Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Aug 1;301(Pt 3):769–775. doi: 10.1042/bj3010769

Effects of insulin and insulin-like growth factors on protein and energy metabolism in tumour-bearing rats.

F M Tomas 1, C S Chandler 1, P Coyle 1, C S Bourgeois 1, J L Burgoyne 1, A M Rofe 1
PMCID: PMC1137054  PMID: 8053901

Abstract

The effects of insulin-like growth factor-1 (IGF-I), and a more potent variant LR3-IGF-I, which binds poorly to IGF-binding proteins, were investigated in rats bearing a mammary adenocarcinoma. The effect of insulin, either alone or in combination with LR3-IGF-I, was also investigated. Peptides were infused via osmotic minipumps for 6-7 days after tumour size reached 5% of body weight. Infusion of IGFs alone at either 200 or 500 microgram/day significantly decreased food intakes as well as circulating levels of insulin and glucose, and consequently failed to promote muscle protein accretion in the host. Tumour growth was increased by the IGFs, especially by LR3-IGF-I, even though these peptides did not promote growth of the adenocarcinoma in cell culture. Infusion of LR3-IGF-I, and to a lesser extent IGF-I, led to decreased rates of muscle protein synthesis and increased muscle protein breakdown, but each of these measures was closely related to the final tumour burden (r2 = 0.454 and 0.810 respectively; P < 0.01) and possibly resulted from a decrease in substrate supply to the host tissues. Insulin infusion (100 micrograms/day) increased food consumption by more than 50% and significantly decreased tumour growth. Insulin and LR3-IGF-I had a synergistic effect on host weight, which increased by 19.1 +/- 1.9, -1.1 +/- 4.7 and 37.9 +/- 1.5 g for insulin, LR3-IGF-I and combined treatments respectively. Carcass protein was increased by more than 10% with insulin treatment, due to increased rates of synthesis and decreased rates of muscle protein breakdown, but LR3-IGF-I had no positive effect on carcass protein accretion, either alone or in combination with insulin. Similarly, the amount of carcass fat was increased almost 2-fold by insulin treatment, whereas it was decreased by 30% by LR3-IGF-I. These changes may have arisen either from direct hormone effects on metabolism or from the indirect effects of food intake, or both. Our results suggest that IGF administration may exacerbate an insulin insufficiency associated with the tumour-bearing state and further decrease metabolic substrate supply to the host. This can be overcome by co-infusion of insulin.

