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Abstract

Combining information from multiple GWASs for a disease and its risk factors has proven a powerful
approach for development of polygenic risk scores (PRSs). This may be particularly useful for type 2
diabetes (T2D), a highly polygenic and heterogeneous disease where the additional predictive value of a
PRS is unclear. Here, we use a meta-scoring approach to develop a metaPRS for T2D that incorporated
genome-wide associations from both European and non-European genetic ancestries and T2D risk factors.
We evaluated the performance of this metaPRS and benchmarked it against existing genome-wide PRS in
620,059 participants and 50,572 T2D cases amongst six diverse genetic ancestries from UK Biobank,
INTERVAL, the All of Us Research Program, and the Singapore Multi-Ethnic Cohort. We show that our
metaPRS was the most powerful PRS for predicting T2D in European population-based cohorts and had
comparable performance to the top ancestry-specific PRS, highlighting its transferability. In UK Biobank,
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we show the metaPRS had stronger predictive power for 10-year risk than all individual risk factors apart
from BMI and biomarkers of dysglycemia. The metaPRS modestly improved T2D risk stratification of
QDiabetes risk scores for 10-year risk prediction, particularly when prioritising individuals for blood tests
of dysglycemia. Overall, we present a highly predictive and transferrable PRS for T2D and demonstrate
that the potential for PRS to incrementally improve T2D risk prediction when incorporated into UK
guideline-recommended screening and risk prediction with a clinical risk score.

I ntroduction

The global prevalence of type 2 diabetes (T2D) has quadrupled in the last 30 years, affecting approximately
508 million adults globally in 2021, with prevalence expected to increase a further 60% by 2050%2. The risk
of developing T2D is determined by a complex interplay of lifestyle, environmental, and genetic factors.
Genetic studies have estimated the heritability of T2D to be 69% among adults 35-60 years of age* and
genome-wide association studies (GWAS) have thus far identified 611 genomic loci associated with T2D
risk®.

Polygenic risk scores (PRS) have emerged as a powerful tool for aggregating genomic associations into a
single score quantifying an individual’s genetic predisposition to disease®®. As they are based on the
germline genome, which is stable throughout the life-course, a key advantage of PRS in comparison to
other risk factors is early risk prediction. PRS can be used to predict disease risk at any point in a lifetime,
including decades before lifestyle and environmental risk factors for T2D manifest, and it has been widely
shown that risk prediction models can improve their ability to predict risk when PRS are integrated with
commonly used risk predictors®®. Numerous T2D PRS have been constructed to date, with 134 PRS from
40 studies published in the Polygenic Score (PGS) Catalog® at the time of writing.

Most PRS have been developed using a single source of GWAS summary statistics. However, substantial
improvements in prediction have been found by studies combining multiple sources of GWAS summary
statistics during PRS development'®™3. Improvements in PRS performance have been obtained both by
combining information from multiple GWASs or PRSs from the disease of interest® as well as by
incorporating information from GWASs for disease risk factors'* 2. Yet, PRS tailored specifically for T2D
using this strategy are currently lacking. It is unclear to what extent this will improve predictive
performance, transferability, and/or add value beyond existing clinical risk scores.

Here we utilize ancestrally diverse GWAS summary statistics from ten T2D GWAS and 34 T2D risk factor
GWASs to develop a PRS for T2D. This new T2D metaPRS is externally validated and compared with
previously published PRS in six diverse genetic ancestries from four large independent cohorts/biobanks:
UK Biobank*™, INTERVAL'"' the All of Us research program'®®, and the Singapore Multi-Ethnic
Cohort™. We further compare the T2D metaPRS and assess its added value to conventional risk factors and
QDiabetes risk prediction scores? for 10-year T2D risk prediction in UK Biobank.
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Results

Study participants

A schematic of the overall study design is shown in Figure 1. After filtering, in total we analysed data from
620,059 participants, including 50,572 T2D cases, across the four study cohorts (M ethods). Participants
were grouped into genetic clusters using principal components analysis and assigned ancestry labels 1KG-
EUR-like, 1IKG-AFR-like, 1KG-AMR-like, 1KG-SAS-like, and 1KG-EAS-like based on their similarity to
1000 genomes (1KG) reference panel superpopulations®® following the 2023 National Academies
guidelines on using population descriptors in genetics and genomics research®. Importantly, these labels
seek to recognize (1) that genetic ancestries are distinct from and frequently do not overlap with ethnic and
cultural identities, (2) these groupings are defined based on genetic similarity to arbitrary sets of labelled
reference individuals, and (3) these groupings, while useful tools for statistical analyses, are artificial and
do not represent the continuum of genetic diversity that exists in the human population®. Ethnic Malays in
the Singapore Multi-Ethnic Cohort were handled separately as their genetic ancestries are not well
represented by the 1KG reference panel, e.g. they do not cluster with either the 1KG EAS or SAS reference
populations®®. For consistency with the other genetic ancestry labels, here we assign the label
“Austronesian-like” (ASN-like) to reflect their ancestral population histories®. Characteristics of each
genetic ancestry and cohort are described in Table S1.

Derivation of a metaPRS for type 2 diabetes

To develop the metaPRS for type 2 diabetes we split unrelated 1KG-EUR-like UK Biobank participants
into a PRS training dataset (N=130,816; 10,304 T2D cases) and a PRS testing dataset (N=245,117; 17,096
T2D cases) (Methods, Figure 1). To train the metaPRS, we used our previously described meta-scoring
approach, which leverages information from PRS trained on multiple GWAS of the target disease and its
risk factors (Methods). Summary statistics were all obtained from contemporary GWASs that did not
include UK Biobank participants (Table S2). We trained 44 PRSs to predict T2D using LDpred2?® and
summary statistics from 10 GWAS of T2D across diverse ancestries and 34 GWAS for T2D risk factors
(Figure S1, Table S3). The 44 PRSs were subsequently combined into a single metaPRS using elasticnet
logistic regression®” with 10-fold cross validation in the training dataset (Figure S2, Table $4). The T2D
metaPRS comprising 1.3 million SNPs is made available on the PGS Catalog® with accession PGS004923.

