BrainGlobe suite of Python-based software tools (Claudi et al., 2020). Finally, to automatically 99 

parcellate the brain into individual regions, we used advanced normalization tools (ANTs; Avants 100 

et al., 2009)) to register images to AZBA (Kenney et al., 2021). The final output of our pipeline is 101 

a list of cfos positive cell counts for each brain region and each animal. This enables the use of 102 

a variety of downstream analytic tools, one example that we demonstrate here is functional 103 

network analysis.  104 

 105 

Automated cell detection 106 

 After in situ HCR, tissue was cleared using iDISCO+, which allowed us to use light-sheet 107 

microscopy to capture whole-brain images in both the cfos (Figure 2A, top) and 108 

autofluorescence channels (Figure 2A, bottom). Detection of cfos positive cells was done using 109 

CellFinder (Tyson et al., 2021), an artificial neural net-based supervised machine learning 110 

algorithm. The first step in the cell detection process uses image filtering to detect cell shaped 111 

objects in the cfos image. We found parameters that captured cfos positive cells throughout the 112 

entire brain (described in the methods section), including areas with cells of different sizes and 113 

densities like the telencephalon (Figure 2B) and cerebellum (Figure 2C). Because the cell 114 

detection algorithm generated a lot of overlapping cells, we used a custom written Python script 115 

to remove cell candidates that were within 9 μm of one another. We then trained the CellFinder 116 

artificial neural network by manually labelling 10,597 cells and 7,303 non-cells across five 117 

brains. Non-cells were unambiguously identified by the presence of a signal in both the cfos and 118 

autofluorescence channels, suggesting the presence of background bleeding into the cfos 119 

channel. Cells only appeared in the cfos channel. The resulting network achieved over 95% 120 
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accuracy where the cells and non-cells were clearly differentiated across several different brain 121 

regions (Figure 2B & C).  122 

During imaging, we noticed that we had sufficient resolution to differentiate cytoplasmic 123 

and nuclear localization of cfos. Nuclear staining was characterized by the presence of puncta 124 

whereas cytoplasmic staining had a conspicuous dark spot surrounded by more diffuse 125 

fluorescence (Figure 2D). This localization of cfos is an indication of how long ago the cell was 126 

active as the mRNA is first transcribed in the nucleus before being shuttled to the cytoplasm for 127 

translation. To capture this distinct cellular localization, we created and trained an artificial 128 

neural net on 2,448 examples of nuclear puncta and 1,916 examples of cytoplasmic staining to 129 

differentiate these different patterns of cfos staining. This network also achieved greater than 130 

95% accuracy. 131 

 132 

Registration to the adult zebrafish brain atlas 133 

 The adult zebrafish brain contains over 200 regions, making manual segmentation 134 

implausible. To automate parcellation of brains into individual regions, we used ANTs (Avants et 135 

al., 2009) to register brains to AZBA using common autofluorescence images. Initially, we 136 

attempted to register the autofluorescence image in AZBA directly to individual autofluorescence 137 

images, but the results were inconsistent (data not shown). We had more success by first 138 

making an average template by registering together 10 autofluorescence images from present 139 

study (Figure 3A). The autofluorescence image from AZBA was then successfully registered to 140 

this template brain (Figure 3B). A handful of small anomalies arose from this registration 141 

process that we manually fixed using ITK-SNAP (Yushkevich et al., 2019). These arose in parts 142 

of the image that tend to be highly variable between individuals, such as where mounting occurs 143 

at the ventral hypothalamus and the dorsal sac that extends from the dorsal diencephalon. To 144 

segment individual brains, we used the transforms from registering the template 145 

autofluorescence brain to individual images (Figure 3C). Using inverse transformations from the 146 

registration process, we were also able to bring cfos images into the space of AZBA (Figure 3D). 147 

 148 

Time course for cfos expression 149 

 To effectively map whole-brain activity we need to know at what point after behavior cfos 150 

expression peaks. We exposed fish to a commonly used behavioral task, the novel tank test, 151 
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and euthanized animals 5, 15, 30, 60, or 120 minutes following the behavior (Figure 4). We also 152 

had two control groups: (1) fish that were euthanized immediately after removal from their 153 

housing racks, and (2) fish that were brought into the behavioral room and euthanized an hour 154 

later, mimicking the habituation to the behavioral room we use for fish that were exposed to the 155 

novel tank (i.e., time = 0). A sex × time ANOVA found a large effect of time (P < 0.001, η2 = 156 

0.54), a trend towards a small effect of sex (P = 0.07, η2 = 0.059), and no interaction (P = 0.46). 157 

Using a Dunnet’s t-test to compare all groups to the home tank (HT) control group, we found a 158 

large increase in cfos cell density at 15 minutes (P = 0.00067, d = 2.07) when cfos activity 159 

peaked (Figure 4A & B). 160 

 We also examined how the proportion of nuclear and cytoplasmic stained cells changed 161 

across time (Figure 4C). A cell type × time ANOVA found a large main effect of time (P < 0.001, 162 

η2 = 0.40) and no overall effect of cell type (P = 0.95). There was also a large interaction 163 

between cell type and time (P = 0.0082, η2 = 0.13). FDR corrected paired t-tests at each time 164 

point found that there were more nuclear than cytoplasmic stained cells at 5 minutes (P = 165 

0.048). This trend switched to more cytoplasmic than nuclear stained cells at 15 and 30 166 

minutes, although the differences at these time points were not statistically significant (P’s = 167 

