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Abstract 33 

Combining information from multiple GWASs for a disease and its risk factors has proven a powerful 34 
approach for development of polygenic risk scores (PRSs). This may be particularly useful for type 2 35 
diabetes (T2D), a highly polygenic and heterogeneous disease where the additional predictive value of a 36 
PRS is unclear. Here, we use a meta-scoring approach to develop a metaPRS for T2D that incorporated 37 
genome-wide associations from both European and non-European genetic ancestries and T2D risk factors. 38 
We evaluated the performance of this metaPRS and benchmarked it against existing genome-wide PRS in 39 
620,059 participants and 50,572 T2D cases amongst six diverse genetic ancestries from UK Biobank, 40 
INTERVAL, the All of Us Research Program, and the Singapore Multi-Ethnic Cohort. We show that our 41 
metaPRS was the most powerful PRS for predicting T2D in European population-based cohorts and had 42 
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comparable performance to the top ancestry-specific PRS, highlighting its transferability. In UK Biobank, 43 
we show the metaPRS had stronger predictive power for 10-year risk than all individual risk factors apart 44 
from BMI and biomarkers of dysglycemia. The metaPRS modestly improved T2D risk stratification of 45 
QDiabetes risk scores for 10-year risk prediction, particularly when prioritising individuals for blood tests 46 
of dysglycemia. Overall, we present a highly predictive and transferrable PRS for T2D and demonstrate 47 
that the potential for PRS to incrementally improve T2D risk prediction when incorporated into UK 48 
guideline-recommended screening and risk prediction with a clinical risk score. 49 

Introduction 50 

The global prevalence of type 2 diabetes (T2D) has quadrupled in the last 30 years, affecting approximately 51 
508 million adults globally in 2021, with prevalence expected to increase a further 60% by 20501,2. The risk 52 
of developing T2D is determined by a complex interplay of lifestyle, environmental, and genetic factors3. 53 
Genetic studies have estimated the heritability of T2D to be 69% among adults 35–60 years of age4 and 54 
genome-wide association studies (GWAS) have thus far identified 611 genomic loci associated with T2D 55 
risk5. 56 

Polygenic risk scores (PRS) have emerged as a powerful tool for aggregating genomic associations into a 57 
single score quantifying an individual’s genetic predisposition to disease6–8. As they are based on the 58 
germline genome, which is stable throughout the life-course, a key advantage of PRS in comparison to 59 
other risk factors is early risk prediction. PRS can be used to predict disease risk at any point in a lifetime, 60 
including decades before lifestyle and environmental risk factors for T2D manifest, and it has been widely 61 
shown that risk prediction models can improve their ability to predict risk when PRS are integrated with 62 
commonly used risk predictors6–8. Numerous T2D PRS have been constructed to date, with 134 PRS from 63 
40 studies published in the Polygenic Score (PGS) Catalog9 at the time of writing. 64 

Most PRS have been developed using a single source of GWAS summary statistics. However, substantial 65 
improvements in prediction have been found by studies combining multiple sources of GWAS summary 66 
statistics during PRS development10–13. Improvements in PRS performance have been obtained both by 67 
combining information from multiple GWASs or PRSs from the disease of interest10 as well as by 68 
incorporating information from GWASs for disease risk factors11–13. Yet, PRS tailored specifically for T2D 69 
using this strategy are currently lacking. It is unclear to what extent this will improve predictive 70 
performance, transferability, and/or add value beyond existing clinical risk scores. 71 

Here we utilize ancestrally diverse GWAS summary statistics from ten T2D GWAS and 34 T2D risk factor 72 
GWASs to develop a PRS for T2D. This new T2D metaPRS is externally validated and compared with 73 
previously published PRS in six diverse genetic ancestries from four large independent cohorts/biobanks: 74 
UK Biobank14,15, INTERVAL16,17, the All of Us research program18–20, and the Singapore Multi-Ethnic 75 
Cohort21. We further compare the T2D metaPRS and assess its added value to conventional risk factors and 76 
QDiabetes risk prediction scores22 for 10-year T2D risk prediction in UK Biobank. 77 
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Results 78 

Study participants 79 
A schematic of the overall study design is shown in Figure 1. After filtering, in total we analysed data from 80 
620,059 participants, including 50,572 T2D cases, across the four study cohorts (Methods). Participants 81 
were grouped into genetic clusters using principal components analysis and assigned ancestry labels 1KG-82 
EUR-like, 1KG-AFR-like, 1KG-AMR-like, 1KG-SAS-like, and 1KG-EAS-like based on their similarity to 83 
1000 genomes (1KG) reference panel superpopulations23 following the 2023 National Academies 84 
guidelines on using population descriptors in genetics and genomics research24. Importantly, these labels 85 
seek to recognize (1) that genetic ancestries are distinct from and frequently do not overlap with ethnic and 86 
cultural identities, (2) these groupings are defined based on genetic similarity to arbitrary sets of labelled 87 
reference individuals, and (3) these groupings, while useful tools for statistical analyses, are artificial and 88 
do not represent the continuum of genetic diversity that exists in the human population24. Ethnic Malays in 89 
the Singapore Multi-Ethnic Cohort were handled separately as their genetic ancestries are not well 90 
represented by the 1KG reference panel, e.g. they do not cluster with either the 1KG EAS or SAS reference 91 
populations25. For consistency with the other genetic ancestry labels, here we assign the label 92 
“Austronesian-like” (ASN-like) to reflect their ancestral population histories25. Characteristics of each 93 
genetic ancestry and cohort are described in Table S1. 94 

Derivation of a metaPRS for type 2 diabetes 95 
To develop the metaPRS for type 2 diabetes we split unrelated 1KG-EUR-like UK Biobank participants 96 
into a PRS training dataset (N=130,816; 10,304 T2D cases) and a PRS testing dataset (N=245,117; 17,096 97 
T2D cases) (Methods, Figure 1). To train the metaPRS, we used our previously described meta-scoring 98 
approach11, which leverages information from PRS trained on multiple GWAS of the target disease and its 99 
risk factors (Methods). Summary statistics were all obtained from contemporary GWASs that did not 100 
include UK Biobank participants (Table S2). We trained 44 PRSs to predict T2D using LDpred226 and 101 
summary statistics from 10 GWAS of T2D across diverse ancestries and 34 GWAS for T2D risk factors 102 
(Figure S1, Table S3). The 44 PRSs were subsequently combined into a single metaPRS using elasticnet 103 
logistic regression27 with 10-fold cross validation in the training dataset (Figure S2, Table S4). The T2D 104 
metaPRS comprising 1.3 million SNPs is made available on the PGS Catalog9 with accession PGS004923.  105 

The metaPRS improves risk prediction of type 2 diabetes compared with other PRSs 106 
Using the independent 1KG-EUR-like UK Biobank testing dataset of 245,117 participants, we next 107 
quantified the performance of the metaPRS for predicting prevalent T2D case status (11,080 cases) at 108 
baseline and for predicting risk of incident T2D (6,016 cases from hospital episode statistics) over 10-years 109 
of follow-up via survival analysis. All associations were adjusted for age, sex, and 20 genetic principal 110 
components (PCs). Prevalent and incident T2D cases in UK Biobank were analysed separately due to 111 
substantial differences in case identification28 (Methods). T2D is primarily diagnosed by primary care 112 
physicians, however less than half the participants had linked primary care records available. Prevalent 113 
cases were identified using a combination of self-reported diabetes diagnoses, prescription medication 114 
usage, and retrospective hospital records, whereas identification of incident T2D cases relied solely on 115 
hospital records. The metaPRS was associated with prevalent T2D with an odds ratio of 2.30 (95% CI: 116 
2.26–2.35) per standard deviation of the metaPRS, with an area under the receiver-operating characteristic 117 
curve (AUC) of 0.777 (95% CI: 0.772–0.781). The metaPRS was associated with incident T2D with a 118 
hazard ratio (HR) of 1.80 (95% CI: 1.75–1.85) per standard deviation of the metaPRS, with a C-index of 119 
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0.719 (95% CI: 0.713–0.725). When compared to other PRS (Table S6) that could be evaluated in 1KG-120 
EUR-like UK Biobank samples (i.e., did not include UK Biobank GWAS in PRS training), the metaPRS 121 
had the strongest associations with both prevalent and incident T2D (Figure 2 A–B, Table S5).  122 

To replicate the metaPRS and compare to contemporary PRS trained using 1KG-EUR-like UK Biobank 123 
GWAS, we analysed data from a combined 1KG-EUR-like 147,962 participants (10,795 T2D cases) from 124 
the INTERVAL cohort16,17 and the All of Us research program18–20 (Figure 2C–D, Table S5). In 125 
INTERVAL, the metaPRS was associated with incident T2D with a HR of 2.07 (95% CI: 1.92–2.23) and a 126 
C-index of 0.774 (95% CI: 0.758–0.790). In All of Us, the metaPRS was associated with prevalent T2D 127 
with an odds ratio of 1.92 (95% CI: 1.88–1.97) and an AUC of 0.737 (95% CI: 0.732–0.742). Importantly, 128 
when compared to other genome-wide PRSs (Table S6), the metaPRS was the strongest predictor of T2D 129 
in both cohorts. In both cohorts the second strongest PRS was that of Mars et al. 2022 (PGS002771)29, 130 
which had a HR of 2.03 (95% CI: 1.88–2.18) and C-index of 0.772 (95% CI: 0.756–0.788) in INTERVAL 131 
and an odds ratio of 1.89 (95% CI: 1.85–1.94) and AUC of 0.735 (95% CI: 0.730–0.740) in All of Us. 132 
Furthermore, the relative performance of PRSs was remarkably consistent across both INTERVAL and All 133 
of Us (Figure 2C–D). 134 

Transferability of the metaPRS across diverse genetic ancestries 135 
To assess the transferability of the metaPRS and other T2D PRS beyond 1KG-EUR-like genetic ancestries, 136 
we analysed data from a combined 96,164 participants (12,377 T2D cases) clustering into five genetic 137 
ancestries (1KG-AFR-like, 1KG-AMR-like, 1KG-SAS-like, 1KG-EAS-like, and ASN-like) from the UK 138 
Biobank16,17, the All of Us research program18–20, and the Singapore Multi-Ethnic Cohort21. As expected, 139 
we observed considerable heterogeneity in both absolute and relative strength of associations of PRS across 140 
genetic ancestries and cohorts (Table S7). Notably, no single PRS emerged as the most predictive, even 141 
within any given genetic ancestry group: the top PRS was both ancestry and cohort specific (Figure 3). 142 
When comparing relative effect sizes across cohorts and genetic ancestries, four PRS emerged as the most 143 
consistent top performers: our metaPRS, along with PRSs from Huerta-Chagoya et al. 2023 (weighted sum 144 
of PGS003443, PGS003444, and PGS003445; Methods)30, Shim et al. 2023 (PGS003867)31, and Mars et 145 
al. 2022 (PGS002771)29 (Figure 4). As expected32,33, the predictive power of all tested PRSs weakened as 146 
genetic ancestries diverged from 1KG-EUR-like: from a maximum odds ratio of 2.30 (95% CI: 2.26–2.35) 147 
for any PRS in 1KG-EUR-like samples (Table S6), to 1.91 (95% CI: 1.78–2.05) in 1KG-SAS-like, 1.90 148 
(95% CI: 1.48–2.45) in 1KG-EAS-like, 1.77 (95% CI: 1.71–1.84) in 1KG-AMR-like, 1.71 (95% CI: 1.43–149 
2.06) in ASN-like, and 1.37 (95% CI: 1.33–1.41) in 1KG-AFR-like (Table S7). 150 

Comparison to conventional risk factors and QDiabetes risk scores 151 
We compared the metaPRS to established T2D risk factors and QDiabetes22, a 10-year T2D risk prediction 152 
score recommended to clinicians by the UK’s National Institute for Health and Care Excellence (NICE) 153 
guidelines for T2D prevention34 and National Health Service (NHS) health check best practice guidance35. 154 
For this, we utilize a subset of 190,293 1KG-EUR-like UK Biobank participants (4,064 incident T2D cases) 155 
with risk factor information required for QDiabetes risk score calculation (Figure 5A, Table S8). The C-156 
index for the metaPRS (C-index: 0.716; 95% CI: 0.708–0.723) was larger than for all individual risk 157 
factors—including family history (C-index: 0.687; 95% CI: 0.679–0.695)— except for body mass index 158 
(BMI) (C-index: 0.780; 95% CI: 0.773–0.787) and glycated haemoglobin (HbA1c) (C-index: 0.826; 95% 159 
CI: 0.819–0.833).  160 
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When added to QDiabetes and its model variants (A, B and C), the metaPRS significantly improved 10-161 
year T2D risk prediction (Figure 5A, Table S8). The basic QDiabetes score (model A), which incorporates 162 
all risk factors that do not require taking a blood sample (Methods), had a C-index of 0.808 (95% CI: 163 
0.802–0.814). Adding the metaPRS to QDiabetes model A increased the C-index by 0.016 (95% CI: 0.013–164 
0.019; P-value: 6×10−34) yielding a total C-index of 0.824 (95% CI: 0.818–0.830). The QDiabetes score 165 
incorporating fasting glucose (model B) had a C-index of 0.773 (95% CI: 0.765–0.781). The substantially 166 
lower C-index for model B compared to model A of the QDiabetes score can be explained by the non-167 
fasting status of UK Biobank participants, which would lead to overestimation of risk for those who have 168 
recently eaten (i.e. have higher glucose). Adding the metaPRS to QDiabetes model B led to a similar 169 
increase in C-index compared to model A, with a ΔC-index of 0.019 (95% CI: 0.015–0.022; P-value: 170 
6×10−27), yielding a total C-index of 0.790 (95% CI: 0.783–0.798). The QDiabetes score incorporating 171 
HbA1c (model C) had the largest C-index of 0.866 (95% CI: 0.861–0.872). Addition of the metaPRS to this 172 
model led to a smaller, but still statistically significant, increase in C-index (ΔC-index: 0.005; 95% CI: 173 
0.004–0.006; P-value: 4×10−15), yielding a total C-index of 0.871 (95% CI: 0.866–0.877). 174 

When incorporating the metaPRS into absolute risk predictions made by QDiabetes risk scores (Figure 5B, 175 
Supplementary Methods) we observed significant improvements in risk stratification at varying risk 176 
thresholds (5%, 10%, 15%) for all QDiabetes model variants (Figure 5C, Table S9). Consistent with the 177 
above, improvements in risk stratification were strongest when adding the metaPRS to QDiabetes score 178 
model A. Using a threshold of 10% absolute risk, we observed a net 8.02% improvement (95% CI: 6.83%–179 
9.22%; P-value: 1×10−39) in classification of future incident T2D cases as high risk when adding the 180 
metaPRS to QDiabetes score model A. Among the 4,064 incident T2D cases, the number of cases correctly 181 
identified as high risk increased from 2,509 to 2,853 (an additional 11.52% of cases correctly identified as 182 
high risk) with 142 cases (3.50%) incorrectly reclassified as low risk (net improvement of 8.02%). Net 183 
improvements in risk stratification of cases using a 10% risk threshold were 6.92% (95% CI: 5.88%–184 
7.96%; P-value: 6×10−39) for QDiabetes model B and 5.07% (95% CI: 4.13%–6.02%; P-value: 8×10−26) for 185 
QDiabetes model C respectively. Modest, but statistically significant, increases in the number of non-cases 186 
incorrectly classified as high risk were also observed at all tested risk thresholds (Figure 5C, Table S9). 187 
With the 10% risk threshold, the net number of non-cases incorrectly classified as high-risk increased by 188 
3.01% (95% CI: 2.87%–3.14%; P-value < 1×10−300) when adding the metaPRS to QDiabetes model A, by 189 
1.56% (95% CI: 1.46%–1.66%; P-value: 3×10−217) when adding the metaPRS to QDiabetes model B, and 190 
by 1.67% (95% CI: 1.59%–1.76%; P-value < 1×10−300) when adding the metaPRS to QDiabetes model C.  191 

Improvements in risk stratification and screening following UK guidelines 192 
NICE guidelines for T2D prevention34 and NHS health check best practice guidance35 recommend using 193 
the basic QDiabetes score (model A) to prioritize potential high risk individuals (>5.6% risk) for fasting 194 
glucose or HbA1c blood tests, which can then be used subsequently to enhance risk prediction via 195 
QDiabetes models B and C22. When modifying the initial screening step by adding the metaPRS to 196 
QDiabetes model A, the number of participants with >5.6% risk prioritized for blood tests increased from 197 
75,153 (3,396 incident T2D cases) to 77,495 (3,517 incident T2D cases); yielding a similar number to 198 
follow-up with blood tests per T2D event (number needed to screen; NNS) of 22.13 vs. 22.03 respectively 199 
(ΔNNS: −0.10, 95% CI: −0.33–0.14, P-value: 0.14). Net improvements in risk stratification of T2D cases 200 
after applying QDiabetes model B or C to these prioritized individuals (Figure 5D) of 4%–7% were 201 
observed (Figure 5D, Table S10), similar to those observed above when systematically assessing all 202 
participants with QDiabetes models B or C. Likewise, a modest but statistically significant increase in the 203 
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net number of non-cases incorrectly classified as high risk of 1%–2% was also observed when 204 
incorporating metaPRS into both stages of the guideline-recommended screening procedure (Figure 5D, 205 
Table S10).  206 

When applying the QDiabetes author-recommended22 risk-threshold of 14.3% on QDiabetes model C after 207 
using QDiabetes model A to prioritize individuals for HbA1c measurement (Table S10), a total of 10,745 208 
participants (5.6%) were classified as high-risk, including 1,906 of the future T2D cases (46.9%). When 209 
adding the metaPRS to both the initial screening with QDiabetes model A and subsequent risk prediction 210 
with QDiabetes model C, these increased to a total of 13,564 participants (7.1%) and 2,167 cases (53.3%) 211 
classified as high-risk, yielding a net absolute gain in case classification of 6.41% (95% CI: 5.43%–7.38%; 212 
P-value: 7×10−38) and a net increase in the number of non-cases incorrectly classified as high-risk of 1.37% 213 
(95% CI: 1.30%–1.45%; P-value: 2×10−279). When considering the ratio of total interventions 214 
recommended per T2D case among those at high-risk (number needed to treat; NNT), a modest but 215 
statistically significant increase in NNT from 5.64 to 6.26 (ΔNNT: 0.62, 95% CI: 0.50–0.74, P-value: 216 
2×10−24) was observed. 217 

Discussion 218 

In this study, we developed a PRS for T2D based on summary statistics from 44 GWASs for T2D and its 219 
risk factors. We quantified the predictive power of the T2D metaPRS by performing the broadest 220 
benchmarking of genome-wide T2D PRS to date (i.e. over half a million participants from six diverse 221 
genetic ancestry groups from four population-based cohorts from the UK, US, and Singapore). In 222 
benchmarking, we demonstrated that the T2D metaPRS is the most predictive PRS for T2D in European 223 
genetic ancestries and had comparable performance to the top ancestry- and cohort- specific PRS, 224 
highlighting its transferability. We further compared the T2D metaPRS to established non-genetic risk 225 
factors and quantified its added value in combination with 10-year risk prediction scores in the context of 226 
current UK guidelines34,35. 227 