The metaPRS improves risk prediction of type 2 diabetes compared with other PRSs

Using the independent 1KG-EUR-like UK Biobank testing dataset of 245,117 participants, we next
quantified the performance of the metaPRS for predicting prevalent T2D case status (11,080 cases) at
baseline and for predicting risk of incident T2D (6,016 cases from hospital episode statistics) over 10-years
of follow-up via survival analysis. All associations were adjusted for age, sex, and 20 genetic principal
components (PCs). Prevalent and incident T2D cases in UK Biobank were analysed separately due to
substantial differences in case identification®® (Methods). T2D is primarily diagnosed by primary care
physicians, however less than half the participants had linked primary care records available. Prevalent
cases were identified using a combination of self-reported diabetes diagnoses, prescription medication
usage, and retrospective hospital records, whereas identification of incident T2D cases relied solely on
hospital records. The metaPRS was associated with prevalent T2D with an odds ratio of 2.30 (95% CI:
2.26-2.35) per standard deviation of the metaPRS, with an area under the receiver-operating characteristic
curve (AUC) of 0.777 (95% CI: 0.772-0.781). The metaPRS was associated with incident T2D with a
hazard ratio (HR) of 1.80 (95% CI: 1.75-1.85) per standard deviation of the metaPRS, with a C-index of
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0.719 (95% CI: 0.713-0.725). When compared to other PRS (Table S6) that could be evaluated in 1KG-
EUR-like UK Biobank samples (i.e., did not include UK Biobank GWAS in PRS training), the metaPRS
had the strongest associations with both prevalent and incident T2D (Figure 2 A-B, Table S5).

To replicate the metaPRS and compare to contemporary PRS trained using 1KG-EUR-like UK Biobank
GWAS, we analysed data from a combined 1KG-EUR-like 147,962 participants (10,795 T2D cases) from
the INTERVAL cohort'®'” and the All of Us research program*®*% (Figure 2C-D, Table S5). In
INTERVAL, the metaPRS was associated with incident T2D with a HR of 2.07 (95% CI: 1.92-2.23) and a
C-index of 0.774 (95% CI: 0.758-0.790). In All of Us, the metaPRS was associated with prevalent T2D
with an odds ratio of 1.92 (95% CI: 1.88-1.97) and an AUC of 0.737 (95% CI: 0.732-0.742). Importantly,
when compared to other genome-wide PRSs (T able S6), the metaPRS was the strongest predictor of T2D
in both cohorts. In both cohorts the second strongest PRS was that of Mars et al. 2022 (PGS002771)%,
which had a HR of 2.03 (95% CI: 1.88-2.18) and C-index of 0.772 (95% CI: 0.756-0.788) in INTERVAL
and an odds ratio of 1.89 (95% CI: 1.85-1.94) and AUC of 0.735 (95% CI: 0.730-0.740) in All of Us.
Furthermore, the relative performance of PRSs was remarkably consistent across both INTERVAL and All
of Us (Figure 2C-D).

Transferability of the metaPRS across diverse genetic ancestries

To assess the transferability of the metaPRS and other T2D PRS beyond 1KG-EUR-like genetic ancestries,
we analysed data from a combined 96,164 participants (12,377 T2D cases) clustering into five genetic
ancestries (1KG-AFR-like, 1IKG-AMR-like, 1KG-SAS-like, 1KG-EAS-like, and ASN-like) from the UK
Biobank™®", the All of Us research program™ 2, and the Singapore Multi-Ethnic Cohort®. As expected,
we observed considerable heterogeneity in both absolute and relative strength of associations of PRS across
genetic ancestries and cohorts (Table S7). Notably, no single PRS emerged as the most predictive, even
within any given genetic ancestry group: the top PRS was both ancestry and cohort specific (Figure 3).
When comparing relative effect sizes across cohorts and genetic ancestries, four PRS emerged as the most
consistent top performers: our metaPRS, along with PRSs from Huerta-Chagoya et al. 2023 (weighted sum
of PGS003443, PGS003444, and PGS003445; Methods)®, Shim et al. 2023 (PGS003867)*, and Mars et
al. 2022 (PGS002771)% (Figure 4). As expected®3, the predictive power of all tested PRSs weakened as
genetic ancestries diverged from 1KG-EUR-like: from a maximum odds ratio of 2.30 (95% CI: 2.26-2.35)
for any PRS in 1KG-EUR-like samples (Table S6), to 1.91 (95% CI: 1.78-2.05) in 1KG-SAS-like, 1.90
(95% CI: 1.48-2.45) in 1KG-EAS-like, 1.77 (95% CI: 1.71-1.84) in 1IKG-AMR-like, 1.71 (95% CI: 1.43-
2.06) in ASN-like, and 1.37 (95% CI: 1.33-1.41) in 1KG-AFR-like (Table S7).

Comparison to conventional risk factors and QDiabetes risk scores

We compared the metaPRS to established T2D risk factors and QDiabetes, a 10-year T2D risk prediction
score recommended to clinicians by the UK’s National Institute for Health and Care Excellence (NICE)
guidelines for T2D prevention®** and National Health Service (NHS) health check best practice guidance®.
For this, we utilize a subset of 190,293 1KG-EUR-like UK Biobank participants (4,064 incident T2D cases)
with risk factor information required for QDiabetes risk score calculation (Figure 5A, Table S8). The C-
index for the metaPRS (C-index: 0.716; 95% CI: 0.708-0.723) was larger than for all individual risk
factors—including family history (C-index: 0.687; 95% CI: 0.679-0.695)— except for body mass index
(BMI) (C-index: 0.780; 95% CI: 0.773-0.787) and glycated haemoglobin (HbAlc) (C-index: 0.826; 95%
Cl: 0.819-0.833).
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When added to QDiabetes and its model variants (A, B and C), the metaPRS significantly improved 10-
year T2D risk prediction (Figure 5A, Table S8). The basic QDiabetes score (model A), which incorporates
all risk factors that do not require taking a blood sample (Methods), had a C-index of 0.808 (95% CI:
0.802-0.814). Adding the metaPRS to QDiabetes model A increased the C-index by 0.016 (95% CI: 0.013-
0.019; P-value: 6x107*%) yielding a total C-index of 0.824 (95% CI: 0.818-0.830). The QDiabetes score
incorporating fasting glucose (model B) had a C-index of 0.773 (95% CI: 0.765-0.781). The substantially
lower C-index for model B compared to model A of the QDiabetes score can be explained by the non-
fasting status of UK Biobank participants, which would lead to overestimation of risk for those who have
recently eaten (i.e. have higher glucose). Adding the metaPRS to QDiabetes model B led to a similar
increase in C-index compared to model A, with a AC-index of 0.019 (95% CI: 0.015-0.022; P-value:
6x107%"), yielding a total C-index of 0.790 (95% CI: 0.783-0.798). The QDiabetes score incorporating
HbAlc (model C) had the largest C-index of 0.866 (95% CI: 0.861-0.872). Addition of the metaPRS to this
model led to a smaller, but still statistically significant, increase in C-index (AC-index: 0.005; 95% CI:
0.004-0.006; P-value: 4x107"), yielding a total C-index of 0.871 (95% CI: 0.866-0.877).