0.16 & 0.22, respectively).  168 

 169 

Cell types active during the novel tank test 170 

 AZBA contains several stains that can be used to identify different cell types across brain 171 

regions such as 5-hydroxytryptamine (5-HT), tyrosine hydroxylase (TH), and choline 172 

acetyltransferase (ChAT) (Kenney et al., 2021). To determine if exposure to a novel tank results 173 

in the activation of regions containing these neuronal cell types, we brought home tank and 15-174 

minute cfos brains into the same space as AZBA, averaged the images together, and looked for 175 

overlap between the stains in AZBA and elevated cfos (Figure 5). For regions expressing 5-HT 176 

(Figure 5A), we saw an increase in cfos in the paraventricular organ (PVO), intermediate 177 

nucleus (IN), and caudal zone of the periventricular hypothalamus (Hc). For TH, which labels 178 

dopaminergic and noradrenergic cells, we saw overlap in the ventromedial thalamic nucleus 179 

(VM), the posterior part of the parvocellular preoptic nucleus (PPp), paracommissural nucleus 180 

(PCN), and Hc (Figure 5B). Finally, for ChAT, we saw overlap in the paraventricular gray zone of 181 

the optic tectum (PGZ; Figure 5C). Although we can see overlap at the regional level, our 182 

findings are only tentative because the cfos and antibody stained images come from separate 183 
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brains, so we cannot make claims at the cellular level. Nonetheless, this demonstrates how our 184 

approach can be used to generate hypotheses about roles different neurotransmitters may play 185 

in the underlying a behavior.  186 

 187 

Brain network analysis 188 

 We used functional network analysis to gain insight into the organization of brain activity 189 

that underlies exploration of a novel tank (Pinho et al., 2023; Vetere et al., 2017; Wheeler et al., 190 

2013). Using cfos counts from the 15-minute time point, we computed the correlated activity 191 

between all 143 gray matter regions across animals (Figure 6). To filter the correlation matrix to 192 

generate a network, we used efficiency cost optimization where the network density is chosen 193 

such that it balances the inclusion of edges to increase global and local efficiency against the 194 

putative cost of including additional connections (Fallani et al., 2017). We found a density of 195 

2.5% maximized the efficiency cost optimization quality function (Figure 7A). This resulted in a 196 

network with 256 edges and an average degree of 3.6, which is consistent with other functional 197 

brain networks generated using different imaging modalities (Fallani et al., 2017). This network 198 

also exhibited small world properties: its average shortest path length between nodes was 5.6, 199 

which is similar to the average path length of the average from equivalently dense random 200 

networks (3.9) with much higher clustering (0.38 versus 0.024). This yielded a small world 201 

coefficient greater than 1 (11.0) indicating the expected small world property (Humphries and 202 

Gurney, 2008). We also computed degree and eigenvector centrality for each node to uncover 203 

brain regions that may play outsized roles in the network (Figure 7C). This uncovered four 204 

regions that were in the top 10 for each of these centrality measures: the ventral nucleus of the 205 

ventral telencephalon (Vv), the dorsal zone of the ventral telencephalon (Vd-dd), the dorsal 206 

most zone of the ventral telencephalon (Vdd), and the anterior part of the parvocellular preoptic 207 

nucleus (PPa).  208 

Next, we used the Louvain algorithm (Blondel et al., 2008) to identify 10 distinct 209 

communities in the network (Figure 7B). Using the network and community structure, we 210 

categorized the roles that different nodes play in interconnecting different parts of the network 211 

(Guimerà and Amaral, 2005): provincial hubs (highly connected within its community, but not 212 

between communities), connector hubs (highly connected both within and between 213 

communities), peripheral nodes (low connectivity within and between communities), and non-214 

hub connectors (low connectivity within a community, but high between communities). 215 
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Interestingly, the PPa, which was identified as important based on centrality measures, arises 216 

as a connector hub. The PPa interconnects a module dominated by regions of the ventral 217 

telencephalon with other parts of the preoptic area (SC and PPp), thalamus (VM, CP, and ZL) 218 

and hypothalamus (ATN, Hv, Hc, and Hd). Thus, our network analysis points to the PPa and 219 

ventral telencephalon as likely playing an important role in regulating behavior during 220 

exploration of a novel tank.  221 

 222 
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Discussion 242 

In the present study, we introduce a pipeline for performing whole-brain activity mapping 243 

in adult zebrafish. Our pipeline combines several recently developed tools: a digital brain atlas 244 

for adult zebrafish (Kenney et al., 2021), registration using ANTs (Avants et al., 2011), machine 245 

learning tools for automated cell detection (Tyson et al., 2021), tissue clearing (Renier et al., 246 

2014), light-sheet microscopy (Reynaud et al., 2014), and in situ HCR (Choi et al., 2018) for 247 

detecting cfos. Importantly, all the computational tools are open access and free to use. 248 

Furthermore, to aid in the implementation of this pipeline, we have included a bench protocol 249 

(Supplemental file 1). The primary stumbling blocks for implementing this pipeline are likely to 250 

be access to a light-sheet microscope for whole-brain imaging and sufficient computational 251 

power for training and applying the registration and CellFinder machine learning algorithms. The 252 

former issue is partly mitigated by the increased availability of light-sheet microscopes, 253 

particularly in core facilities. Access to computational resources can be addressed by using 254 

tools like Google Colaboratory (Bisong, 2019) or high performance computing facilities available 255 

at many institutions.  256 

 257 

Cfos to capture whole-brain activity 258 

We captured neural activity using in situ HCR to detect cfos mRNA. We chose this 259 

approach for several reasons: (1) there are a paucity of antibodies for detecting cfos protein in 260 

zebrafish, none of which are known to work in whole-mount tissue-cleared samples, (2) in situ 261 

HCR probes are small (~150 bp), which easily penetrates chunks of intact tissue like the adult 262 

zebrafish brain, and (3) cfos is one of the most widely used markers of neural activity due to 263 

autoinhibition of transcription that results in low background, high signal-to-noise, and good 264 

temporal resolution (Chung, 2015; Lucibello et al., 1989). The findings in the present study 265 

further support these rationales: we saw even penetration of cfos staining throughout the brain 266 