Full text

PDF
769

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brennan M. F. Total parenteral nutrition in the cancer patient. N Engl J Med. 1981 Aug 13;305(7):375–382. doi: 10.1056/NEJM198108133050705. [DOI] [PubMed] [Google Scholar]
  2. Cersosimo E., Pisters P. W., Pesola G., Rogatko A., Vydelingum N. A., Bajorunas D., Brennan M. F. The effect of graded doses of insulin on peripheral glucose uptake and lactate release in cancer cachexia. Surgery. 1991 Apr;109(4):459–467. [PubMed] [Google Scholar]
  3. Chance W. T., Cao L. Q., Zhang F. S., Foley-Nelson T., Fischer J. E. Clenbuterol treatment increases muscle mass and protein content of tumor-bearing rats maintained on total parenteral nutrition. JPEN J Parenter Enteral Nutr. 1991 Sep-Oct;15(5):530–535. doi: 10.1177/0148607191015005530. [DOI] [PubMed] [Google Scholar]
  4. Chance W. T., Cao L., Fischer J. E. Insulin and acivicin improve host nutrition and prevent tumor growth during total parenteral nutrition. Ann Surg. 1988 Oct;208(4):524–531. doi: 10.1097/00000658-198810000-00014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coyle P., Rofe A. M., Bourgeois C. S., Conyers R. A. Biochemical manifestations of a rat mammary adenocarcinoma-producing cachexia: in vivo and in vitro studies. Immunol Cell Biol. 1990 Jun;68(Pt 3):147–153. doi: 10.1038/icb.1990.21. [DOI] [PubMed] [Google Scholar]
  6. Dong Y. L., Fleming R. Y., Huang K. F., Herndon D. N., Yan T. Z., Waymack J. P. Effect of insulin-like growth factor 1 on host response to tumor. J Surg Oncol. 1993 Jun;53(2):121–127. doi: 10.1002/jso.2930530215. [DOI] [PubMed] [Google Scholar]
  7. Douglas R. G., Gluckman P. D., Breier B. H., McCall J. L., Parry B., Shaw J. H. Effects of recombinant IGF-I on protein and glucose metabolism in rTNF-infused lambs. Am J Physiol. 1991 Nov;261(5 Pt 1):E606–E612. doi: 10.1152/ajpendo.1991.261.5.E606. [DOI] [PubMed] [Google Scholar]
  8. Elia M., Carter A., Bacon S., Winearls C. G., Smith R. Clinical usefulness of urinary 3-methylhistidine excretion in indicating muscle protein breakdown. Br Med J (Clin Res Ed) 1981 Jan 31;282(6261):351–354. doi: 10.1136/bmj.282.6261.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Francis G. L., Ross M., Ballard F. J., Milner S. J., Senn C., McNeil K. A., Wallace J. C., King R., Wells J. R. Novel recombinant fusion protein analogues of insulin-like growth factor (IGF)-I indicate the relative importance of IGF-binding protein and receptor binding for enhanced biological potency. J Mol Endocrinol. 1992 Jun;8(3):213–223. doi: 10.1677/jme.0.0080213. [DOI] [PubMed] [Google Scholar]
  10. Froesch E. R., Schmid C., Schwander J., Zapf J. Actions of insulin-like growth factors. Annu Rev Physiol. 1985;47:443–467. doi: 10.1146/annurev.ph.47.030185.002303. [DOI] [PubMed] [Google Scholar]
  11. Heber D., Chlebowski R. T., Ishibashi D. E., Herrold J. N., Block J. B. Abnormalities in glucose and protein metabolism in noncachectic lung cancer patients. Cancer Res. 1982 Nov;42(11):4815–4819. [PubMed] [Google Scholar]
  12. Jepson M. M., Pell J. M., Bates P. C., Millward D. J. The effects of endotoxaemia on protein metabolism in skeletal muscle and liver of fed and fasted rats. Biochem J. 1986 Apr 15;235(2):329–336. doi: 10.1042/bj2350329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kern K. A., Norton J. A. Cancer cachexia. JPEN J Parenter Enteral Nutr. 1988 May-Jun;12(3):286–298. doi: 10.1177/0148607188012003286. [DOI] [PubMed] [Google Scholar]
  14. Lawson D. H., Richmond A., Nixon D. W., Rudman D. Metabolic approaches to cancer cachexia. Annu Rev Nutr. 1982;2:277–301. doi: 10.1146/annurev.nu.02.070182.001425. [DOI] [PubMed] [Google Scholar]
  15. Moley J. F., Morrison S. D., Gorschboth C. M., Norton J. A. Body composition changes in rats with experimental cancer cachexia: improvement with exogenous insulin. Cancer Res. 1988 May 15;48(10):2784–2787. [PubMed] [Google Scholar]
  16. Moley J. F., Morrison S. D., Norton J. A. Insulin reversal of cancer cachexia in rats. Cancer Res. 1985 Oct;45(10):4925–4931. [PubMed] [Google Scholar]
  17. Moley J. F., Morrison S. D., Norton J. A. Preoperative insulin reverses cachexia and decreases mortality in tumor-bearing rats. J Surg Res. 1987 Jul;43(1):21–28. doi: 10.1016/0022-4804(87)90042-4. [DOI] [PubMed] [Google Scholar]
  18. Morrison S. D. Feeding response of tumor-bearing rats to insulin and insulin withdrawal and the contribution of autonomous tumor drain to cachectic depletion. Cancer Res. 1982 Sep;42(9):3642–3647. [PubMed] [Google Scholar]
  19. Murray A. J., Ballard F. J., Tomas F. M. A rapid method for the analysis of N tau-methylhistidine in human urine. Anal Biochem. 1981 Sep 15;116(2):537–544. doi: 10.1016/0003-2697(81)90399-7. [DOI] [PubMed] [Google Scholar]