When incorporating the metaPRS into absolute risk predictions made by QDiabetes risk scores (Figure 5B,
Supplementary Methods) we observed significant improvements in risk stratification at varying risk
thresholds (5%, 10%, 15%) for all QDiabetes model variants (Figure 5C, Table S9). Consistent with the
above, improvements in risk stratification were strongest when adding the metaPRS to QDiabetes score
model A. Using a threshold of 10% absolute risk, we observed a net 8.02% improvement (95% CI: 6.83%—
9.22%:; P-value: 1x107*) in classification of future incident T2D cases as high risk when adding the
metaPRS to QDiabetes score model A. Among the 4,064 incident T2D cases, the number of cases correctly
identified as high risk increased from 2,509 to 2,853 (an additional 11.52% of cases correctly identified as
high risk) with 142 cases (3.50%) incorrectly reclassified as low risk (net improvement of 8.02%). Net
improvements in risk stratification of cases using a 10% risk threshold were 6.92% (95% CI: 5.88%—
7.96%:; P-value: 6x10™*) for QDiabetes model B and 5.07% (95% CI: 4.13%—6.02%; P-value: 8x107%°) for
QDiabetes model C respectively. Modest, but statistically significant, increases in the number of non-cases
incorrectly classified as high risk were also observed at all tested risk thresholds (Figure 5C, Table S9).
With the 10% risk threshold, the net number of non-cases incorrectly classified as high-risk increased by
3.01% (95% Cl: 2.87%-3.14%:; P-value < 1x107*%°) when adding the metaPRS to QDiabetes model A, by
1.56% (95% Cl: 1.46%-1.66%; P-value: 3x107%"") when adding the metaPRS to QDiabetes model B, and
by 1.67% (95% CI: 1.59%—1.76%; P-value < 1x107*%) when adding the metaPRS to QDiabetes model C.

I mprovements in risk stratification and screening following UK guidelines

NICE guidelines for T2D prevention®* and NHS health check best practice guidance® recommend using
the basic QDiabetes score (model A) to prioritize potential high risk individuals (>5.6% risk) for fasting
glucose or HbAlc blood tests, which can then be used subsequently to enhance risk prediction via
QDiabetes models B and C?. When modifying the initial screening step by adding the metaPRS to
QDiabetes model A, the number of participants with >5.6% risk prioritized for blood tests increased from
75,153 (3,396 incident T2D cases) to 77,495 (3,517 incident T2D cases); yielding a similar number to
follow-up with blood tests per T2D event (number needed to screen; NNS) of 22.13 vs. 22.03 respectively
(ANNS: -0.10, 95% CI: —-0.33-0.14, P-value: 0.14). Net improvements in risk stratification of T2D cases
after applying QDiabetes model B or C to these prioritized individuals (Figure 5D) of 4%—-7% were
observed (Figure 5D, Table S10), similar to those observed above when systematically assessing all
participants with QDiabetes models B or C. Likewise, a modest but statistically significant increase in the
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net number of non-cases incorrectly classified as high risk of 1%-2% was also observed when
incorporating metaPRS into both stages of the guideline-recommended screening procedure (Figure 5D,
Table S10).

When applying the QDiabetes author-recommended? risk-threshold of 14.3% on QDiabetes model C after
using QDiabetes model A to prioritize individuals for HbAlc measurement (Table S10), a total of 10,745
participants (5.6%) were classified as high-risk, including 1,906 of the future T2D cases (46.9%). When
adding the metaPRS to both the initial screening with QDiabetes model A and subsequent risk prediction
with QDiabetes model C, these increased to a total of 13,564 participants (7.1%) and 2,167 cases (53.3%)
classified as high-risk, yielding a net absolute gain in case classification of 6.41% (95% ClI: 5.43%—7.38%;
P-value: 7x107%®) and a net increase in the number of non-cases incorrectly classified as high-risk of 1.37%
(95% Cl: 1.30%-1.45%; P-value: 2x1072’°). When considering the ratio of total interventions
recommended per T2D case among those at high-risk (number needed to treat; NNT), a modest but
statistically significant increase in NNT from 5.64 to 6.26 (ANNT: 0.62, 95% CI: 0.50-0.74, P-value:
2x107%*) was observed.

Discussion

In this study, we developed a PRS for T2D based on summary statistics from 44 GWASs for T2D and its
risk factors. We quantified the predictive power of the T2D metaPRS by performing the broadest
benchmarking of genome-wide T2D PRS to date (i.e. over half a million participants from six diverse
genetic ancestry groups from four population-based cohorts from the UK, US, and Singapore). In
benchmarking, we demonstrated that the T2D metaPRS is the most predictive PRS for T2D in European
genetic ancestries and had comparable performance to the top ancestry- and cohort- specific PRS,
highlighting its transferability. We further compared the T2D metaPRS to established non-genetic risk
factors and quantified its added value in combination with 10-year risk prediction scores in the context of
current UK guidelines®®,

Transferability is a major challenge for PRS development and a barrier to PRS utility and equitable clinical
application. Data availability has meant PRS have predominantly been developed using GWAS from
European genetic ancestries®®*’. This risks exacerbating health disparities as PRSs have shown reduced
predictive performance in individuals of non-European and complex genetic ancestries®**, whom make up
the majority of the global population. In our systematic benchmarking, the majority of PRSs showed
reduced performance relative to other PRSs when tested outside of the genetic ancestries used in their
development, with worsening performance as the continuum of genetic ancestries diverged. PRSs
developed with ancestry-specific data were also frequently out-performed by out-of-ancestry or multi-
ancestry PRSs, likely due to differences in available sample sizes. Surprisingly, we also found that within
non-1KG-EUR-like ancestries there was no single maximally predictive PRS in each ancestry group; top
PRSs were both ancestry- and cohort- specific. Moreover, the absolute magnitude of odds ratios weakened
as genetic ancestries diverged from 1KG-EUR-like, including for PRSs developed in non-1KG-EUR-like
samples using non-1KG-EUR-like GWAS summary statistics. Our results add to the body of evidence
highlighting the need for recruitment of participants from globally and genetically diverse ancestries as part
of large biobanks and cohorts, including and beyond high-income countries®®®. Our results further
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highlight that the relative performance of PRSs can also differ considerably between cohorts even within
the same genetic ancestry group, suggesting heterogeneity in environment or phenotype definition can also
impact transferability™.

When compared to established risk factors, the metaPRS had stronger predictive power for 10-year risk
than all conventional risk factors, apart from BMI and biomarkers of dysglycemia, and captured residual
risk not quantified by these risk factors. The metaPRS also provided a modest, but statistically significant,
improvement over the QDiabetes risk scores combining established risk factors for both risk discrimination
and risk stratification at varying risk thresholds. Improvements from the metaPRS were less than those
from measurement and addition of blood biomarkers of dysglycemia (e.g. HbAlc), consistent with a
previous study of T2D PRSs in a population cohort of British Pakistanis and Bangladeshis®.

However, blood tests for dysglycemia are not routinely conducted in asymptomatic individuals; UK
guidelines recommend using readily available lifestyle and medical history information to identify high-risk
individuals (i.e. using QDiabetes model A) for follow-up testing of fasting glucose or HbAlc blood tests
for T2D diagnosis®*®. QDiabetes models B and C have been developed with a view to enhancing risk
prediction in those found to not be diabetic after follow-up blood tests??. PRSs may one day be included
among readily available factors for risk screening as they require a one-off blood sample for genotyping
which may be obtained at any time during a person’s life, for example via initiatives like the UK Newborn
Genome Screening Programme*.

Here, we show that, if genotypes are already available, the metaPRS can enhance this initial screening step:
increasing from 84% to 87% the number of future diabetics revealed to be at elevated risk by blood testing,
with a similar NNS of ~22. The metaPRS also improved subsequent risk prediction, increasing the number
of T2D cases classified as high-risk by 6.4% when used alongside HbAlc with QDiabetes model C, with a
modest increase in the NNT by 0.62 from 5.64 to 6.26.

Our study has limitations. Firstly, while we utilized multi-ancestry GWAS summary statistics whenever
available, a 1IKG-EUR-like cohort was used for model training. As large and diverse training sets with T2D
outcomes become available, future studies can utilize highly diverse cohorts for PRS training alongside
genetically diverse GWAS, thus resulting in more powerful, and more portable, T2D PRS. The UK
Biobank samples used for analysis of established risk factors and QDiabetes risk scores differs from the
wider UK population in several key respects. UK Biobank participants are healthier than the general UK
population** and thus prevalence will be higher for dichtomous risk factors (e.g. medical history) and
distributions will be narrower and/or shifted for continuous risk factors (e.g. BMI). Participants were also
non-fasting, confounding risk predictions made by QDiabetes model B which relies on fasting glucose®.
We also expect risk stratification to substantially differ from the general population, as T2D is primarily
diagnosed by primary care physicians, whereas incident T2D case identification in UK Biobank relied on
hospital records since less than half the cohort has linked primary care records available. Likewise, the
high-risk sub-population assessed subsequent to screening did not exclude those with undiagnosed T2D as
diagnosis was not possible as this required fasting glucose or repeated HbAlc measures****. Our analyses
were also restricted to genetically homogenous 1KG-EUR-like participants self-reporting as White British
due to the much smaller sample sizes available for other ethnic and ancestry groups and expected
confounding from population stratification that would be introduced if assessing the metaPRS in the pooled
multi-ethnic and multi-ancestry sample**%. Despite these limitations, our analyses nevertheless indicate
that incorporating our T2D metaPRS could modestly improve screening and risk stratification. Further
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studies in cohorts representative of the general UK population eligible for screening would be needed to
accurately quantify the precise added benefits of PRS to screening and 10-year risk prediction.

Overall, our study presents a new T2D PRS that is highly predictive across diverse genetic ancestries and
cohorts, improves risk prediction when added to established risk factors in clinical risk scores for 10-year
risk prediction of T2D, and has the potential to improve screening practices in the UK.

Methods

UK Biobank cohort

UK Biobank is a cohort of approximately 500,000 individuals with deep phenotyping, imputed genotypes,
and electronic health record linkage**®. Participants were members of the general UK population between
40 to 69 years of age identified and recruited through primary care lists and who accepted an invitation to
attend one of 22 assessment centres across the UK between 2006 and 2010. Ethics were approved by the
North West Multi-centre Research Ethics Committee (MREC) in the UK, and this study was undertaken
under UK Biobank project #7439. Participants gave informed and broad consent for health-related research.

Recruitment included standardized questionnaires on socio-demographics, ethnicity, lifestyle factors, and
personal- and family- medical history. Physical measurements including height, weight, body fat
percentage, and systolic blood pressure were also taken at assessment, and blood samples taken for
genotyping and quantification of molecular phenotypes. Participants were also linked to national death and
cancer registries as well as hospital episode statistics. Participants were genotyped on UK BIiLEVE arrays
and UK Biobank Axiom arrays and imputed to the 1000 genomes, UK10K, and Haplotype Reference
Consortium panels® using human genome build GRCh37*. Participants were filtered to a set of unrelated
individuals (kinship < 0.0884) identified using kinship estimates** supplied by UK Biobank™.

For the primary analyses of metaPRS derivation and validation we restricted analyses to the “White
British” cohort defined by UK Biobank based on self-reported ethnicity (data-field #21000) combined with
genetic principal components™. For consistency with other study cohorts and following the 2023 National
Academies guidelines on using population descriptors in genetics and genomics research®® we assigned this
group the genetic ancestries label 1KG-EUR-like. For analyses assessing PRS transferability we similarly
defined genetically homogeneous populations using a combination of self-reported ethnicity and projection
of genetic principle components to 1KG reference ancestral superpopulations® using the KING software™.
Participants were grouped into 1KG-SAS-like if they self-reported ethnicity as Indian, Pakistani, or
Bangladeshi and their KING inferred ancestry was SAS with >95% probability. Participants were grouped
into 1KG-EAS-like if they self-reported ethnicity as Chinese and their KING inferred ancestry was EAS
with >95% probability. Participants were grouped into 1KG-AFR-like if they self-reported ethnicity as
African, Caribbean, Black or Black British, or any other Black background and their KING inferred
ancestry was AFR with >95% probability.

As linked primary care records are only available for less than half of UK Biobank participants, prevalent
T2D status at baseline was adjudicated from a combination of retrospective hospital episode records, self-
reported history of diabetes, and baseline medication using the Eastwood et al. algorithms®. Incident T2D
cases were also ascertained following the Eastwood et al. algorithms®, on the basis of ICD-10 diagnosis
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coding E11 in either the hospital inpatient or death registry data. Onset of incident T2D was determined as
the midpoint between the first hospital or death record with an ICD-10 E11 coding and the previous T2D-
free record (hospital record without ICD-10 E11 coding or baseline assessment)®. Follow-up for incident
T2D events was truncated on 1% February 2020 to preclude potential confounding from SARS-CoV2
infection, exposure, or behavioural or environmental changes from pandemic lockdowns on metaPRS
training.