(Figures 2 and 4B) and the levels of background cfos staining were low, with an approximately 267 

3.5 fold increase in cfos density 15 minutes following behavior compared to quiescent animals 268 

removed directly from their housing racks (Figure 4A). The increase in cfos was also tightly 269 

coupled to the behavior, peaking 15 minutes after exposure to the novel tank before decreasing 270 

to baseline levels by 60 minutes. Interestingly, if we look at only cells that have nuclear staining, 271 

we see the increase begins as soon as 5 minutes after behavior. The higher cfos density at 15 272 

minutes is likely due to the opportunity for increased transcription which would be expected to 273 
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create a brighter signal resulting a larger number of detectable cells. The time to maximal cfos 274 

we observed is faster than is seen in rodents, where it is often found to peak at 30 minutes post-275 

stimulation (Ding et al., 1994; Guzowski et al., 2001; Kovács, 1998; Zangenehpour and 276 

Chaudhuri, 2002). The reasons for this time difference between zebrafish and rodents is 277 

unclear. Nonetheless, it emphasizes the importance of performing time course analysis when 278 

establishing new methods for brain mapping in different species. 279 

Other markers of neural activity have gained traction in recent years in zebrafish, such 280 

as the phosphorylated forms of ribosomal protein S6 (pS6) and extracellular regulated kinase 281 

1/2 (pERK1/2). Our data suggests that cfos as an activity marker compares favorably to these 282 

options. For pS6, the signal-to-noise ratio is comparable to what we see for cfos, with an 283 

approximately 2-4 fold increase over baseline both in vivo in zebrafish (Butler et al., 2018; 284 

Parada et al., 2024; Scaia et al., 2022) and in vitro neuronal cell culture (Kenney et al., 2015). 285 

However, the time course of elevated pS6 is notably slower, taking an hour or more to peak 286 

(Kenney et al., 2015; Parada et al., 2024) compared to 15 minutes for cfos (Figure 4). In 287 

contrast, pERK1/2 activity peaks quickly, within 2-5 minutes, but the signal-to-noise ratio is ~0.5-288 

1, considerably lower than cfos (Randlett et al., 2015; Venincasa et al., 2021). This low signal-289 

to-noise ratio likely arises from higher background levels of pERK due to the wide variety of 290 

cellular processes that it regulates (Cargnello and Roux, 2011). Thus, the best choice of stain 291 

depends on the behavioral paradigm. Large, rapid responses to brief behavioral stimuli are best 292 

captured by pERK. However, more subtle responses may be missed due to the low signal-to-293 

noise ratio. S6 phosphorylation excels at capturing long lasting steady-state neural activity, as 294 

suggested by Maruska et al (2020) and would excel for behaviors lasting 30 minutes or more. 295 

Cfos represents a solid middle ground that is ideal for capturing neural activity from behaviors 296 

lasting on the order of 5-10 minutes, like the novel tank test used in the present study.  297 

  298 

Registration to AZBA to identify cell types 299 

We were able to successfully register our brains to AZBA using ANTs (Avants et al., 300 

2009). To do so, we first used ANTs to make an average template from our images by 301 

registering 9 brains to a single brain and averaging them together. The autofluorescence image 302 

in ABZA was then registered to this average template, yielding good results (Figure 3). We 303 

chose this method because we found that registering the autofluorescence image from AZBA to 304 

individual brains gave inconsistent results. This is likely because the autofluorescence image in 305 
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AZBA is also an average of many brains (Kenney et al., 2021). We chose ANTs because the 306 

non-linear symmetric diffeomorphic image registration it employs has been consistently found to 307 

be one of the best algorithms for 3D image registration (Klein et al., 2009; Murphy et al., 2011). 308 

The tool is also well documented and straightforward to use. Finally, ANTs has recently grown in 309 

popularity for image registration in larval zebrafish (Marquart et al., 2017; Shainer et al., 2023), 310 

which provided a starting point for identifying the best parameters for registration in our 311 

samples.  312 

Following registration to AZBA, we were able to identify potential neuronal cell types 313 

relevant to the novel tank test (Figure 5). We found that several regions containing high levels of 314 

5-HT were active during behavior, such as the PVO, IN, and Hc. Consistent with this, several 315 

papers have implicated 5-HT as contributing to exploration of a novel tank using 316 

pharmacological approaches (Beigloo et al., 2024; Maximino et al., 2013; Nowicki et al., 2014; 317 

Wong et al., 2010). Similarly, there was overlap in cfos activity in several regions that express 318 

tyrosine hydroxylase (VM, PPp, PCN, and Hc), implicating these populations of dopaminergic or 319 

noradrenergic neurons in novel tank behavior (Kacprzak et al., 2017; Nabinger et al., 2023). Of 320 

the cfos positive cells that overlap with TH, our network analysis suggests that the PPp may be 321 

of particular importance in regulating exploratory behavior, as it is one of the few non-hub 322 

connectors (Figure 7D). The PPp also has a direct connection to the PPa region, which ranks 323 

highly in both eigenvector and degree centrality (Figure 7B), and connects to the thalamic VM 324 

region, another area high in TH expression. This suggests that the PPp and VM may may act in 325 

concert to mediate the effects of the dopaminergic system on exploration. However, one 326 

important caveat to these interpretations is that we are comparing averaged cfos images to 327 

averaged neurotransmitter-related stains in AZBA, and thus we cannot definitively identify the 328 

specific cell types that are active. This would require co-staining of brains with both cfos and 329 

various neuronal cell-type markers to determine if the activity of these specific cell types 330 

changes.  331 

     332 

Novel tank functional connectome 333 

 Using our whole brain mapping data, we generated the first novel tank functional 334 

connectome. The novel tank test is one of the most widely used behavioral tests in adult 335 

zebrafish, often used to study exploratory and anxiety-related behaviors (Blaser et al., 2010; 336 