Transferability is a major challenge for PRS development and a barrier to PRS utility and equitable clinical 228 
application. Data availability has meant PRS have predominantly been developed using GWAS from 229 
European genetic ancestries36,37. This risks exacerbating health disparities as PRSs have shown reduced 230 
predictive performance in individuals of non-European and complex genetic ancestries32,33, whom make up 231 
the majority of the global population. In our systematic benchmarking, the majority of PRSs showed 232 
reduced performance relative to other PRSs when tested outside of the genetic ancestries used in their 233 
development, with worsening performance as the continuum of genetic ancestries diverged. PRSs 234 
developed with ancestry-specific data were also frequently out-performed by out-of-ancestry or multi-235 
ancestry PRSs, likely due to differences in available sample sizes. Surprisingly, we also found that within 236 
non-1KG-EUR-like ancestries there was no single maximally predictive PRS in each ancestry group; top 237 
PRSs were both ancestry- and cohort- specific. Moreover, the absolute magnitude of odds ratios weakened 238 
as genetic ancestries diverged from 1KG-EUR-like, including for PRSs developed in non-1KG-EUR-like 239 
samples using non-1KG-EUR-like GWAS summary statistics. Our results add to the body of evidence 240 
highlighting the need for recruitment of participants from globally and genetically diverse ancestries as part 241 
of large biobanks and cohorts, including and beyond high-income countries36,37. Our results further 242 
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highlight that the relative performance of PRSs can also differ considerably between cohorts even within 243 
the same genetic ancestry group, suggesting heterogeneity in environment or phenotype definition can also 244 
impact transferability38.  245 

When compared to established risk factors, the metaPRS had stronger predictive power for 10-year risk 246 
than all conventional risk factors, apart from BMI and biomarkers of dysglycemia, and captured residual 247 
risk not quantified by these risk factors. The metaPRS also provided a modest, but statistically significant, 248 
improvement over the QDiabetes risk scores combining established risk factors for both risk discrimination 249 
and risk stratification at varying risk thresholds. Improvements from the metaPRS were less than those 250 
from measurement and addition of blood biomarkers of dysglycemia (e.g. HbA1c), consistent with a 251 
previous study of T2D PRSs in a population cohort of British Pakistanis and Bangladeshis39. 252 

However, blood tests for dysglycemia are not routinely conducted in asymptomatic individuals; UK 253 
guidelines recommend using readily available lifestyle and medical history information to identify high-risk 254 
individuals (i.e. using QDiabetes model A) for follow-up testing of fasting glucose or HbA1c blood tests 255 
for T2D diagnosis34,35. QDiabetes models B and C have been developed with a view to enhancing risk 256 
prediction in those found to not be diabetic after follow-up blood tests22. PRSs may one day be included 257 
among readily available factors for risk screening as they require a one-off blood sample for genotyping 258 
which may be obtained at any time during a person’s life, for example via initiatives like the UK Newborn 259 
Genome Screening Programme40.  260 

Here, we show that, if genotypes are already available, the metaPRS can enhance this initial screening step: 261 
increasing from 84% to 87% the number of future diabetics revealed to be at elevated risk by blood testing, 262 
with a similar NNS of ~22. The metaPRS also improved subsequent risk prediction, increasing the number 263 
of T2D cases classified as high-risk by 6.4% when used alongside HbA1c with QDiabetes model C, with a 264 
modest increase in the NNT by 0.62 from 5.64 to 6.26.  265 

Our study has limitations. Firstly, while we utilized multi-ancestry GWAS summary statistics whenever 266 
available, a 1KG-EUR-like cohort was used for model training. As large and diverse training sets with T2D 267 
outcomes become available, future studies can utilize highly diverse cohorts for PRS training alongside 268 
genetically diverse GWAS, thus resulting in more powerful, and more portable, T2D PRS. The UK 269 
Biobank samples used for analysis of established risk factors and QDiabetes risk scores differs from the 270 
wider UK population in several key respects. UK Biobank participants are healthier than the general UK 271 
population14 and thus prevalence will be higher for dichtomous risk factors (e.g. medical history) and 272 
distributions will be narrower and/or shifted for continuous risk factors (e.g. BMI). Participants were also 273 
non-fasting, confounding risk predictions made by QDiabetes model B which relies on fasting glucose22. 274 
We also expect risk stratification to substantially differ from the general population, as T2D is primarily 275 
diagnosed by primary care physicians, whereas incident T2D case identification in UK Biobank relied on 276 
hospital records since less than half the cohort has linked primary care records available. Likewise, the 277 
high-risk sub-population assessed subsequent to screening did not exclude those with undiagnosed T2D as 278 
diagnosis was not possible as this required fasting glucose or repeated HbA1c measures34,35. Our analyses 279 
were also restricted to genetically homogenous 1KG-EUR-like participants self-reporting as White British 280 
due to the much smaller sample sizes available for other ethnic and ancestry groups and expected 281 
confounding from population stratification that would be introduced if assessing the metaPRS in the pooled 282 
multi-ethnic and multi-ancestry sample41,42. Despite these limitations, our analyses nevertheless indicate 283 
that incorporating our T2D metaPRS could modestly improve screening and risk stratification. Further 284 
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studies in cohorts representative of the general UK population eligible for screening would be needed to 285 
accurately quantify the precise added benefits of PRS to screening and 10-year risk prediction. 286 

Overall, our study presents a new T2D PRS that is highly predictive across diverse genetic ancestries and 287 
cohorts, improves risk prediction when added to established risk factors in clinical risk scores for 10-year 288 
risk prediction of T2D, and has the potential to improve screening practices in the UK.  289 

Methods 290 

UK Biobank cohort 291 
UK Biobank is a cohort of approximately 500,000 individuals with deep phenotyping, imputed genotypes, 292 
and electronic health record linkage14,15. Participants were members of the general UK population between 293 
40 to 69 years of age identified and recruited through primary care lists and who accepted an invitation to 294 
attend one of 22 assessment centres across the UK between 2006 and 2010. Ethics were approved by the 295 
North West Multi-centre Research Ethics Committee (MREC) in the UK, and this study was undertaken 296 
under UK Biobank project #7439. Participants gave informed and broad consent for health-related research. 297 

Recruitment included standardized questionnaires on socio-demographics, ethnicity, lifestyle factors, and 298 
personal- and family- medical history. Physical measurements including height, weight, body fat 299 
percentage, and systolic blood pressure were also taken at assessment, and blood samples taken for 300 
genotyping and quantification of molecular phenotypes. Participants were also linked to national death and 301 
cancer registries as well as hospital episode statistics. Participants were genotyped on UK BiLEVE arrays 302 
and UK Biobank Axiom arrays and imputed to the 1000 genomes, UK10K, and Haplotype Reference 303 
Consortium panels43 using human genome build GRCh3715. Participants were filtered to a set of unrelated 304 
individuals (kinship < 0.0884) identified using kinship estimates44 supplied by UK Biobank15. 305 

For the primary analyses of metaPRS derivation and validation we restricted analyses to the “White 306 
British” cohort defined by UK Biobank based on self-reported ethnicity (data-field #21000) combined with 307 
genetic principal components15. For consistency with other study cohorts and following the 2023 National 308 
Academies guidelines on using population descriptors in genetics and genomics research24 we assigned this 309 
group the genetic ancestries label 1KG-EUR-like. For analyses assessing PRS transferability we similarly 310 
defined genetically homogeneous populations using a combination of self-reported ethnicity and projection 311 
of genetic principle components to 1KG reference ancestral superpopulations23 using the KING software44. 312 
Participants were grouped into 1KG-SAS-like if they self-reported ethnicity as Indian, Pakistani, or 313 
Bangladeshi and their KING inferred ancestry was SAS with >95% probability. Participants were grouped 314 
into 1KG-EAS-like if they self-reported ethnicity as Chinese and their KING inferred ancestry was EAS 315 
with >95% probability. Participants were grouped into 1KG-AFR-like if they self-reported ethnicity as 316 
African, Caribbean, Black or Black British, or any other Black background and their KING inferred 317 
ancestry was AFR with >95% probability. 318 

As linked primary care records are only available for less than half of UK Biobank participants, prevalent 319 
T2D status at baseline was adjudicated from a combination of retrospective hospital episode records, self-320 
reported history of diabetes, and baseline medication using the Eastwood et al. algorithms28. Incident T2D 321 
cases were also ascertained following the Eastwood et al. algorithms28, on the basis of ICD-10 diagnosis 322 
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coding E11 in either the hospital inpatient or death registry data. Onset of incident T2D was determined as 323 
the midpoint between the first hospital or death record with an ICD-10 E11 coding and the previous T2D-324 
free record (hospital record without ICD-10 E11 coding or baseline assessment)28. Follow-up for incident 325 
T2D events was truncated on 1st February 2020 to preclude potential confounding from SARS-CoV2 326 
infection, exposure, or behavioural or environmental changes from pandemic lockdowns on metaPRS 327 
training. 328 

INTERVAL cohort 329 
INTERVAL is a cohort of approximately 50,000 participants nested within a randomized trial studying the 330 
safety of varying frequency of blood donation16,17. Participants were blood donors aged 18 years and older 331 
(median 44 years of age; 49% women) recruited between June 2012 and June 2014 from 25 centres across 332 
England. Blood samples were taken at assessment and participants consented for broad health-related 333 
research16,17. Electronic health record linkage was available for a maximum of 11.1 years of follow-up 334 
(median 10.4 years). In total there were 38,949 participants who were diabetes free at baseline assessment 335 
with linked imputed genotypes and electronic health records. Ethics were approved for this study by the 336 
National Research Ethics Service (11/EE/0538). 337 

Participants were genotyped using the Affymetrix UK Biobank Axiom arrays and imputed to the UK10K 338 
and 1000 Genomes panel using human genome build GRCh37. Notably, a key step in the genotype QC was 339 
exclusion of samples of non-European ancestry on the basis of genotype PCs45. For consistency with the 340 
other study cohorts and following the 2023 National Academies guidelines on using population descriptors 341 
in genetics and genomics research24 we assigned these participants the ancestry label 1KG-EUR-like. 342 

Linked electronic health records from national hospital episode statistics were summarized into 301 343 
endpoints from ICD-10 diagnosis codes using CALIBER rule-based phenotyping algorithms46 344 
(https://www.caliberresearch.org/portal) prior to being made available to analysts. The closest matching 345 
CALIBER phenotype for T2D was for any diabetes; defined using ICD-10 codes E10–E14, G59.0, G63.2, 346 
H28.0, H36.0, M14.2, N08.3, or O24.0–O24.3. Participants with any diabetes history were excluded from 347 
the analysis. Incident diabetes events were treated as incident T2D for the purposes of analyses, consistent 348 
with the rarity of adult-onset type 1 diabetes. Onset of incident T2D was determined as the midpoint 349 
between the first diabetes event and the previous diabetes-free record (hospital record without a diabetes 350 
coding or baseline assessment).  351 

All of Us research program cohort 352 
All of Us is a longitudinal cohort aiming to recruit one million participants from across the USA18. In the 353 
v7 data freeze, there were approximately 206,000 participants with deep phenotyping, whole genome 354 
sequencing, and electronic health record linkage19. Participants were members of the general USA 355 
population ≥18 years of age with recruitment focused on groups underrepresented in biomedical research20. 356 
Research was conducted on the All of Us Researcher Workbench under the guidelines defined by the All of 357 
Us Ethical Conduct of Research Policy. 358 

Details of whole genome sequencing and quality control are described extensively in the All of Us 359 
Genomic Research Data Quality Report C2022Q4R9 at https://support.researchallofus.org/hc/en-360 
us/articles/4617899955092-All-of-Us-Genomic-Quality-Report. Computation of kinship relatedness and 361 
clustering of participants by genetic similarity to 1KG AFR, EUR, and AMR reference ancestral 362 
superpopulations23 are also described in the report. Additional downstream quality control and filtering of 363 
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sequence data is as described in Suzuki et al. 20245. Briefly, related individuals were pruned to obtain a 364 
maximal independent set (kinship score > 0.1), and variants were filtered to high-quality SNPs with MAF > 365 
1% or MAC > 100 in at least one of the genetic ancestry clusters. SNPs with MAF < 1% that deviated from 366 
Hardy-Weinberg equilibrium (P < 1×10−6) were removed. Principal components used for correction of 367 
population structure were calculated in each ancestry group separately using SNPs present in the 1000 368 
Genomes project phase 3 release. Samples whose sex could not be imputed from genotypes were excluded. 369 

Phenotyping of T2D case and control status was performed using the PheKB algorithm 370 
(https://phekb.org/phenotype/type-2-diabetes-mellitus) as described in Suzuki et al. 20245. T2D cases were 371 
ascertained based on a combination of hospital diagnosis codes, prescription medication, and lab results 372 
from blood tests occurring prior to baseline sample assessment. Participants were considered controls if 373 
they had no history of any diabetes diagnoses, T2D medication, or abnormal glucose or HbA1c lab results. 374 
Participants with T1D or uncertain diabetes status were excluded from analysis.  375 

Singapore Multi-Ethnic Cohort 376 
The Singapore Multi-Ethnic Cohort is a population-based cohort studying how genes and lifestyle influence 377 
disease risk differently in participants from three major ethnic groups in Singapore: Chinese, Indian, and 378 
Malay (https://blog.nus.edu.sg/sphs/population-studies/multi-ethnic-cohort-phase-1-mec1/)21. Participants 379 
were recruited between 2004 and 2010 and invited for follow-up assessment between 2011–2016 (mean 380 
follow-up 6.3 years). In total there were 2,871 participants with whole-genome sequencing who were 381 
disease-free at baseline. Written consent was obtained from all participants, and this study was approved by 382 
the National University of Singapore Institutional Review Board (reference codes: B-16-158 and N-18-383 
059). 384 

Details of whole genome sequencing and quality control are as previously described by the Singapore 385 
National Precision Medicine program strategy report47. Briefly, sequencing was performed to an average 386 
depth of 15x coverage. Reads were aligned with BWA-MEM v.0.7.17 and genotyped using GATK 387 
v.4.0.6.0. Variants were filtered to retain VQSR-PASS and non-STAR allele variants. Samples with call 388 
rate <95%, BAM cross-contamination rate >2%, BAM error rate > 1.5% were excluded. Genotypes with 389 
depth coverage (DP) < 5, genotype quality (GQ) < 20, or allele balance (AB) > 0.8 were set to null, and 390 
samples with abnormal ploidy excluded. Genetic variants were filtered to exclude those with robust, unified 391 
test for Hardy-Weinberg equilibrium (RUTH) P-value <0.01, a variant call rate <90%, being monomorphic, 392 
or having a minor allele count (MAC) <2 prior to phasing with Eagle version 2.443,48. After quality control, 393 
the dataset included 39,967,216 genetic variants in 2,871 samples. Samples were clustered into three groups 394 
by genetic similarity using the k-means algorithm on the first 15 genetic principal components calculated 395 
on the verifyBamID2 variant panel (1KG phase 3)49.  396 

Genetic ancestry labels for each cluster were based on the majority reported ethnicity in each group, here 397 
labelled as 1KG-EAS-like, 1KG-SAS-like, and ASN-like for consistency with other the study cohorts and 398 
following the 2023 National Academies guidelines on using population descriptors in genetics and 399 
genomics research24. The ASN-like label was used here to label the genetic cluster with Malay as the 400 
majority reported ethnicity, as their genetic ancestries were not well represented by either the EAS or SAS 401 
super populations in the 1KG reference panel25. The label Austronesian-like (ASN-like) was chosen to 402 
reflect the ancestral population histories of this group25. 403 
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Incident T2D (N=577) was ascertained as previously described50 through a combination of linkage to 404 
national healthcare records, self-reported medical history at follow-up assessment (either diagnosis from a 405 
primary care physician or current diabetes medication usage), or with blood biomarker concentrations 406 
indicative of diabetes following the American Diabetes Association criteria (fasting glucose ≥ 7 mmol/L or 407 
HbA1c ≥ 6.5% or random blood glucose ≥11 mmol/L)51.  408 

MetaPRS training 409 
The T2D metaPRS was trained in a subset of 130,816 UK Biobank participants in the “White British” 410 
genetic ancestry cluster15. MetaPRS training comprised two key steps (Figure 1): (1) training of 44 411 
individual component risk factor and diverse-ancestry T2D PRSs using LDpred226, and (2) training the 412 
joint model combining the 44 T2D and related risk factor PRSs into a single meta-PRS using elasticnet 413 
penalized logistic regression27. 414 

For step 1, we trained 44 PRSs for T2D using summary statistics from ten GWAS (or exome-wide 415 
association studies) for T2D across diverse ancestries and 34 GWAS for T2D risk factors (Table S2). To 416 
prevent overfitting, we selected contemporary GWAS that did not include UK Biobank participants52. The 417 
selected GWAS also did not include samples from any of the cohorts used for metaPRS evaluation in this 418 
study. Due to computational limitations of LDpred2, summary statistics were restricted to 1.6 million 419 
autosomal bi-allelic SNPs that were present in either the HapMap3 reference panel53 or in the two exome-420 
wide association studies among the 44 GWASs (Table S2). When mapping GWAS summary statistics and 421 
HapMap3 variants to UK Biobank the UCSC Genome Browser54 liftOver tool was used to map positions 422 
from GRCh36 or GRCh38 to GRCh37 as needed. SNPs were further filtered on a per-GWAS basis 423 
following LDpred2 recommendations to remove variants with low power or divergent MAF between the 424 
GWAS and UK Biobank. LDpred2 was used to reweight GWAS summary statistics based on the linkage-425 
disequilibrium of a subset of 11,074 UK Biobank participants enriched for T2D (1,202 cases) under 426 
multiple possible parameterisations of trait polygenicity and heritability (i.e. LDpred2 infinitesimal, grid-427 
search, automatic, and lassosum models26). The remaining 120,464 UK Biobank participants (9,102 T2D 428 
cases) were then used to determine the optimal LDpred2 parameter choice for T2D prediction by assessing 429 
the AUC of logistic regression for combined prevalent and incident T2D case status (Figure S1, Table S3). 430 
Logistic regressions were fit adjusting for age and sex, and candidate PRSs were adjusted for 20 genetic 431 
PCs and standardized prior to model fitting. 432 

Elasticnet penalized logistic regression27 was subsequently used in the 120,464 UK Biobank participants 433 
not used for LDpred2 parameter tuning to estimate the relative contributions of the 44 PRSs to T2D 434 
prediction and for deriving a single metaPRS (Figure S2, Table S4). The PC-adjusted 44 PRSs trained 435 
above were standardised and used as predictor variables along with age and sex in the regression. A range 436 
of elasticnet mixing parameters were tested (0, 0.1, 0.25, 0.5, 0.75, 0.9, and 1) with 10-fold cross-validation 437 
performed for each mixing parameter to tune the respective lambda penalty. The optimal regression fit was 438 
chosen as the combination of elasticnet mixing parameter and lambda penalty that had, across the 10-cross 439 
validation folds, the greatest mean AUC combined prevalent and incident T2D case status. 440 

Per-SNP weights for the T2D metaPRS were subsequently derived via a weighted sum; where for each 441 
SNP i, the effect size was calculated as the sum of the per-SNP effect sizes γ derived from LDpred2 for 442 
each PRS j multiplied by the β coefficient estimated for the PRS in the optimal elasticnet regression: 443 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.08.22.24312440doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.22.24312440
http://creativecommons.org/licenses/by/4.0/


12 
 

����
��� ���	
�� �� �
��,


��


��

 

The T2D metaPRS comprised 1,349,896 SNPs, which we make available along with the respective weights 444 
through the PGS Catalog9 with accession PGS004923. 445 

Assessment of PRSs for prediction of T2D risk 446 
For comparison with the metaPRS, genome-wide T2D PRS were obtained from PGS Catalog9 and 447 
separated into two groups: PRS whose training samples included UK Biobank participants of White 448 
European ancestries, and PRS whose training samples had no overlap with any of the cohorts analysed in 449 
this study (Table S6). PRS were calculated in each cohort as the weighted sum of their SNP weights 450 
multiplied by the dosages of the respective effect alleles. The Huerta-Chagoya et al. 2023 PRS was 451 
calculated as the weighted sum of their three component scores deposited as PGS003443, PGS003444, and 452 
PGS003445 following their formula of 0.531117×PGS003443 + 0.5690198×PGS003444 + 453 
0.1465538×PGS003445 after standardising each component score to have mean 0 and standard deviation 1 454 
in the target cohort30. Each PRS was subsequently adjusted for population structure by taking the residuals 455 
of a linear regression of the PRS on a cohort-specific number of genotype PCs (20 PCs for UK Biobank, 456 
INTERVAL, and All of Us). 457 

Prediction of T2D case status at baseline assessment was assessed for each PRS separately using logistic 458 
regression adjusting for age at baseline and sex as covariates. In UK Biobank, assessment centre was also 459 
used as a covariate. PRS were standardized when fitting the regression so that reported odds ratios were per 460 
standard deviation increase and comparable across PRS. 95% confidence intervals for area under the 461 
receiver operating characteristic curves (AUC) were calculated using 2000 stratified bootstrap replicates55. 462 
Logistic regression was also used to assess incident T2D prediction in the Singapore Multi-Ethnic Cohort, 463 
as time to T2D onset (or T2D-free survival) was not available due to the heterogeneity of incident T2D 464 
ascertainment. 465 

Prediction of incident T2D risk was assessed using Cox proportional hazards regression using time-in-study 466 
as the time scale and adjusting for age at baseline assessment and sex as covariates. Participants with T2D 467 
at baseline assessment were excluded. In UK Biobank, assessment centre was also used as a covariate. PRS 468 
were standardized when fitting the regression so that reported hazard ratios were per standard deviation 469 
increase and comparable across PRS. 95% confidence intervals for the Harrell’s C-index were calculated 470 
from the standard errors obtained using the infinitesimal jackknife method56. 471 

Comparison to established risk factors and risk scores 472 
The metaPRS was compared to established T2D risk factors and 10-year T2D risk prediction scores 473 
(QDiabetes) in a subset of 190,293 UK Biobank participants from the metaPRS testing set that were free of 474 
T2D at baseline assessment and had quantified measurements for glucose and glycated haemoglobin 475 
(HbA1c).  476 

We compared the metaPRS to the QDiabetes scores that are recommended for 10-year T2D risk prediction 477 
in the UK by the National Institute for Health and Care Excellence (NICE) guidelines in the UK22. Three 478 
QDiabetes scores are recommended depending on the availability of blood samples and fasting status: 479 
QDiabetes model A, which incorporates all risk factors that do not require taking a blood sample; 480 
QDiabetes model B, which additionally incorporates fasting glucose; and QDiabetes model C, which 481 
additionally incorporates HbA1c (but not fasting glucose). Risk factors used by all three QDiabetes models 482 
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were participant age, sex, BMI, smoking status, Townsend deprivation index, family history of diabetes, 483 
antihypertensive medication usage, history of CVD, systematic corticosteroid medication usage, lipid 484 
lowering medication usage, history of gestational diabetes, history of polycystic ovary syndrome, history of 485 
learning difficulties, history of bipolar or schizophrenia disorders, and usage of 2nd generation atypical 486 
antipsychotic medications. UK Biobank participants were non-fasting (median fasting time of 3 hours) so 487 
non-fasting glucose was used for QDiabetes model B. Details on each risk factor definition in UK Biobank 488 
are given in the Supplementary Methods. 489 

Prediction of 10-year risk of incident T2D for each risk factor, risk score, and the metaPRS, were assessed 490 
using Cox proportional hazards regression using time-in-study as the time scale and adjusting for age, sex, 491 
and assessment centre. The metaPRS was adjusted for 20 genotype PCs prior to model fitting. Prior to 492 
model fitting BMI, glucose, and HbA1c were log transformed, and Townsend deprivation index was 493 
inverse rank normalized. All predictor variables were standardized when fitting Cox proportional hazard 494 
regressions. 95% confidence intervals for the Harrell’s C-index were calculated from the standard errors 495 
obtained using the infinitesimal jackknife method56.  496 

Incremental improvement of the metaPRS over QDiabetes 2018 model C was assessed using multivariable 497 
Cox proportional hazards regression adjusting for age and sex. The change in C-index (ΔC-index) was 498 
calculated as the difference in C-index over a Cox proportional hazards regression fit for QDiabetes 2018 499 
model C adjusting for age and sex. A bootstrap procedure with 1,000 bootstraps was used to estimate the 500 
standard error for the ΔC-index. Bootstrap resampling was performed using methods appropriate for right-501 
censored data57. The 95% confidence interval and two-sided P-value were computed from the bootstrap 502 
standard error using the first order normal approximation method. 503 

Incremental improvements in risk stratification when adding the metaPRS to QDiabetes risk scores 504 
(Supplementary Methods) were assessed at varying risk thresholds using categorical net reclassification 505 
improvement (NRI) analysis58,59. Categorical NRI analysis was used to assess relative to QDiabetes risk 506 
scores alone (1) the % of incident T2D cases correctly reclassified from low risk to high risk, and (2) the % 507 
of non-cases correctly reclassified from high risk to low risk. Bootstrap resampling of the categorical NRI 508 
analysis was performed using the nricens R package version 1.6, and 95% confidence intervals and P-509 
values were subsequently calculated from the bootstrap standard error using the first order normal 510 
approximation method. 511 

Data Availability 512 
Data from UK Biobank are available for health-related research subject to approval from the UK Biobank 513 
access committee. See https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access for further 514 
details. 515 

Data from the INTERVAL cohort can be requested by researchers for health-related research subject to 516 
approval from the INTERVAL Data Access Committee. Data will be shared through an institutional data 517 
sharing agreement. The INTERVAL Data Access Committee can be contacted via email at 518 
helpdesk@intervalstudy.org.uk. Further information on the data access policy can be found 519 
at http://www.donorhealth-btru.nihr.ac.uk/project/bioresource. 520 

Data from All of Us are available to researchers via the All of Us research hub subject to institutional data 521 
sharing agreement. For more information, see https://allofus.nih.gov/get-involved/opportunities-522 
researchers. 523 
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Data from the Singapore Multi-Ethnic Cohort study can be requested by researchers for scientific purposes 524 
through an application process at the listed website (https://blog.nus.edu.sg/sphs/data-and-samples-525 
request/). Data will be shared through an institutional data sharing agreement. 526 

Code Availability 527 
Code underlying this paper are available at https://github.com/sritchie73/T2D_metaPRS_paper. This 528 
repository and specific release for this paper are permanently archived by Zenodo at 529 
https://doi.org/10.5281/zenodo.13362823.  530 
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Figures 722 

723 

Figure 1: Study Design 724 
Acronyms are as follows. T2D: type 2 diabetes. PRS: polygenic risk scores. SNPs: single nucleot725 
polymorphisms. LD: linkage disequilibrium. GWAS: genome-wide association study. 1KG-AFR-li726 
1KG-AMR-like, 1KG-EAS-like, 1KG-EUR-like, 1KG-SAS-like: genetic ancestry labels, defined based727 
clustering of participants by genetic principal components and the similarity of those clusters to 10728 
Genomes reference panel superpopulations following the 2023 National Academies guidelines on us729 
population descriptors in genetics and genomics research. ASN-like: genetic ancestry label chosen 730 
ethnic Malays in the Singapore Multi-Ethnic cohort to represent their ancestral population history due731 
lack of representation of Austronesian populations in the 1000 Genomes reference panel.  732 
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733 

Figure 2: Comparison of T2D PRSs in people of 1KG-EUR-like genetic ancestries across th734 
cohorts 735 
Comparison of PRSs for association with prevalent T2D status or time-to-onset of incident T2D736 
participants of 1KG-EUR-like genetic ancestries from the UK Biobank, INTERVAL, and All of 737 
research program cohorts. In UK Biobank incident and prevalent T2D were analysed separately due738 
significant difference in phenotype severity (Methods). Analyses of UK Biobank excluded participa739 
used for metaPRS training, and PRSs derived from GWAS performed in UK Biobank samples. The limi740 
number of PRSs tested in UK Biobank compared to INTERVAL and All of Us reflects that the majority741 
contemporary PRSs utilize GWAS performed in UK Biobank samples for PRS development. PRSs w742 
adjusted for 20 genetic principal components in each cohort prior to model fitting. Diamonds show the o743 
ratios or hazard ratios, and horizontal bars show the 95% confidence intervals. Odds ratios and haz744 
ratios are per standard deviation increase in the respective PC-adjusted PRS. Logistic and Cox proportio745 
hazards regressions were adjusted for age, sex, and cohort specific covariates (e.g., assessment cent746 
Odds ratios and hazard ratios are detailed in Table S6. Details on comparison PRSs are provided in Ta747 
S5. 748 

23 

 

three 

2D in 
of Us 
ue to 

ipants 
imited 
rity of 
 were 

e odds 
azard 

rtional 
entre). 
Table 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.08.22.24312440doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.22.24312440
http://creativecommons.org/licenses/by/4.0/


749 

Figure 3: Top six T2D PRSs in people of five diverse ancestry groups across three cohorts 750 
Comparison of PRSs for association with T2D status or time-to-onset in participants clustering into 751 
diverse ancestry groups from UK Biobank, the All of Us research program cohort, and the Singapore Mu752 
Ethnic Cohort (MEC). Participants in each cohort were clustered by genetic similarity with the 1753 
reference population participants (Methods), except for ethnic Malays in the MEC study, as their gen754 
ancestries are distinct from and not represented by 1KG reference populations, and here labelled755 
Austronesian (ASN)-like to reflect their ancestral population histories. The top six PRS for each cohort 756 
genetic ancestry group are shown; in UK Biobank incident and prevalent T2D were analysed separately d757 
to significant difference in phenotype severity (Methods). Odds ratios and hazard ratios for all tested P758 
are detailed in Table S7. PRSs were adjusted for 20 genetic principal components in each cohort prio759 
model fitting. Diamonds show the odds ratios or hazard ratios, and horizontal bars show the 9760 
confidence intervals. Odds ratios and hazard ratios are per standard deviation increase in the respective P761 
adjusted PRS. Logistic and Cox proportional hazards regressions were adjusted for age, sex, and coh762 
specific covariates (e.g., assessment centre). Logistic regression was used to assess associations w763 
incident T2D in MEC as time to T2D onset (or T2D-free survival) was not available due to 764 
heterogeneity of incident T2D ascertainment (Methods). Note the Shim et al. 2023 PRS (PGS0038765 
could not be tested in UK Biobank as it was derived from multi-ancestry GWAS performed in UK Biob766 
samples.  767 
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768 

Figure 4: Relative rank of PRSs by effect size within each genetic ancestry and cohort 769 
Violin and dotplot comparing PRS effect size relative to the PRS with the maximum effect size within e770 
cohort and genetic ancestry group. A score of 1.0 is given to the PRS with the maximum odds ratio771 
hazard ratio in each cohort and genetic ancestry combination. Other PRSs were then assigned a relat772 
prediction value based on the ratio of their log odds ratio (or log hazard ratio) to that of the strongest PR773 
PRS are ordered left to right based on their median score.   774 
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775 

Figure 5: Comparison to established risk factors and risk prediction scores 776 
A) Comparison of C-index over age and sex alone for the metaPRS to individual type 2 diabetes r777 
factors and 10-year type 2 diabetes risk prediction scores (QDiabetes) in 190,293 1KG-EUR-like 778 
Biobank participants (4,064 incident T2D cases). The QDiabetes 2018 model A score is calculated from779 
listed individual risk factors, excepting glucose and HbA1c. The QDiabetes 2018 model B and mode780 
scores additionally incorporates fasting glucose and HbA1c respectively. Note UK Biobank participants 781 
non-fasting leading to likely underestimation of QDiabetes B. For comparison purposes the set782 
participants analysed here was selected as the subset in which the QDiabetes 2018 model C risk score co783 
be computed (complete risk factor information, with height between 1.4 and 2.1 meters, weight ≤ 180784 
and HbA1c between 15 and 48 mmol/mol). Diamonds show the C-index and horizontal bars show the 9785 
confidence intervals. C-indices and individual risk factor hazard ratios are detailed in Table S8.786 
Probability of predicted 10-year risk exceeding X% when using QDiabetes risk with or without the T787 
metaPRS. Probabilities were calculated as one minus the empirical cumulative distributive function acr788 
cases and non-cases combined. Probability curves extend to the right of each plot up, to 100% predic789 
risk, but are truncated here for clarity. C) Categorical net reclassification improvement (NRI) when add790 
the metaPRS to QDiabetes risk scores for stratifying participants into high and low risk groups at vary791 
risk thresholds. % correctly reclassified: net % of cases that were correctly reclassified from the low-792 
group into the high-risk group when adding the metaPRS (pink) or the net % of non-cases that w793 
correctly reclassified from the high-risk group into the low-risk group when adding the metaPRS (gree794 
95% confidence intervals were estimated via a bootstrap sampling procedure with 1000 bootstra795 
Diamonds show the net % correctly reclassified and horizontal bars show the 95% confidence interv796 
Categorical NRI details and numbers allocated to each risk category are provided in Table S9. 797 
Categorical NRI when incorporating the metaPRS into a two-stage procedure in which QDiabetes mode798 
is used to prioritize potential high-risk individuals for fasting glucose or HbA1c blood tests for subsequ799 
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risk prediction and stratification. Categorical NRI details and numbers allocated to each risk category are 800 
provided in Table S10.  801 
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