INTERVAL cohort

INTERVAL is a cohort of approximately 50,000 participants nested within a randomized trial studying the
safety of varying frequency of blood donation'®*’. Participants were blood donors aged 18 years and older
(median 44 years of age; 49% women) recruited between June 2012 and June 2014 from 25 centres across
England. Blood samples were taken at assessment and participants consented for broad health-related
research'®’. Electronic health record linkage was available for a maximum of 11.1 years of follow-up
(median 10.4 years). In total there were 38,949 participants who were diabetes free at baseline assessment
with linked imputed genotypes and electronic health records. Ethics were approved for this study by the
National Research Ethics Service (11/EE/0538).

Participants were genotyped using the Affymetrix UK Biobank Axiom arrays and imputed to the UK10K
and 1000 Genomes panel using human genome build GRCh37. Notably, a key step in the genotype QC was
exclusion of samples of non-European ancestry on the basis of genotype PCs*. For consistency with the
other study cohorts and following the 2023 National Academies guidelines on using population descriptors
in genetics and genomics research® we assigned these participants the ancestry label 1KG-EUR-like.

Linked electronic health records from national hospital episode statistics were summarized into 301
endpoints from ICD-10 diagnosis codes using CALIBER rule-based phenotyping algorithms®®
(https://www.caliberresearch.org/portal) prior to being made available to analysts. The closest matching
CALIBER phenotype for T2D was for any diabetes; defined using ICD-10 codes E10-E14, G59.0, G63.2,
H28.0, H36.0, M14.2, N08.3, or 024.0-024.3. Participants with any diabetes history were excluded from
the analysis. Incident diabetes events were treated as incident T2D for the purposes of analyses, consistent
with the rarity of adult-onset type 1 diabetes. Onset of incident T2D was determined as the midpoint
between the first diabetes event and the previous diabetes-free record (hospital record without a diabetes
coding or baseline assessment).

All of Usresearch program cohort

All of Us is a longitudinal cohort aiming to recruit one million participants from across the USA™. In the
v7 data freeze, there were approximately 206,000 participants with deep phenotyping, whole genome
sequencing, and electronic health record linkage'®. Participants were members of the general USA
population >18 years of age with recruitment focused on groups underrepresented in biomedical research®.
Research was conducted on the All of Us Researcher Workbench under the guidelines defined by the All of
Us Ethical Conduct of Research Policy.

Details of whole genome sequencing and quality control are described extensively in the All of Us
Genomic Research Data Quality Report C2022Q4R9 at https://support.researchallofus.org/hc/en-
us/articles/4617899955092-All-of-Us-Genomic-Quality-Report. Computation of kinship relatedness and
clustering of participants by genetic similarity to 1KG AFR, EUR, and AMR reference ancestral
superpopulations® are also described in the report. Additional downstream quality control and filtering of
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sequence data is as described in Suzuki et al. 2024°. Briefly, related individuals were pruned to obtain a
maximal independent set (kinship score > 0.1), and variants were filtered to high-quality SNPs with MAF >
1% or MAC > 100 in at least one of the genetic ancestry clusters. SNPs with MAF < 1% that deviated from
Hardy-Weinberg equilibrium (P < 1x107°) were removed. Principal components used for correction of
population structure were calculated in each ancestry group separately using SNPs present in the 1000
Genomes project phase 3 release. Samples whose sex could not be imputed from genotypes were excluded.

Phenotyping of T2D case and control status was performed using the PheKB algorithm
(https://phekb.org/phenotype/type-2-diabetes-mellitus) as described in Suzuki et al. 2024°. T2D cases were
ascertained based on a combination of hospital diagnosis codes, prescription medication, and lab results
from blood tests occurring prior to baseline sample assessment. Participants were considered controls if
they had no history of any diabetes diagnoses, T2D medication, or abnormal glucose or HbAlc lab results.
Participants with T1D or uncertain diabetes status were excluded from analysis.

Singapore Multi-Ethnic Cohort

The Singapore Multi-Ethnic Cohort is a population-based cohort studying how genes and lifestyle influence
disease risk differently in participants from three major ethnic groups in Singapore: Chinese, Indian, and
Malay (https://blog.nus.edu.sg/sphs/population-studies/multi-ethnic-cohort-phase-1-mec1/)?. Participants
were recruited between 2004 and 2010 and invited for follow-up assessment between 2011-2016 (mean
follow-up 6.3 years). In total there were 2,871 participants with whole-genome sequencing who were
disease-free at baseline. Written consent was obtained from all participants, and this study was approved by
the National University of Singapore Institutional Review Board (reference codes: B-16-158 and N-18-
059).

Details of whole genome sequencing and quality control are as previously described by the Singapore
National Precision Medicine program strategy report*’. Briefly, sequencing was performed to an average
depth of 15x coverage. Reads were aligned with BWA-MEM v.0.7.17 and genotyped using GATK
v.4.0.6.0. Variants were filtered to retain VQSR-PASS and non-STAR allele variants. Samples with call
rate <95%, BAM cross-contamination rate >2%, BAM error rate > 1.5% were excluded. Genotypes with
depth coverage (DP) < 5, genotype quality (GQ) < 20, or allele balance (AB) > 0.8 were set to null, and
samples with abnormal ploidy excluded. Genetic variants were filtered to exclude those with robust, unified
test for Hardy-Weinberg equilibrium (RUTH) P-value <0.01, a variant call rate <90%, being monomorphic,
or having a minor allele count (MAC) <2 prior to phasing with Eagle version 2.4***_ After quality control,
the dataset included 39,967,216 genetic variants in 2,871 samples. Samples were clustered into three groups
by genetic similarity using the k-means algorithm on the first 15 genetic principal components calculated
on the verifyBamID2 variant panel (LKG phase 3)*.

Genetic ancestry labels for each cluster were based on the majority reported ethnicity in each group, here
labelled as 1KG-EAS-like, 1KG-SAS-like, and ASN-like for consistency with other the study cohorts and
following the 2023 National Academies guidelines on using population descriptors in genetics and
genomics research®*. The ASN-like label was used here to label the genetic cluster with Malay as the
majority reported ethnicity, as their genetic ancestries were not well represented by either the EAS or SAS
super populations in the 1KG reference panel”. The label Austronesian-like (ASN-like) was chosen to
reflect the ancestral population histories of this group®.
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Incident T2D (N=577) was ascertained as previously described® through a combination of linkage to
national healthcare records, self-reported medical history at follow-up assessment (either diagnosis from a
primary care physician or current diabetes medication usage), or with blood biomarker concentrations
indicative of diabetes following the American Diabetes Association criteria (fasting glucose > 7 mmol/L or
HbA1lc > 6.5% or random blood glucose >11 mmol/L)>".

MetaPRS training

The T2D metaPRS was trained in a subset of 130,816 UK Biobank participants in the “White British”
genetic ancestry cluster”®. MetaPRS training comprised two key steps (Figure 1): (1) training of 44
individual component risk factor and diverse-ancestry T2D PRSs using LDpred2?, and (2) training the
joint model combining the 44 T2D and related risk factor PRSs into a single meta-PRS using elasticnet
penalized logistic regression?’.

For step 1, we trained 44 PRSs for T2D using summary statistics from ten GWAS (or exome-wide
association studies) for T2D across diverse ancestries and 34 GWAS for T2D risk factors (Table S2). To
prevent overfitting, we selected contemporary GWAS that did not include UK Biobank participants®. The
selected GWAS also did not include samples from any of the cohorts used for metaPRS evaluation in this
study. Due to computational limitations of LDpred2, summary statistics were restricted to 1.6 million
autosomal bi-allelic SNPs that were present in either the HapMap3 reference panel® or in the two exome-
wide association studies among the 44 GWASs (Table S2). When mapping GWAS summary statistics and
HapMap3 variants to UK Biobank the UCSC Genome Browser™ liftOver tool was used to map positions
from GRCh36 or GRCh38 to GRCh37 as needed. SNPs were further filtered on a per-GWAS basis
following LDpred2 recommendations to remove variants with low power or divergent MAF between the
GWAS and UK Biobank. LDpred2 was used to reweight GWAS summary statistics based on the linkage-
disequilibrium of a subset of 11,074 UK Biobank participants enriched for T2D (1,202 cases) under
multiple possible parameterisations of trait polygenicity and heritability (i.e. LDpred2 infinitesimal, grid-
search, automatic, and lassosum models®). The remaining 120,464 UK Biobank participants (9,102 T2D
cases) were then used to determine the optimal LDpred2 parameter choice for T2D prediction by assessing
the AUC of logistic regression for combined prevalent and incident T2D case status (Figure S1, Table S3).
Logistic regressions were fit adjusting for age and sex, and candidate PRSs were adjusted for 20 genetic
PCs and standardized prior to model fitting.

Elasticnet penalized logistic regression®” was subsequently used in the 120,464 UK Biobank participants
not used for LDpred2 parameter tuning to estimate the relative contributions of the 44 PRSs to T2D
prediction and for deriving a single metaPRS (Figure S2, Table $4). The PC-adjusted 44 PRSs trained
above were standardised and used as predictor variables along with age and sex in the regression. A range
of elasticnet mixing parameters were tested (0, 0.1, 0.25, 0.5, 0.75, 0.9, and 1) with 10-fold cross-validation
performed for each mixing parameter to tune the respective lambda penalty. The optimal regression fit was
chosen as the combination of elasticnet mixing parameter and lambda penalty that had, across the 10-cross
validation folds, the greatest mean AUC combined prevalent and incident T2D case status.

Per-SNP weights for the T2D metaPRS were subsequently derived via a weighted sum; where for each
SNP i, the effect size was calculated as the sum of the per-SNP effect sizes y derived from LDpred2 for
each PRS j multiplied by the g coefficient estimated for the PRS in the optimal elasticnet regression:

11


https://doi.org/10.1101/2024.08.22.24312440
http://creativecommons.org/licenses/by/4.0/

43
44

45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64

65
66
67
68
69
70

71
72
73
74
75

76
7
78
79
80
81

medRxiv preprint doi: https://doi.org/10.1101/2024.08.22.24312440; this version posted August 26, 2024. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

SNP'TZD metaPRS — ﬁ}’ .

13 j=1 JiLj
The T2D metaPRS comprised 1,349,896 SNPs, which we make available along with the respective weights
through the PGS Catalog® with accession PGS004923.

Assessment of PRSs for prediction of T2D risk

For comparison with the metaPRS, genome-wide T2D PRS were obtained from PGS Catalog® and
separated into two groups: PRS whose training samples included UK Biobank participants of White
European ancestries, and PRS whose training samples had no overlap with any of the cohorts analysed in
this study (Table S6). PRS were calculated in each cohort as the weighted sum of their SNP weights
multiplied by the dosages of the respective effect alleles. The Huerta-Chagoya et al. 2023 PRS was
calculated as the weighted sum of their three component scores deposited as PGS003443, PGS003444, and
PGS003445 following their formula of 0.531117xPGS003443 + 0.5690198xPGS003444 +
0.1465538xPGS003445 after standardising each component score to have mean 0 and standard deviation 1
in the target cohort®™. Each PRS was subsequently adjusted for population structure by taking the residuals
of a linear regression of the PRS on a cohort-specific number of genotype PCs (20 PCs for UK Biobank,
INTERVAL, and All of Us).

Prediction of T2D case status at baseline assessment was assessed for each PRS separately using logistic
regression adjusting for age at baseline and sex as covariates. In UK Biobank, assessment centre was also
used as a covariate. PRS were standardized when fitting the regression so that reported odds ratios were per
standard deviation increase and comparable across PRS. 95% confidence intervals for area under the
receiver operating characteristic curves (AUC) were calculated using 2000 stratified bootstrap replicates™.
Logistic regression was also used to assess incident T2D prediction in the Singapore Multi-Ethnic Cohort,
as time to T2D onset (or T2D-free survival) was not available due to the heterogeneity of incident T2D
ascertainment.

Prediction of incident T2D risk was assessed using Cox proportional hazards regression using time-in-study
as the time scale and adjusting for age at baseline assessment and sex as covariates. Participants with T2D
at baseline assessment were excluded. In UK Biobank, assessment centre was also used as a covariate. PRS
were standardized when fitting the regression so that reported hazard ratios were per standard deviation
increase and comparable across PRS. 95% confidence intervals for the Harrell’s C-index were calculated
from the standard errors obtained using the infinitesimal jackknife method.

Comparison to established risk factors and risk scores

The metaPRS was compared to established T2D risk factors and 10-year T2D risk prediction scores
(QDiabetes) in a subset of 190,293 UK Biobank participants from the metaPRS testing set that were free of
T2D at baseline assessment and had quantified measurements for glucose and glycated haemoglobin
(HbAZXc).

We compared the metaPRS to the QDiabetes scores that are recommended for 10-year T2D risk prediction
in the UK by the National Institute for Health and Care Excellence (NICE) guidelines in the UK?. Three
QDiabetes scores are recommended depending on the availability of blood samples and fasting status:
QDiabetes model A, which incorporates all risk factors that do not require taking a blood sample;
QDiabetes model B, which additionally incorporates fasting glucose; and QDiabetes model C, which
additionally incorporates HbA1lc (but not fasting glucose). Risk factors used by all three QDiabetes models
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were participant age, sex, BMI, smoking status, Townsend deprivation index, family history of diabetes,
antihypertensive medication usage, history of CVD, systematic corticosteroid medication usage, lipid
lowering medication usage, history of gestational diabetes, history of polycystic ovary syndrome, history of
learning difficulties, history of bipolar or schizophrenia disorders, and usage of 2" generation atypical
antipsychotic medications. UK Biobank participants were non-fasting (median fasting time of 3 hours) so
non-fasting glucose was used for QDiabetes model B. Details on each risk factor definition in UK Biobank
are given in the Supplementary M ethods.

Prediction of 10-year risk of incident T2D for each risk factor, risk score, and the metaPRS, were assessed
using Cox proportional hazards regression using time-in-study as the time scale and adjusting for age, sex,
and assessment centre. The metaPRS was adjusted for 20 genotype PCs prior to model fitting. Prior to
model fitting BMI, glucose, and HbAlc were log transformed, and Townsend deprivation index was
inverse rank normalized. All predictor variables were standardized when fitting Cox proportional hazard
regressions. 95% confidence intervals for the Harrell’s C-index were calculated from the standard errors
obtained using the infinitesimal jackknife method™.

Incremental improvement of the metaPRS over QDiabetes 2018 model C was assessed using multivariable
Cox proportional hazards regression adjusting for age and sex. The change in C-index (AC-index) was
calculated as the difference in C-index over a Cox proportional hazards regression fit for QDiabetes 2018
model C adjusting for age and sex. A bootstrap procedure with 1,000 bootstraps was used to estimate the
standard error for the AC-index. Bootstrap resampling was performed using methods appropriate for right-
censored data®. The 95% confidence interval and two-sided P-value were computed from the bootstrap
standard error using the first order normal approximation method.

Incremental improvements in risk stratification when adding the metaPRS to QDiabetes risk scores
(Supplementary Methods) were assessed at varying risk thresholds using categorical net reclassification
improvement (NRI) analysis®®*°. Categorical NRI analysis was used to assess relative to QDiabetes risk
scores alone (1) the % of incident T2D cases correctly reclassified from low risk to high risk, and (2) the %
of non-cases correctly reclassified from high risk to low risk. Bootstrap resampling of the categorical NRI
analysis was performed using the nricens R package version 1.6, and 95% confidence intervals and P-
values were subsequently calculated from the bootstrap standard error using the first order normal
approximation method.

Data Availability

Data from UK Biobank are available for health-related research subject to approval from the UK Biobank
access committee. See https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access for further
details.

Data from the INTERVAL cohort can be requested by researchers for health-related research subject to
approval from the INTERVAL Data Access Committee. Data will be shared through an institutional data
sharing agreement. The INTERVAL Data Access Committee can be contacted via email at
helpdesk@intervalstudy.org.uk. Further information on the data access policy can be found
at http://www.donorhealth-btru.nihr.ac.uk/project/bioresource.

Data from All of Us are available to researchers via the All of Us research hub subject to institutional data
sharing agreement. For more information, see https://allofus.nih.gov/get-involved/opportunities-
researchers.
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Data from the Singapore Multi-Ethnic Cohort study can be requested by researchers for scientific purposes
through an application process at the listed website (https://blog.nus.edu.sg/sphs/data-and-samples-
request/). Data will be shared through an institutional data sharing agreement.

Code Availability

Code underlying this paper are available at https://github.com/sritchie73/T2D_metaPRS_paper. This
repository and specific release for this paper are permanently archived by Zenodo at
https://doi.org/10.5281/ zenodo.13362823.
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Figures

T2D metaPRS development

1. Train PRSs from 44 GWASs of T2D and related risk factors

1. Filter to 1.6 million SNPS
HapMap3 SNPs + 200K exome SNPs

2. Tune hyperparameters for four LDpred2 models

Fit GWAS summary statistics to LD patterns in UK Biobank
Four models of trait polygenicity and heritability: auto, inf, grid, lassosum

3. Select optimal LDpred2 model for T2D prediction
Lagistic regression on prevalent and incident cases combined

v

2. Train T2D metaPRS

1. Elasticnet regression to identify best combination and relative
contributions of each of the 44 T2D PRSs
trained on prevalent and incident cases combined
10-fold cross-validation
7 mixing parameters controlling balance of ridge vs. lasso penalties
2. Combine into metaPRS containing 1.3 million SNPs
Multiply out GWAS effect sizes by relative contributions estimated
by elasticnet and sum to get single metaPRS weight per SNP

T2D rrletaF:,RS testing

3. Validate, replicate, and compare to established PRSs

1. Test association with prevalent and incident T2D in UK Biobank
2. Replicate in 1TKG-EUR-like participants in independent cohorts
3. Compare to previously established genome-wide T2D PRSs

-

v

4. Assess transferability to diverse genetic ancestries

1. Test association with prevalent and incident T2D
2. Compare to previously published T2D PRSs

(Diverse genetic ancestries for assessing transferability
UK Biobank
1KG-AFR-like 1KG-EAS-like 1KG-SAS-like
N=6,871 N=1,432 N=6,992
766 prevalent T2D 76 prevalent T2D 1,253 prevalent T2D
395 incident T2D 37 incident T2D 513 incident T2D
Singapore Multi-Ethnic Cohort
* -

Comparison to dynamic risk factors

5. Compare to conventional risk factors and clinical scores

1. Compare to and combine with conventional risk factors
QDiabetes 2018 risk score and its component risk factors, e.g. BMI, HbA1c, etc.

Figure 1. Study Design

Acronyms are as follows. T2D: type 2 diabetes. PRS: polygenic risk scores. SNPs: single nucleotide
polymorphisms. LD: linkage disequilibrium. GWAS: genome-wide association study. 1KG-AFR-like,
1KG-AMR-like, 1KG-EAS-like, 1IKG-EUR-like, 1KG-SAS-like: genetic ancestry labels, defined based on
clustering of participants by genetic principal components and the similarity of those clusters to 1000
Genomes reference panel superpopulations following the 2023 National Academies guidelines on using
population descriptors in genetics and genomics research. ASN-like: genetic ancestry label chosen for
ethnic Malays in the Singapore Multi-Ethnic cohort to represent their ancestral population history due to

Data sources

UK Biobank
1KG-EUR-like genetic ancestries
first-degree relatives removed

N=375,993

T2D and risk factors

GWAS summary statistics for
(44 GWASSs; Table S2)

17,900 prevalent T2D
9,500 incident T2D

LDPred2 tuning dataset
N=11,074
829 prevalent T2D
373 incident T2D

Training dataset
N=130,816

6,820 prevalent T2D
3,484 incident T2D

MetaPRS training dataset
UK Biobank phase 1 samples
= N=119,742
5,991 prevalent T2D
3,111 incident T2D

Testing dataset
N=245177

11,080 prevalent T2D
6,016 incident T2D

1KG-EUR-like replication cohorts
INTERVAL ] { All of Us ]

N=38,941 N=109,021
726 incident T2D 10,069 prevalent T2D

N=870

1KG-EAS-like 1KG-SAS-like
N=1,149 N=852
205 incident T2D 194 incident T2D 187 incident T2D

All of Us

1KG-AFR-like 1KG-AMR-like
N=44,346 N=33,652

5,663 prevalent T2D 4,033 prevalent T2D

ASN-like ]

lack of representation of Austronesian populations in the 1000 Genomes reference panel.
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N=245,177; 11,080 prevalent T2D cases M=38,841; 726 T2D cases within 11 years of follow-up M=108,021; 10,068 prevalent T2D cases
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Figure 2: Comparison of T2D PRSs in people of 1IKG-EUR-like genetic ancestries across three
cohorts

Comparison of PRSs for association with prevalent T2D status or time-to-onset of incident T2D in
participants of 1KG-EUR-like genetic ancestries from the UK Biobank, INTERVAL, and All of Us
research program cohorts. In UK Biobank incident and prevalent T2D were analysed separately due to
significant difference in phenotype severity (Methods). Analyses of UK Biobank excluded participants
used for metaPRS training, and PRSs derived from GWAS performed in UK Biobank samples. The limited
number of PRSs tested in UK Biobank compared to INTERVAL and All of Us reflects that the majority of
contemporary PRSs utilize GWAS performed in UK Biobank samples for PRS development. PRSs were
adjusted for 20 genetic principal components in each cohort prior to model fitting. Diamonds show the odds
ratios or hazard ratios, and horizontal bars show the 95% confidence intervals. Odds ratios and hazard
ratios are per standard deviation increase in the respective PC-adjusted PRS. Logistic and Cox proportional
hazards regressions were adjusted for age, sex, and cohort specific covariates (e.g., assessment centre).
Odds ratios and hazard ratios are detailed in Table S6. Details on comparison PRSs are provided in Table

S5.
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Figure 3: Top six T2D PRSsin people of five diverse ancestry groups acr oss three cohorts

Comparison of PRSs for association with T2D status or time-to-onset in participants clustering into five
diverse ancestry groups from UK Biobank, the All of Us research program cohort, and the Singapore Multi-
Ethnic Cohort (MEC). Participants in each cohort were clustered by genetic similarity with the 1KG
reference population participants (Methods), except for ethnic Malays in the MEC study, as their genetic
ancestries are distinct from and not represented by 1KG reference populations, and here labelled as
Austronesian (ASN)-like to reflect their ancestral population histories. The top six PRS for each cohort and
genetic ancestry group are shown; in UK Biobank incident and prevalent T2D were analysed separately due
to significant difference in phenotype severity (Methods). Odds ratios and hazard ratios for all tested PRS
are detailed in Table S7. PRSs were adjusted for 20 genetic principal components in each cohort prior to
model fitting. Diamonds show the odds ratios or hazard ratios, and horizontal bars show the 95%
confidence intervals. Odds ratios and hazard ratios are per standard deviation increase in the respective PC-
adjusted PRS. Logistic and Cox proportional hazards regressions were adjusted for age, sex, and cohort
specific covariates (e.g., assessment centre). Logistic regression was used to assess associations with
incident T2D in MEC as time to T2D onset (or T2D-free survival) was not available due to the
heterogeneity of incident T2D ascertainment (Methods). Note the Shim et al. 2023 PRS (PGS003867)
could not be tested in UK Biobank as it was derived from multi-ancestry GWAS performed in UK Biobank

samples.
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Figure 4. Relativerank of PRSs by effect size within each genetic ancestry and cohort

Violin and dotplot comparing PRS effect size relative to the PRS with the maximum effect size within each
cohort and genetic ancestry group. A score of 1.0 is given to the PRS with the maximum odds ratio or
hazard ratio in each cohort and genetic ancestry combination. Other PRSs were then assigned a relative
prediction value based on the ratio of their log odds ratio (or log hazard ratio) to that of the strongest PRS.
PRS are ordered left to right based on their median score.
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Figure5: Comparison to established risk factorsand risk prediction scor es

A) Comparison of C-index over age and sex alone for the metaPRS to individual type 2 diabetes risk
factors and 10-year type 2 diabetes risk prediction scores (QDiabetes) in 190,293 1KG-EUR-like UK
Biobank participants (4,064 incident T2D cases). The QDiabetes 2018 model A score is calculated from all
listed individual risk factors, excepting glucose and HbAlc. The QDiabetes 2018 model B and model C
scores additionally incorporates fasting glucose and HbA1c respectively. Note UK Biobank participants are
non-fasting leading to likely underestimation of QDiabetes B. For comparison purposes the set of
participants analysed here was selected as the subset in which the QDiabetes 2018 model C risk score could
be computed (complete risk factor information, with height between 1.4 and 2.1 meters, weight < 180 kg,
and HbAlc between 15 and 48 mmol/mol). Diamonds show the C-index and horizontal bars show the 95%
confidence intervals. C-indices and individual risk factor hazard ratios are detailed in Table S8. B)
Probability of predicted 10-year risk exceeding X% when using QDiabetes risk with or without the T2D
metaPRS. Probabilities were calculated as one minus the empirical cumulative distributive function across
cases and non-cases combined. Probability curves extend to the right of each plot up, to 100% predicted
risk, but are truncated here for clarity. C) Categorical net reclassification improvement (NRI) when adding
the metaPRS to QDiabetes risk scores for stratifying participants into high and low risk groups at varying
risk thresholds. % correctly reclassified: net % of cases that were correctly reclassified from the low-risk
group into the high-risk group when adding the metaPRS (pink) or the net % of non-cases that were
correctly reclassified from the high-risk group into the low-risk group when adding the metaPRS (green).
95% confidence intervals were estimated via a bootstrap sampling procedure with 1000 bootstraps.
Diamonds show the net % correctly reclassified and horizontal bars show the 95% confidence intervals.
Categorical NRI details and numbers allocated to each risk category are provided in Table S9. D)
Categorical NRI when incorporating the metaPRS into a two-stage procedure in which QDiabetes model A
is used to prioritize potential high-risk individuals for fasting glucose or HobAlc blood tests for subsequent
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98 risk prediction and stratification. Categorical NRI details and numbers allocated to each risk category are
99  provided in Table S10.
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