Kalueff et al., 2013; Luca and Gerlai, 2012; Rajput et al., 2022; Spence et al., 2006). Our 337 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.16.607981doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.16.607981
http://creativecommons.org/licenses/by/4.0/


12 
 

functional network analysis identifies several key regions that are engaged during exploration of 338 

a novel tank for the first time (Figures 6 and 7). In particular, the medial portion of the ventral 339 

telencephalon stands out, where several subregions (the Vv, Vd-dd, Vc, Vd-vd, and Vp) rank 340 

highly on at least one measure of centrality (Figure 7C). These regions are also highly 341 

interconnected, a fact that is clear from both the correlation matrix (Figure 6) and the community 342 

they form in the network (dark orange in Figure 7B). Based on molecular markers, these regions 343 

of the ventral telencephalon are thought to correspond to the mammalian subpallial amygdala 344 

(i.e., the central and medial amygdala) and basal ganglia (Mueller, 2022; Porter and Mueller, 345 

2020). In mammals, these brain regions have been found to be important for a wide range of 346 

behaviors, from defensive, anxiety-related, and social behaviors to motor control (Fadok et al., 347 

2018; Grillner and Robertson, 2016; Raam and Hong, 2021). Our findings that the ventral 348 

telencephalon appears to be engaged during the novel tank test is reasonable given that novelty 349 

and exploration would be expected to engage circuits involved in decision making, emotional 350 

regulation, and muscle coordination. 351 

 In examining how the regions of the ventral telencephalon interact with the rest of the 352 

brain, a few interesting trends emerge. Notably, the interaction of ventral telencephalic regions 353 

with many other communities is anti-correlated (i.e., the dark green, light orange, and grey 354 

communities in Figure 7B). This suggests the presence of strong inhibitory connections between 355 

the medial ventral telencephalon and other parts of the brain. Consistent with this interpretation, 356 

the ventral telencephalon has been found to contain a substantial number of inhibitory 357 

GABAergic neurons (Porter and Mueller, 2020). Our network analysis suggests that these 358 

inhibitory connections are most likely present between the ventral telencephalon and the Vmn 359 

(mesencephalic nucleus of the trigeminal nerve), End (entopeduncular nucleus in the lateral 360 

portion of the ventral telencephalon), and from the BSTm (bed nucleus of the stria terminalis, 361 

medial portion in the dorsal telencephalon) to R (rostrolateral nucleus in the thalamus). 362 

However, given that our findings are correlational in nature, techniques like tract tracing and 363 

direct manipulation would be needed to confirm these interactions.  364 

 Our network analysis also identified the PPa as a region of high importance. The PPa 365 

was high in both eigenvector and degree centrality (Figure 7C) and was one of the few 366 

connector hub nodes (Figure 7D). In examining its place in the network (Figure 7B), the PPa 367 

interconnects with several regions of the ventral telencephalon and, working in concert with the 368 

PPp, mediates their interactions with parts of the network that contain several thalamic and 369 

hypothalamic regions (magenta cluster in Figure 7B). To our knowledge, the correspondence 370 
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between the PPa and PPp in teleosts and tetrapods has not been determined. Based on the 371 

expression of neuropeptides like oxytocin and arginine vasopressin, parts of the PPp are 372 

thought to be equivalent to the supraoptic nucleus in mammals (Herget et al., 2014). In larval 373 

zebrafish, the preoptic area has recently been implicated in behaviors such as navigation, 374 

thermoregulation, and stress reactivity (Corradi et al., 2022; Palieri et al., 2024). However, the 375 

preoptic area in larval zebrafish cannot be differentiated into subregions like the PPa and PPp 376 

due to a lack of cytoarchitectural boundaries (Herget et al., 2014). This makes it unclear as to 377 

what specific regions in the adult would subsume the functions identified in larval animals. 378 

Future work should determine the role that these different subregions might play in different 379 

aspects of exploration and anxiety-like behavior in adult zebrafish.  380 

  381 

Summary 382 

The present study provides an open-source framework for performing whole-brain 383 

mapping in adult zebrafish. This work also yielded the first description of brain activity that 384 

underlies the novel tank test, suggesting the medial ventral telencephalon may play an 385 

important role in one of the most widely used behavioral tasks in adult zebrafish. Taken 386 

together, we anticipate that our pipeline will help generate insights into the principles of brain 387 

function by enhancing the utility of adult zebrafish as a model organism.  388 

 389 

 390 

 391 

  392 

 393 

 394 

 395 

 396 

 397 

 398 
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Methods 399 

Animals 400 

Zebrafish  401 

Subjects were 8–10 month old zebrafish of the TU strain from both sexes. Fish were 402 

bred and raised at Wayne State University and within two generations of animals obtained from 403 

the Zebrafish International Resource Center (ZIRC, catalog ID: ZL84) at the University of 404 

Oregon. Fish were maintained in high-density racks under standard conditions: water 405 

temperature of 27.5 ± 0.5 °C, salinity of 500 ± 10 µS, and pH of 7.4 ± 0.2. Lighting followed a 406 

14:10 light:dark cycle, with lights on at 8:00 AM. Fish were fed twice daily with dry feed (Gemma 407 

300, Skretting, Westbrook, ME, USA) in the morning and brine shrimp (Artemia salina, Brine 408 

Shrimp Direct, Ogden, UT, USA) in the afternoon. 409 

Sex determination was based on secondary sex characteristics such as shape, color, 410 

and the presence of pectoral fin tubercles (McMillan et al., 2015). Confirmation was conducted 411 

post-experimentation by euthanizing the animals and observing the presence or absence of 412 

eggs. All experimental procedures were conducted under the ethical approval of the Wayne 413 

State University Institutional Animal Care and Use Committee (Protocol ID: 21-02-3238). 414 

 415 

Behavioral stimuli and tissue collection 416 

The novel tank test was used as the behavioral stimulus, using tanks that were distinct 417 

from housing tanks. Behavioral tanks were open top five-sided (15 x 15 x 15 cm) and made 418 

from frosted acrylic (TAP Plastics, Stockton, CA, USA). Each tank was filled to a height of 12 cm 419 

with 2.5 L of fish facility water and housed within a white corrugated plastic enclosure to 420 

minimize external disturbances and diffuse light. 421 

One week before the novel tank test, animals were housed in 2-liter tanks divided into 422 

two chambers with transparent dividers. Male and female pairs were kept in each chamber to 423 

enable identification of individuals without social isolation or tagging. A day prior to the 424 

experiment, animals were acclimatized to the behavior room for one hour before being placed 425 

back on the housing racks. On the day of the experiment, animals were removed from the 426 

housing rack and allowed to acclimate in the behavioral room for one hour. After acclimation, 427 

animals were individually transferred to a novel tank and allowed to explore the tank for 6 428 

minutes. Water was replaced between animals. After six minutes, fish were removed and placed 429 
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back in their home tank for a designated periods of time (5, 15, 30, 60, or 120 minutes) prior to 430 

euthanization. A subset of animals was euthanized one hour after acclimation to the room 431 

(home tank control) and another set of animals were euthanized immediately after removal from 432 

the housing racks (rack control).  433 

Animals were euthanized by immersion in ice cold water for 5 minutes to induce 434 

anesthesia and then decapitated using a sharp blade. Heads were then washed in ice-cold 435 

phosphate buffered saline (PBS) for 60 seconds to allow for blood drainage, and then fixed in 436 

4% paraformaldehyde in PBS overnight. Brains were then dissected in ice cold PBS and subject 437 

to iDISCO+ and in situ HCR.  438 

 439 

Histology 440 

Tissue pre-treatment 441 

We adapted the iDISCO+ protocol (Renier et al., 2016) for zebrafish brain tissue 442 

staining. Following dissection, brain samples were washed for 30 minutes, three times, in PBS 443 

at room temperature. This was followed by dehydration using a methanol concentration gradient 444 

(20, 40, 60, 80, and 100%) for 30 min each. Samples were further washed in 100% methanol, 445 

chilled on ice, and then incubated in chilled 5% hydrogen peroxide in methanol overnight at 4°C. 446 

The next day, the samples were rehydrated through a reverse methanol series (80%, 60%, 447 

40%, 20%) at room temperature, followed by a 1 h PBS wash, two 1 h PBS-T washes (1x PBS, 448 

0.1% Tween 20), and a 3 h PBS-T wash. Samples were then equilibrated overnight in 5× SSCT 449 

(sodium chloride sodium citrate/0.1% Tween-20) buffer. 450 

 451 

In-situ HCR  452 

We modified the original HCR method described by Choi and colleagues (2018) and 453 

informed by the work of Kumar et al (2021). Samples were first prepared by acetylation in 454 

0.25% v/v acetic anhydride solution in ultrapure water for 30 min. Samples were then washed in 455 

ultrapure water three times for 5 mins and then equilibrated in probe hybridization buffer (30% 456 

formamide, 5x SSC, 9 mM citric acid, 0.1% Tween-20, 50 µg/mL heparin, 1x Denhardt’s 457 

solution, 10% Dextran sulfate) for 15 min at room temperature. Samples were then incubated in 458 

probe hybridization buffer for 1h at 37 °C with shaking and then incubated with 1 µM of cfos 459 

probes in hybridization buffer at 37 °C with shaking for 48-60 hours. Samples were then washed 460 
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with probe wash buffer (30% formamide, 5x SSCT, 9 mM citric acid, 50 µg/mL heparin) three 461 

times at 37°C, then twice with 5× SSCT for 1 h each with shaking. The tissue was then 462 

equilibrated in amplification buffer (5x SSC, 0.1% Tween-20, 10% Dextran sulfate) at room 463 

temperature for 1h with shaking. Alexa647 labeled hairpins (B1) were prepared by heating to 95 464 

°C for 90 seconds prior to cooling at room temperature in the dark. We diluted 7.5 pmol of each 465 

hairpin into 125 µL of amplification buffer for each sample. Samples were incubated for 48-60 466 

hours in the dark at room temperature. Finally, tissue was washed in 5× SSCT, 5 times for 467 

1 hour each before being washed overnight in 5X SSCT. 468 

 469 

Tissue clearing  470 

Samples were first dehydrated in a series of methanol-water mixtures (20%, 40%, 60%, 471 

80%, 100%) at room temperature for 1 hour each and then left in 100% methanol overnight. The 472 

next day, samples were incubated at room temperature in a mixture of 66% dichloromethane 473 

and 33% methanol for 3 hours followed by two 15-minute washes in dichloromethane. After 474 

removing the dichloromethane, samples were incubated and stored in dibenzyl ether at room 475 

temperature for at least 24 hours until imaging.  476 

 477 

Brain imaging and processing 478 

Cleared samples were imaged on a LaVision BioTec UltraMicroscope II (Miltenyi Biotec, 479 

Auburn, CA) using Imspector software for image acquisition. The microscope setup included a 480 

4.2 Megapixel sCMOS camera and a 2x objective lens with a dipping cap with spherical 481 

aberration correction. Images were taken at a magnification of 6.4x. Samples were mounted on 482 

the sample holder using an ultraviolet cured resin (NOA 61, Norland Products, Jamesburg, NJ) 483 

with a refractive index (1.56) that matched DBE. Imaging was conducted from the right laser 484 

sheet with a 4 μm step size using dynamic horizontal focus. Both 480 nm autofluorescence and 485 

640 nm signal channels were used. The imaging settings used were: 90% laser power, 200-ms 486 

exposure time, 50% sheet width, sheet numerical aperture of XX. Acquired images were 487 

stitched using Terastitcher (Bria and Iannello, 2012). 488 

 489 

Computational analysis 490 
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Automated cell detection 491 

For the automated detection and quantification of cfos positive cells, we utilized the 492 

Python-based software, CellFinder (Tyson et al., 2021). It comprises two steps: cell candidate 493 

detection and cell classification. The initial step of cell detection identifies cell-like objects in the 494 

image. We optimized parameters to capture as many cell-like objects in our images as possible. 495 

Running from the Linux terminal, we used the following command for cell detection:  496 

 497 

cellfinder -s path/to/folder/signal/channel/cfos -b 498 

/path/to/folder/background/channel/AF -o path/to/output1 -v 3.990 499 

0.943 0.943 --orientation sal --no-register --no-classification --500 

soma-diameter 5 --threshold 3 --ball-xy-size 2 --ball-z-size 7 --ball-501 

overlap-fraction 0.77 --log-sigma-size 0.1 --save-csv --batch-size 64 502 

--epochs 100 503 

 504 

After detecting cell candidates, a customized python script was used to remove cell 505 

candidates that were within 9 μm of one another.  506 

Napari was utilized for visualization and labelling. We manually annotated 10,597 cells 507 

and 7,303 non-cells across five brains for training the artificial neural network. Cellfinder was 508 

trained using the following command: 509 

Cellfinder_train -y path/to/brain1_labels.yml 510 

path/to/brain2_labels.yml path/to/brain3_labels.yml 511 

path/to/brain4_labels.yml path/to/brain5_labels.yml -o 512 

/trained_network --batch-size 64 --epochs 100 --no-save-checkpoints --513 

save-progress 514 

 515 

The trained network achieved 96.1% accuracy. Finally, the trained network was applied 516 

to all the experimental brains to classify the detected cell candidates into cells and non-cells. 517 

This was achieved by utilizing the following command: 518 

 519 
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cellfinder -s /path/to/folder/signal/channel/cfos/ -b 520 

/path/to/folder/background/channel/AF/ -o path/to/output -v 3.990 521 

0.943 0.943 --orientation sal --no-register --no-detection --soma-522 

diameter 5 --threshold 3 --ball-xy-size 2 --ball-z-size 7 --ball-523 

overlap-fraction 0.77 --log-sigma-size 0.1 --save-csv --trained-model 524 

/trained_network/model.h5 525 

 526 

Differentiating nuclear and cytoplasmic stained cells 527 

To differentiate between cytoplasmic and nuclear puncta, we developed a convolutional 528 

neural network (CNN) built in Python using the TensorFlow library. The architecture of the CNN 529 

is outlined in Table S2. Cfos Images from 10 brains were labelled, totaling 2,448 puncta and 530 

1,916 cytoplasmic labels. A training dataset was created by isolating 11ˣ11ˣ11 pixel cubes 531 

centered around each of the labeled cells. The dataset was split 80/20 into a training set and a 532 

testing set. The input data was augmented through a series of horizontal and vertical flips, 90° 533 

rotations, and 2-pixel horizontal translations to create a total training dataset of 13,706 puncta 534 

and 10,724 cytoplasmic labels. No data augmentation was performed on the testing set. The 535 

model was trained using an NVIDIA GeForce 3090 GPU for 500 epochs. The batch size was 32, 536 

the weight decay rate was 0.0005, and the learning rate was 0.0001. The model achieved an 537 

accuracy of 95.3% on the testing set.  538 

 539 

Brain registration 540 

Image registration was performed using ANTs (Avants et al., 2009). For the non-linear 541 

diffeomorphic step, four parameters were optimized: cross-correlation, gradient step, update 542 

field variance in voxel space, and total field variance in voxel space to achieve the best 543 

alignment. Using the optimized parameters, brain registration was carried out in two steps: first, 544 

an average brain template was created, and second, AZBA was registered to this average 545 

template. 546 

Before registration, images were downsampled to 4 μm isotropic using brainreg from the 547 

BrainGlobe suite of tools (Tyson et al., 2021): 548 

brainreg /path/to/raw/data /path/to/output/directory -v 3.990 0.943 549 

0.943 --orientation sal --atlas azba_zfish_4um –debug 550 
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 551 

The average template was generated using 10 autofluorescence images. Initially, nine 552 

autofluorescence images were individually brought into the space a single image (template) 553 

using the following ANTs command: 554 

antsRegistration --dimensionality 3 --float 1 -o 555 

[${AF_sample_1_for_avg_},${ AF_sample_1_for_avg-warped}] --556 

interpolation WelchWindowedSinc -u 0 -r 557 

[${AF_template.nii},${AF_sample_1.nii},1] -t Rigid[0.1] -m 558 

MI[${AF_template.nii},${AF_sample_1.nii},1,32,Regular,0.25] -c [200 x 559 

200 x 200 x 0,1e-8,10] --shrink-factors 12x8x4x2 --smoothing-sigmas 560 

4x3x2x1vox -t Affine[0.1] -m MI[${AF_template.nii},${AF_sample_1.nii}, 561 

1,32,Regular,0.25] -c [200 x 200 x 200 x 0,1e-8,10] --shrink-factors 562 

12x8x4x2 --smoothing-sigmas 4x3x2x1vox -t SyN[0.3,4,0] -m 563 

CC[${AF_template.nii},${AF_sample_1.nii}, 1,3] -c [200 x 200 x 200 x 564 

200, 1e-6,10] --shrink-factors 12x8x4x2 --smoothing-sigmas 4x3x2x1vox 565 

--verbose 1  566 

 567 

These outputs were then used to create an average image using the ‘AverageImages’ 568 

command in ANTs. Next, the autofluorescence image from AZBA was registered to the average 569 

template using the following command: 570 

 571 

antsRegistration --dimensionality 3 --float 1 -o 572 

[${AZBA_to_avg_temp_},${AZBA_to_avg_temp-warped}] --interpolation 573 

WelchWindowedSinc -u 0 -r 574 

[${avg_template.nii.gz},${AZBA/20180628_AF_average.nii.gz},1] -t 575 

Rigid[0.1] -m 576 

MI[${avg_template.nii.gz},${AZBA/20180628_AF_average.nii.gz},1,32,Regu577 

lar,0.25] -c [200 x 200 x 200 x 0,1e-8,10] --shrink-factors 12x8x4x2 -578 

-smoothing-sigmas 4x3x2x1vox -t Affine[0.1] -m 579 

MI[${avg_template.nii.gz},${AZBA/20180628_AF_average.nii.gz}, 580 

1,32,Regular,0.25] -c [200 x 200 x 200 x 0,1e-8,10] --shrink-factors 581 

12x8x4x2 --smoothing-sigmas 4x3x2x1vox -t SyN[0.3,4,0] -m 582 
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CC[${avg_template.nii.gz},${AZBA/20180628_AF_average.nii.gz}, 1,3] -c 583 

[200 x 200 x 200 x 200, 1e-6,10] --shrink-factors 12x8x4x2 --584 

smoothing-sigmas 4x3x2x1vox --verbose 1  585 

 586 

To bring the segmentation from AZBA into the space of the template we used the 587 

following command:  588 

antsApplyTransforms -d 3 --float -n NearestNeighbor -i /AZBA/2021-08-589 

22_AZBA_segmentation.nii.gz -r avg_template.nii.gz -o 590 

AZBA_to_avg_temp_transformed.nii.gz -t AZBA_to_avg_temp_1Warp.nii.gz -591 

t AZBA_to_avg_temp_0GenericAffine.mat 592 

 593 

Finally, the newly generated average template image was used as a reference image 594 

and was registered onto individual autofluorescence images: 595 

 596 

antsRegistration --dimensionality 3 --float 1 -o 597 

[${AF_sample_},${AF_sample-warped}] --interpolation WelchWindowedSinc 598 

-u 0 -r [${AF_sample.nii},${avg_template.nii.gz },1] -t Rigid[0.1] -m 599 

MI[${AF_sample.nii},${ avg_template.nii.gz },1,32,Regular,0.25] -c 600 

[200 x 200 x 200 x 0,1e-8,10] --shrink-factors 12x8x4x2 --smoothing-601 

sigmas 4x3x2x1vox -t Affine[0.1] -m MI[${AF_sample.nii},${ 602 

avg_template.nii.gz },1,32,Regular,0.25] -c [200 x 200 x 200 x 0,1e-603 

8,10] --shrink-factors 12x8x4x2 --smoothing-sigmas 4x3x2x1vox -t 604 

SyN[0.3,4,0] -m CC[${AF_sample.nii},${ avg_template.nii.gz },1,3] -c 605 

[200 x 200 x 200 x 200, 1e-6,10] --shrink-factors 12x8x4x2 --606 

smoothing-sigmas 4x3x2x1vox --verbose 1  607 

 608 

Finally, segmentation of individual brains was done using the same command as above but 609 

applied to the segmentation file as the floating image.  610 

 611 

Cfos cell counts and network analysis 612 
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R (version 4.1.1) was used for network analysis and to integrate the output from 613 

Cellfinder with the brain segmentation using the RNifti package (Clayden et al., 2021) to read in 614 

the segmentation files. The number cfos positive cells in each brain were summed excluding 615 

white matter and clear labelled regions yielding 143 gray matter regions for analysis.  616 

 Network analysis was performed using the igraph (version 2.0.2) package (Csardi and 617 

Nepusz, 2006). The network was generated by treating the correlation matrix (Figure 6) as an 618 

adjacency matrix. For thresholding we chose the network density using efficiency cost 619 

optimization to maximize the quality function (Fallani et al., 2017): 620 

𝐽𝐽 =  
𝐸𝐸𝑔𝑔 + 𝐸𝐸𝑙𝑙

𝜌𝜌
 621 

Where 𝐸𝐸𝑔𝑔 is the global efficiency, 𝐸𝐸𝑙𝑙 is the average of the local efficiency, and 𝜌𝜌 is the network 622 

density. For the calculations of global and local efficiency we used a binarized network based on 623 

the absolute value of the correlations. 624 

 For identifying node roles, we calculated the within module degree z-score: 625 

𝑧𝑧𝑖𝑖 =
𝜅𝜅𝑖𝑖 − 𝜅̅𝜅𝑠𝑠𝑖𝑖
𝜎𝜎𝜅𝜅𝑠𝑠𝑖𝑖

 626 

Where 𝜅𝜅𝑖𝑖 is the number of connections between node 𝑖𝑖 and other nodes in the same community 627 

and 𝜅̅𝜅𝑠𝑠𝑖𝑖 is the average of over all nodes in a community; 𝜎𝜎𝜅𝜅𝑠𝑠𝑖𝑖  is the standard deviation of the 628 

number of connections in a community. We also calculated the participation coefficient: 629 

𝑃𝑃𝑖𝑖 = 1 −��
𝐾𝐾𝑖𝑖𝑖𝑖
𝐾𝐾𝑖𝑖
�
2𝑁𝑁𝑐𝑐

𝑠𝑠=1

 630 

Where 𝑁𝑁𝑐𝑐 is the number of communities, 𝐾𝐾𝑖𝑖𝑖𝑖 is the number of connections between node 𝑖𝑖 and 631 

all other nodes in community s, and 𝐾𝐾𝑖𝑖 is the degree of node 𝑖𝑖. The definitions of the above 632 

equations and the boundaries for the different types of nodes were based on the Guimerà and 633 

Amaral (2005).    634 

 The small worldness parameter was calculated as described in (Humphries and Gurney, 635 

2008): 636 
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𝜎𝜎 =

𝐿𝐿𝑔𝑔
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐶𝐶𝑔𝑔

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 637 

Where 𝐿𝐿𝑔𝑔 is the average shortest path length between all nodes of the network, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the 638 

average shortest path length between all nodes in an equivalent random network, 𝐶𝐶𝑔𝑔 is the 639 

clustering coefficient of the network, and 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the clustering coefficient of an equivalent 640 

random network. For random network parameters, we took the average from 1,000 instances of 641 

Edros-Renyi random networks (Erdös and Rényi, 2011) with an equivalent number of nodes and 642 

edges as the target network.  643 

 644 

Statistical analysis 645 

 Statistical analysis was done using R. Data were analyzed using 2 × 2 ANOVAs as 646 

indicated in the results. For the overall time course cfos data, Dunnet’s t-tests were used to 647 

compare all other groups to the home tank control group (time = 0). False discovery rate (FDR; 648 

Benjamini and Hochberg, 1995) corrected paired t-tests at each time point were used for 649 

cytoplasmic versus nuclear data.  650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 
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Data and code availability 662 

Data and code are available at github: 663 

https://github.com/KenneyLab/RajputEtAl_2024_Whole_brain_mapping 664 
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Figures 970 

 971 

Figure 1. Overview of method for mapping neural activity in adult zebrafish. Following behavior, 972 

zebrafish are euthanized and brains carefully removed. In situ HCR is then used to label cfos. 973 

Brians are then cleared using iDISCO and imaged using light-sheet microscopy. Cells are then 974 

detected using CellFinder and brains are registered to AZBA. Regional cfos counts are then 975 

used to generate brain networks for further analysis.  976 
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 986 

Figure 2. Staining for cfos and identifying cfos positive cells. A) Adult zebrafish brain stained for 987 

cfos (top) and the corresponding autofluorescence image (bottom). Scale bar is 0.5 mm. B & C) 988 

Zoomed in sections of the brain corresponding to red squares in part A showing cfos staining 989 

and autofluorescence with labelling of cells (yellow arrows) and non-cells (pink triangles). Scale 990 

bars are 0.1 mm. D) Examples of cfos staining in the cell nucleus and cytoplasm. Scale bar is 991 

10 μm.  992 
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 996 

Figure 3. Registration of brain images to AZBA. A) Image of 10 brains registered and averaged. 997 

B) Segmentation from AZBA applied to average brain in A. C) Segmentation from AZBA applied 998 

to an individual zebrafish brain. D) An individual cfos brain brought into the space of AZBA. 999 

Scale bars are 0.5 mm.  1000 
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 1013 

Figure 4. Time course for cfos expression following exploration of a novel tank. A) Cfos cell 1014 

density across the entire brain in animals taken off the rack, that remained in their home tank 1015 

(HT), or a different times after exploration (5, 15, 30, 60, or 120 minutes). * - p < 0.05 compared 1016 

to the HT group. B) Cfos stained brains from each time point were brought into the space of 1017 

AZBA and averaged and displayed in the coronal plane. The numbers on the left of image are 1018 

the distance (in mm) from the anterior most portion of the brain. Scale bar is 0.5 mm. C) 1019 

Number of cfos cells classified as nuclear or cytoplasmic at each time point. * - p < 0.05 1020 

difference between the number of nuclear and cytoplasmic cells at that time point. Sample 1021 

sizers were as follows: rack: female: n=4, male: n=4; HT: female: n=5, male: n=4; 5 min: female: 1022 

n = 6, male: n = 5; 15 min: female: n=7, male: n=6; 30 min: female: n=5, male: n=5; 60 min: 1023 

female: n=4, male: n=4; 120 min: female: n=5, male: n=3.  1024 
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 1028 

Figure 5. Overlap between cfos expression and neurotransmitter-related stains in AZBA. 1029 

Regional overlap for A) 5-HT, B) TH, and C) ChAT. Scale bar is 0.5mm. Numbers on left are 1030 

distance from anterior most portion of the brain in mm.  1031 
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 1045 

Figure 6. Correlation matrix of cfos activity across the zebrafish brain. Entries in the matrix are 1046 

Pearson correlations between brain regions across animals euthanized 15 minutes after the 1047 

novel tank test. Regions are organized based on common ontological levels. Regional 1048 

abbreviations and ontological levels can be found in Table S1. 1049 
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 1053 

Figure 7. Analysis of the brain network active during the novel tank test. A) Efficiency-cost 1054 

optimization for different network densities. J: quality function (see methods), El: local efficiency, 1055 

EG: global efficiency. B) Network filtered at a density of 2.5%. Connections between nodes 1056 

represent suprathreshold correlations from Figure 6. Color of connections represents the 1057 

strength (darker means higher absolute value) and direction (red: positive, blue: negative) of the 1058 

correlation. Node colors correspond to communities. Regions not in the giant component are not 1059 

shown. C) Degree and eigenvector centrality for the top 10 brain regions. Gray bars are those 1060 

regions that are in the top 10 for both degree and eigenvector centrality. D) Identification of the 1061 
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role that each node plays in the network based on within module degree z-score and 1062 

participation coefficient. 1063 
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