  20. Ng E. H., Lowry S. F. Nutritional support and cancer cachexia. Evolving concepts of mechanisms and adjunctive therapies. Hematol Oncol Clin North Am. 1991 Feb;5(1):161–184. [PubMed] [Google Scholar]
  21. Ng E. H., Rock C. S., Lazarus D. D., Stiaino-Coico L., Moldawer L. L., Lowry S. F. Insulin-like growth factor I preserves host lean tissue mass in cancer cachexia. Am J Physiol. 1992 Mar;262(3 Pt 2):R426–R431. doi: 10.1152/ajpregu.1992.262.3.R426. [DOI] [PubMed] [Google Scholar]
  22. Pain V. M., Randall D. P., Garlick P. J. Protein synthesis in liver and skeletal muscle of mice bearing an ascites tumor. Cancer Res. 1984 Mar;44(3):1054–1057. [PubMed] [Google Scholar]
  23. Peacock J. L., Gorschboth C. M., Norton J. A. Impact of insulin on doxorubicin-induced rat host toxicity and tumor regression. Cancer Res. 1987 Aug 15;47(16):4318–4322. [PubMed] [Google Scholar]
  24. Rennie M. J., Edwards R. H., Emery P. W., Halliday D., Lundholm K., Millward D. J. Depressed protein synthesis is the dominant characteristic of muscle wasting and cachexia. Clin Physiol. 1983 Oct;3(5):387–398. doi: 10.1111/j.1475-097x.1983.tb00847.x. [DOI] [PubMed] [Google Scholar]
  25. Rofe A. M., Bais R., Conyers R. A. Ketone-body metabolism in tumour-bearing rats. Biochem J. 1986 Jan 15;233(2):485–491. doi: 10.1042/bj2330485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rofe A. M., Bourgeois C. S., Bais R., Conyers R. A. Metabolic response to insulin and glucose infusions in starved tumor-bearing rats. Cancer Res. 1989 Nov 1;49(21):5949–5953. [PubMed] [Google Scholar]
  27. Schein P. S., Kisner D., Haller D., Blecher M., Hamosh M. Cachexia of malignancy: potential role of insulin in nutritional management. Cancer. 1979 May;43(5 Suppl):2070–2076. doi: 10.1002/1097-0142(197905)43:5+<2070::aid-cncr2820430715>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  28. Singh J., Grigor M. R., Thompson M. P. Glucose tolerance and hormonal changes in rats bearing a transplantable sarcoma. Int J Biochem. 1981;13(10):1095–1100. doi: 10.1016/0020-711x(81)90172-5. [DOI] [PubMed] [Google Scholar]
  29. Tessitore L., Bonelli G., Baccino F. M. Early development of protein metabolic perturbations in the liver and skeletal muscle of tumour-bearing rats. A model system for cancer cachexia. Biochem J. 1987 Jan 1;241(1):153–159. doi: 10.1042/bj2410153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tomas F. M., Knowles S. E., Chandler C. S., Francis G. L., Owens P. C., Ballard F. J. Anabolic effects of insulin-like growth factor-I (IGF-I) and an IGF-I variant in normal female rats. J Endocrinol. 1993 Jun;137(3):413–421. doi: 10.1677/joe.0.1370413. [DOI] [PubMed] [Google Scholar]
  31. Tomas F. M., Knowles S. E., Owens P. C., Chandler C. S., Francis G. L., Ballard F. J. Insulin-like growth factor-I and more potent variants restore growth of diabetic rats without inducing all characteristic insulin effects. Biochem J. 1993 May 1;291(Pt 3):781–786. doi: 10.1042/bj2910781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tomas F. M., Knowles S. E., Owens P. C., Chandler C. S., Francis G. L., Read L. C., Ballard F. J. Insulin-like growth factor-I (IGF-I) and especially IGF-I variants are anabolic in dexamethasone-treated rats. Biochem J. 1992 Feb 15;282(Pt 1):91–97. doi: 10.1042/bj2820091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tomas F. M., Knowles S. E., Owens P. C., Read L. C., Chandler C. S., Gargosky S. E., Ballard F. J. Effects of full-length and truncated insulin-like growth factor-I on nitrogen balance and muscle protein metabolism in nitrogen-restricted rats. J Endocrinol. 1991 Jan;128(1):97–105. doi: 10.1677/joe.0.1280097. [DOI] [PubMed] [Google Scholar]
  34. Tomas F. M., Knowles S. E., Owens P. C., Read L. C., Chandler C. S., Gargosky S. E., Ballard F. J. Increased weight gain, nitrogen retention and muscle protein synthesis following treatment of diabetic rats with insulin-like growth factor (IGF)-I and des(1-3)IGF-I. Biochem J. 1991 Jun 1;276(Pt 2):547–554. doi: 10.1042/bj2760547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tomas F. M., Murray A. J., Jones L. M. Interactive effects of insulin and corticosterone on myofibrillar protein turnover in rats as determined by N tau-methylhistidine excretion. Biochem J. 1984 Jun 1;220(2):469–479. doi: 10.1042/bj2200469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tomas F. M., Murray A. J., Jones L. M. Modification of glucocorticoid-induced changes in myofibrillar protein turnover in rats by protein and energy deficiency as assessed by urinary excretion of Ntau-methylhistidine. Br J Nutr. 1984 May;51(3):323–337. doi: 10.1079/bjn19840039. [DOI] [PubMed] [Google Scholar]
  37. Zenobi P. D., Graf S., Ursprung H., Froesch E. R. Effects of insulin-like growth factor-I on glucose tolerance, insulin levels, and insulin secretion. J Clin Invest. 1992 Jun;89(6):1908–1913. doi: 10.1172/JCI115796. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES