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ABSTRACT

Aim: The aim of current study is to explore the epigenetic changes and function of KCTD8 in human

hepatocellular carcinoma (HCC).

Materials & methods: HCC cell lines and tissue samples were employed. Methylation specific PCR,
flow cytometry, immunoprecipitation and xenograft mouse models were used.

Results: KCTD8 was methylated in 44.83% (104/232) of HCC and its methylation may act as an
independent poor prognostic marker. KCTD8 expression was regulated by DNA methylation. KCTD8
suppressed HCC cell growth both in vitro and in vivo via inhibiting PI3K/AKT pathway.

Conclusion: Methylation of KCTD8 is an independent poor prognostic marker, and epigenetic
silencing of KCTD8 increases the malignant tendency in HCC.

1. Background

Hepatocellular carcinoma (HCC) is a highly fatal malig-
nant cancer with 5-year overall survival (OS) of approx-
imately 18% [1,2]. The infection of Hepatitis B and C
viruses was considered to be the main cause of HCC. HBV
vaccine inoculation and antiviral therapy have decreased
the incidence apparently [2]. However, other risk fac-
tors, such as nonalcoholic steatohepatitis and alcoholic
liver disease, are becoming increasingly important [3].
Molecular alterations in genomics have been extensively
studied to develop targeting therapeutics in various
cancers. However, the genomic-based precision has not
been well established in HCC and most mutations are
not actionable [4-6]. Sorafenib was the first approved
multi-target tyrosine kinase inhibitor for advanced-stage
HCC. Then, lenvatinib was approved for first-line therapy.
Regorafenib and cabozantinib were approved for second-
line treatment. However, the efficacy of these inhibitors
is modest in improving patient outcomes [5,7,8]. Find-
ing new curative therapeutic approaches is urgently
needed. Better understanding the mechanism of HCC
may develop novel therapeutic strategies. A few signaling
pathways have been found playing important roles in
HCC initiation and progression, such as Ras/Raf/MAPK,
PI13K/Akt/mTOR, JAK/STAT, Wnt/B-catenin, Hippo, Notch
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and Hedgehog pathways [5,9]. It is noticeable that certain
signaling pathways may exhibit conflicting roles under
diverse environments in HCC, such as Wnt/B-catenin and
NF-«B signaling pathways [10]. The contradictory effects
may be attributed to distinct mechanisms, such as NF-
kB signaling, which is involved in both inflammation
and DNA damage repair (DDR). Furthermore, in addition
to driver gene mutations that activate cancer-related
signaling pathways, the epigenetic silencing of tumor
suppressor gene expression can also contribute to car-
cinogenesis by disrupting signaling transduction [11-13].
Dysregulation of these signaling pathways represents a
major mechanism of cancer development. Remarkable
efficacy was observed in lung cancer with EGFR mutation
by targeting tyrosine kinase. Most of targeting drugs
approved in clinic were mainly specific to proteins
encoded by mutated oncogenes. However, therapeutic
targeting some of oncogenes was challenged due to lack
of enzymatic activity or proper binding sites for drugs,
such as transcription factor MYC [14-17]. Gene mutation
and epigenetic abnormality of tumor suppressors were
usually regarded as undruggable [18-20]. Epigenetic
alterations are more frequently in cancer compared
with driver gene mutations [21]. Epigenetic regulation
plays important roles in growth-related pathways by
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regulating the expression of its key component. Similar
with genetic alterations, epigenomic changes may also
cause peculiar phenotypes in cancer. As epigenetic
modifications are potentially reversable, therapeutics by
targeting epigenetic regulating enzymes are becoming
promising anticancer treatment. However, the toxicity of
these reagents was constantly reported in pre-clinical and
clinical trials [22]. Epigenetic-based “synthetic lethality”
innovated the strategy of targeting therapy [23-26].
To exploit more effective therapeutic strategies, it is
necessary to clarify the regulatory network of cell fate or
DDR-related signaling pathways, as well as the aberrant
alterations of their key components in cancer.

The potassium channel tetramerization domain
(KCTD) family is composed of 25 members [27]. At
the N-terminal, these proteins share a conserved
BTB (Broad complex, Tramtrak and Bric-a-brac)/POZ
(poxvirus zinc finger) domain, which is a motif (95
amino acids) to perform biological function and
protein-protein interaction [28-31]. The C-terminal
sequences of KCTD proteins are highly variable [32].
Most studies related to these proteins have focused
mainly on the pathophysiology of neurodevelopmental
diseases [31,33,34]. The biological functions of most
KCTD family members are not well characterized. A few
KCTD members have been identified to participate in
development and tumorigenesis by involving in different
signal transduction pathways [27]. KCTD9 was found
to suppress colorectal cancer growth by inhibiting
Whnt signaling, while KCTD12 was shown to inhibit AKT
signaling in breast cancer [35,36]. Additionally, KCTD5
was observed to inhibit the PI3K/AKT pathway in HEK293T
cells and KCTD5 was interacted with KCTD8 through the
C-terminal [37,38]. The methylation status of KCTD8 in
breast cancer was detected by utilizing a combined
approach involving the methyl-CpG enrichment
technique and microarray-based comparative genomic
hybridization assay [39]. In this study, the mechanism
and expression regulation of KCTD8 were investigated in
HCC.

2. Materials & methods
2.1. HCC cell lines & primary tumor samples

Bel-7405, PLC/PRF5, HCCLM3, SNU449 and Huh7 cell lines
were utilized. All cell lines were cultured in RPMI-1640
medium (Gibco, #31800089) or DMEM (Gibco, #12100061)
supplemented with 1% penicillin/streptomycin solution
(Biosharp, #BL505A) and 10% fetal bovine serum. STR pro-
filing for authentication and mycoplasma detection were
performed in these cells. A total of 232 cases of primary
HCC without chemo or radiotherapy before surgery were
collected in the Department of Hepatobiliary Surgery of

Chinese PLA General Hospital from 2009 to 2019. Fresh
HCC tissue samples were immediately snap-frozen and
stored at -80°C after surgery. All samples obtained were
diagnosed as primary HCC by pathological manifestation.
TNM stage was performed by the 8th Edition of AJCC. All
protocols were approved by the Ethics Committee of the
Chinese PLA General Hospital (IRB number: 20090701-
015).

2.2. RNA preparation, DNA modification & PCR
amplification

HCC cells were seeded at a density of ~30% confluence
for growing 12 h. The medium was changed every
24 h during cell treatment with 2 uM 5-aza (Sigma,
#A3656) for 96 h. TRIzol (Invitrogen, #15596026) was
utilized to extract total RNA. Five micrograms of RNA was
utilized for synthesizing cDNA (Thermo Fisher Scientific,
#K1691). Each reaction included 20 pl mixture and was
diluted to 100 ul. To avoid experimental bias, 5 reactions
were mixed together after cDNA quality assessment.
Primers sequences of KCTD8 for reverse transcription
PCR (RT-PCR) are as below: 5'-CATGGTGGCGTGTAACTCC
T-3' (forward), 5-GGGAGTGCTTGCCTCTGAAT-3' (revers
e). The GAPDH primer sequences used for internal control
and the detailed thermal cycling parameters were as
previously described [25].

Genomic DNA extraction and sodium bisulfite modi-
fication were performed as previously [25]. Methylation
was detected by methylation-specific PCR (MSP). The MSP
primer sequences are as below: 5'-CGTTGTTTCGAATTTTG
AGCGGGGTC-3’ (methylation sense), 5'-TACACTTTCTCGT
TCCCGAAACCCG-3' (methylation antisense); 5'-TGTTGTT
GTTTTGAATTTTGAGTGGGGTT-3" (unmethylation sense),
5’-ACTACACTTTCTCATTCCCAAAACCCA-3’ (unmethylatio
n antisense). The amplification conditions were described
previously [25].

2.3. Construction of KCTD8 vectors & identification
of KCTD8 expressing monoclonal cells

The human KCTD8 (GenBank accession number:
NM_386617) coding region was applied for the
construction of expression vector with pCDH-CMV-
MCS-puro plasmid. Primers for amplification were
designed as below: 5-TGCTCTAGACTATGGCTCTGA
AGGACAC-3’ (forward), 5 CGGGATCCCTATAACCCATA
CTTCTGCAAC-3’ (reverse). KCTD8 expressing or empty
vectors with packaging plasmids (pLP1, pLP2 and VSVG)
were transfected into HEK293T cells with Lipofectamine
3000 reagent (Invitrogen, #L3000008) following the
manufacturer’s instructions. The lentiviral supernatant
was collected after culturing the cells for 48 h and
then was filtered through a 0.22 um filter membrane.



Subsequently, the lentiviral supernatant was added
into Bel-7405 and PLC/PRF5 cell culture medium at a
ratio of 1:1. The polybrene (Sigma-Aldrich, #H9268) was
added into the culture medium at a final concentration of
10 ng/ml to enhance transfection efficiency. The medium
was replaced with fresh RPMI-1640 after growing for 12 h.
Cells were treated with puromycin (MCE, #HY-15695)
for 3 days at a concentration of 1.0 ug/ml. Limited
dilution assay was utilized to obtain monoclonal cells
for expression of KCTD8, which was further validated by
western blot.

2.4. SiRNA knockdown technique

RNAiMax (Invitrogen, #13778075) was utilized to
knock down IMPDH2. The targeting siRNA sequences
of IMPDH2 were as below: sense-siRNA#1: 5-GGA
CAGACCUGAAGAAGAATT-3; antisense-siRNA#1:
5’-UUCUUCUUCAGGUCUGUCCTT-3; sense-siRNA#2:
5’-GCAGCCAGAACAGAUAUUUTT-3'; antisense-siRNA#2:
5-AAAUAUCUGUUCUGGCUGCTT-3/; sense-siRNA#3:
5-GCCAGGACAUUGGUGCCAATT-3’; antisense-siRNA#3:
5-UUGGCACCAAUGUCCUGGCTT-3'. The efficiency was
validated by western blot.

2.5. MTT, colony formation & transwell assays

Bel-7405 and PLC/PRF5 cells with or without KCTD8
expression were plated into 96-well plates at an initial
density of 2000 cells per well. The MTT assay was utilized
to evaluate the ability of cell proliferation at the time point
of 0, 24, 48, 72 and 96 h (KeyGEN Biotech, # KGT5251).
The OD values were detected at a wavelength of 490 nm.
For the colony formation assay, KCTD8 silenced and re-
expressed Bel-7405 and PLC/PRF5 cells were inoculated
into 6-well plates at a density of 500 cells each well. Cells
were fixed and stained with crystal violet 12 days after
seeding (Solarbio, #C8470).

For the migration study, 3 x 10* cells were added to
the upper chamber (Corning, #3422) and grown for 24 h.
Cells that migrated to the lower surface of the membrane
were fixed and stained following previous description
and images were taken under a microscope. For the
invasion assay, cells (3 x 10%) were suspended into the
upper chamber of the Transwell apparatus coated with
Matrigel (Becton-Dickinson Biosciences, #356234), and
similar procedures with migration assay were performed.
All the experiments were triplicated.

2.6. Western blot & immunoprecipitation assays

Detailed procedure of western blot was described in
previous study [25]. Antibodies used were listed as
below: KCTD8 (Lifespan, #LS-C165463-400), MMP2 (Pro-
teintech, #10373-2-P), MMP7 (Proteintech, #10374-2-
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P), MMP9 (Proteintech, #27306-1-AP), caspase-3/cleaved
caspase-3 (Proteintech, #19677-1-AP), BAX (Cell Signal-
ing Technology, #2772S), BCL-2 (Cell Signaling Technol-
ogy, #4223S), IMPDH2 (Proteintech, #67663-1-lg), AKT
(Abcam, #ab8805), Ser473-p-AKT (Cell Signaling Tech-
nology, #4060S), PI3K1108 (Proteintech, #67121-1-lg), -
actin (Beyotime, #AF0003), mTOR (Cell Signaling Technol-
ogy, #2972S) and Ser2448-p-mTOR (ZENBIO, #R381548).
IP technique is briefly described as below. Cell lysates
were incubated with an antibody overnight and then
incubated with protein A/G agarose beads (YEASEN,
#36403ES08) for 4 h at 4°C. The beads were collected and
washed to obtain the co-precipitated proteins. Products
were separated and examined by SDS-PAGE and stained
with silver. The bands that were clearly distinguishable
bands in the experimental group but not in the IgG group
were excised for further mass spectrometry analysis.

2.7. Apoptosis analysis

FACScan Flow Cytometer was utilized for apoptosis
analysis. Cells were stained with the Annexin V-FITC/PI
Apoptosis Detection Kit and followed the manufacturer’s
instructions (KeyGen Biotech, #KGA106). The experiments
were triplicated.

2.8. HCC cell xenograft tumor model

Nude mice were ordered from SBF Biotech (Beijing, China)
and grouped randomly (n = 6). Bel-7405 cells (3 x 10°)
without or with KCTD8 expression were inoculated into
mice subcutaneously. The inoculation position was in
right side of dorsal. The volume was calculated using
the formula: V = L x W?/2. Tumor volume was exam-
ined every 3 days. The levels of KCTD8 (Lifespan, #LS-
C165463-400), PI3K1108 (Proteintech, #67121-1-Ig), p-
AKT (Cell Signaling Technology, #4060S), p-mTOR (ZEN-
BIO, #R381548) and ki67 (ZSBIO, TA800648) in xenografts
were assessed by IHC. They were diluted to 1:50, 1:400,
1:500, 1:200 and 1:500, respectively. H score was used
to quantify the degree of immunostaining according to
the staining intensity and the percentage of positive
cells. All the animal experiment protocols were performed
according to the Animal Ethics Committee at Chinese PLA
General Hospital (approval number: 2022-X18-72).

2.9. Statistical analysis

SPSS 21.0 software and GraphPad Prism 8.0 were utilized
for statistical analysis. The chi-square test was performed
for independent dichotomous variables. For difference
comparison in two experimental groups, the student’s
t test was employed. Kaplan-Meier and log-rank tests
were used for the OS analysis. Cox proportional hazards
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regression models were used to assess risk factors for OS.
p < 0.05 indicated a statistically significant difference.

3. Results

3.1. Theregulation of KCTD8 expression by DNA
methylation

To assess the potential epigenetic regulation of KCTD8
expression in HCC, the Cancer Genome Atlas (TCGA)
database (http://xena.ucsc.edu/) was utilized. KCTD8
mRNA and the methylation status of CpG sites around
the transcription start site (TSS) were extracted from
115 cases of HCC. A significant inverse association was
found between KCTD8 expression and methylation of the
promoter region (cg07650252, p = 0.0345; cg12300353,
p = 0.0053; Figure 1A & B). Subsequently, KCTD8
expression and promoter region methylation status were
assessed using RT-PCR and MSP in HCC cells. Loss of
KCTD8 expression was found in Bel-7405, PLC/PRFS5,
HCCLM3, SNU449 and Huh7 cells, and complete methy-
lation of the promoter region was observed in these
cells. The expression of KCTD8 was induced by 5-aza-2'-
deoxycytidine (5-aza), a DNA methyltransferase (DNMT)
inhibitor (Figure 1C & D). The afore mentioned findings
suggest that KCTD8 expression is regulated by methyla-
tion in the promoter region in HCC cells.

3.2. Methylation of KCTD8 was a poor prognostic
marker in HCC

To evaluate the status of KCTD8 methylation, MSP assay
was utilized. It was observed that KCTD8 was methy-
lated in 44.83% (104/232) of HCC (Figure 1E). KCTD8
methylation was significantly associated with TNM stage
(p = 0.023), while there was no significant association
between KCTD8 methylation and age, gender, tumor size,
differentiation, metastasis of lymph node or liver cirrhosis
(all p > 0.05, Table 1). For 117 cases of primary HCC
with available follow-up data, 49 cases were methylated
and 68 cases were unmethylated. The median age was
55 years old (range 29-71 years old), and the ratio
of men to women was 6.31. The Kaplan-Meier model
and Cox proportional hazards model were utilized to
analyze the association of methylation with survival. In
the KCTD8 unmethylation group, the mean survival time
was 52 months (95% Cl| 45-60 months), while in the
KCTD8 methylation group, the mean survival time was
34 months (95% Cl 24-43 months). The OS was longer
in KCTD8 unmethylated patients than in methylated
patients (Figure 1F, p = 0.0095). KCTD8 methylation was
revealed to be an independent poor prognostic marker
according to the multivariate analysis (Table 2, p = 0.041).

3.3. KCTD8 suppressed HCC cell proliferation,
colony formation, migration & invasion &
induced apoptosis

To investigate the function of KCTD8 in HCC, KCTD8
stably expressed cells were established in KCTD8 silenced
Bel-7405 and PLC/PRF5 cells. MTT and colony formation
assays were conducted to evaluate the role of KCTD8 in
cell proliferation. As shown in Figure 2A, the OD values
of the KCTD8 silenced and re-expressed Bel-7450 and
PLC/PRF5 cells were 0.919 + 0.027 vs. 0.721 £ 0.034
and 0.934 + 0.033 vs. 0.675 =+ 0.033, respectively (both
p < 0.0001). The OD value was reduced significantly by
re-expressing KCTDS, indicating that KCTD8 inhibits cell
proliferation. Without and with expression of KCTD8 in
these cells, the clone number was 353 4 16 vs. 269 + 19
and 415 £ 23 vs. 317 £ 26, respectively (Figure 2B,
both p < 0.01). Clone number was decreased in KCTD8
re-expressed Bel-7405 and PLC/PRF5 cells compared
with unexpressed cells. These findings demonstrate that
KCTD8 exerts a suppressive effect on cell clonogenicity in
HCC.

In Transwell assay, the migratory cells were 249 + 32
vs. 110 & 31 (p < 0.01) in Bel-7405 cells and 122 £ 20
vs. 55 + 4 (p < 0.01) in PLC/PRF5 cells without and with
KCTD8 expression. A decreased number of migratory cells
was observed by forced KCTD8 expression (Figure 2C). For
KCTD8 silenced and forced expression cells, the number
of invasive cells was 173 £ 14 vs. 64 + 20 (p < 0.01)
in Bel-7405 cells and 123 £+ 5 vs. 54 + 16 (p < 0.01)
in PLC/PRFS5 cells, respectively. Similarly, re-expression of
KCTDS8 resulted in a reduction in the number of invasive
cells, indicating the inhibitory role of KCTD8 in cell inva-
sion (Figure 2C). The levels of MMP2, MMP7 and MMP9,
which are the migration and invasion related proteins,
were examined. They were reduced by restoration of
KCTD8 expression in Bel-7405 and PLC/PRF5 cells, further
suggesting that KCTD8 suppresses cell migration and
invasion (Figure 2D).

Flow cytometry technique was utilized to analyze
the effect of KCTD8 on apoptosis. The percentage
was 4.56 + 0.66% vs. 704 + 1.04% (p < 0.05) and
4,01 £ 0.16% vs. 8.06 &+ 0.23% (p < 0.0001) for apop-
totic cells in KCTD8 unexpressed and re-expressed Bel-
7405 cells and PLC/PRF5 cells, respectively (Figure 2E).
The molecular level of apoptosis-related proteins was
examined. Increased levels of BAX and cleaved caspase-
3 were observed in KCTD8 over-expressed Bel-7405 and
PLC/PRF5 cells, while the level of BCL-2 was reduced
(Figure 2F), indicating that KCTD8 induces apoptosis in
HCC cells.
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Figure 1. Representative results of KCTD8 expression and methylation status. (A) The association of KCTD8 mRNA level and
methylation status of CpG sites around the TSS in HCC samples extracted from the TCGA database (n = 115). TSS: transcription start
site. (B) Representative scatter plots for KCTD8 expression level and CpG sites methylation level (cg07650252, cg12300353). (C)
Semi-quantitative RT-PCR showing the expression of KCTD8 in HCC cells before and after 5-aza treatment. 5-aza:
5-aza-2'-deoxycytidine; GAPDH: internal control for RT-PCR; H20: double distilled water; (-): absence of 5-aza; (+): 5-aza treatment. (D)
MSP results in HCC cells. MSP: methylation-specific polymerase chain reaction, U: unmethylated alleles; M: methylated alleles; IVD: in
vitro methylated DNA, serves as methylation control; NL: normal lymphocytes DNA, serves as unmethylation control. (E) Representative
MSP results in primary HCC. (F) Kaplan-Meier survival results showing the association between KCTD8 methylation and overall survival

in HCC patients (n =117, p = 0.0095).

3.4. KCTDS8 interacted with IMPDH?2 in Bel-7405 &
PLC/PRF5 cells

The mechanism of KCTD8 in HCC was further explored
with immunoprecipitation (IP) assay and mass spectrom-
etry. An extra distinguishable band was excised for mass
spectrometry analysis from KCTD8 re-expressed Bel-7405
cells (Figure 3A). Among the proteins in the complex
pulled down by the KCTD8 antibody, IMPDH2 exhibited
the highest score (Supplementary Table S1). Utilizing Co-
IP and reciprocal Co-IP assay, the interaction of KCTD8
and IMPDH2 was further validated in both KCTD8 re-
expressed Bel-7405 and PLC/PRF5 cells (Figure 3B).

3.5. KCTD8 inhibited PI3K/AKT signaling by
interacting with IMPDH2

IMPDH2 has been found to play important roles in
PI3K/AKT, Wnt signaling pathways and metabolism in
human cancers [40-44]. To explore the possible signaling
of KCTD8 involved in HCC cells, the proteins in the
complex were analyzed. After excluding keratin and
other cytoskeletal proteins, the remaining proteins were
more frequently related to PI3K/AKT signaling pathway
(Supplementary Table S1) [40-43,45-96]. Previous studies
have demonstrated the interaction between KCTD8 and
KCTD5, and KCTD5 was observed to inhibit PI3K/AKT
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Table 1. Correlation of KCTD8 methylation with clinic-pathological features of patients in HCC (n = 232).

Methylation status

Clinical parameter No. Unmethylated Methylated p-value
232 n =128 (55.12%) n = 104 (44.83%)

Gender

Male 198 1 87 0.512

Female 34 17 17

Age

<60 151 87 64 0.307

>60 81 4 40

Differentiation

Well/moderately 162 88 74 0.692

Poorly 70 40 30

TNM stage

1/ 97 62 35 0.0232

/v 135 66 69

Lymph node metastasis

No 209 118 91 0.235

Yes 23 10 13

Tumor size

<5cm 62 34 28 0.951

>5cm 170 94 76

Liver cirrhosis

No 59 33 26 0.892

Yes 173 95 78

?p values are obtained from x? test, significant difference.

p < 0.05.

Table 2. Univariate and multivariate analysis of KCTD8 methylation status with 5-year overall survival in HCC patients

(n=117).

Clinical parameter

Univariate analysis

Multivariate analysis

HR (95%Cl) p-value HR (95%Cl) p-value
Gender (male vs. female) 1.017 (0.432,2.397) 0.969
Age (>60 vs.<60 years) 0.796 (0.426,1.489) 0.475
Tumor size (>5 vs. <5cm) 1.540 (0.799,2.968) 0.197
Differentiation (low vs. high or middle 1.461(0.816,2.616) 0.202
differentiation)
TNM stage (lll/1V vs. I/11) 2.925(1.515,5.649) 0.0012 2.704 (1.392,5.252) 0.003°
Lymph node metastasis (Yes vs. No) 2.074 (0.642,6.699) 0.222
KCTD8 (methylation vs. unmethylation) 2.087 (1.171,3.718) 0.0132 1.837(1.025,3.293) 0.041°
Liver cirrhosis (Yes vs. No) 1.024 (0.521,2.012) 0.946

ap < 0.05.
bp <0.01.
HR: Hazard ratio.

signaling [37,38]. Therefore, we focused on the PISK/AKT
signaling. Reduced levels of PI3K1108, p-AKT and p-
mMTOR were observed with KCTD8 forced expression in
Bel-7405 and PLC/PRFS5 cells compared with unexpressed
cells, indicating the inhibitory role of KCTD8 in PI3K/AKT
signaling (Figure 3C & D). To further validate the effect
of KCTD8 on PI3K/AKT pathway, NVP-BEZ235, a dual
inhibitor of PI3K/mTOR was used. Before and after treat-
ment with NVP-BEZ235, the OD values were 0.797 4 0.024
vs. 0.670 £+ 0.020 (p < 0.0001) and 0.881 + 0.034
vs. 0.754 + 0.008 (p < 0.0001) in KCTD8 unexpressed
Bel-7405 and PLC/PRF5 cells, respectively (Figure 3 E).
Without and with NVP-BEZ235 treatment, the OD values
were 0.656 + 0.015 vs. 0.651 4+ 0.018 (p > 0.05) and
0.732 + 0.019 vs. 0.710 + 0.028 (p > 0.05) in KCTD8

re-expressed Bel-7405 and PLC/PRF5 cells, respectively
(Figure 3E). These findings provided more evidence for
the inhibitory function of KCTD8 in PI3K/AKT signaling.
These results were validated by detecting the major
components at the protein level. After treatment with
NVP-BEZ235, the levels of PI3K11083, p-AKT and p-mTOR
were decreased in KCTD8 silenced Bel-7405 and PLC/PRF5
cells, whereas without obvious changes in KCTD8 re-
expressed cells (Figure 3F & G).

To clarify the inhibitory role of KCTD8 on
PI3K/AKT/mTOR signaling through IMPDH2, siRNA
knockdown technique was employed. The knockdown
efficiency of siRNA was shown in Figure 3H & I. In KCTD8
methylation silenced HCC cells, PI3K1108, p-AKT and p-
mTOR were decreased by knocking down IMPDH2, while
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Figure 2. The effect of KCTD8 on cell proliferation, migration, invasion and apoptosis. (A) MTT assay showing the effect of KCTD8 on the
cell proliferation of Bel-7405 and PLC/PRF5 cells. (B) Effect of KCTD8 on colony formation in Bel-7405 and PLC/PRF5 cells. The average
number of clones was represented by the bar diagram. Scale: 10 mm. (C) Transwell assay showing the effect of KCTD8 on cell migration
and invasion for Bel-7405 and PLC/PRF5 cells. The average number of migration cells was presented by a bar diagram. Scale: 100 m.
(D) western blots showing the levels of MMP2, MMP7 and MMP9 in KCTD8 unexpressed and re-expressed HCC cells. B-actin served as
control. The histogram showing the statistical analysis of the indicated relative protein expression level. (E) Flow cytometry assay
showing the effect of KCTD8 on apoptosis in HCC cells. The average percentage of apoptotic cell was presented by a bar diagram. (F)
The levels of caspase-3, cleaved caspase-3, BAX and BCL-2 in KCTD8 unexpressed and over-expressed cells. The histogram showing the
statistical analysis of the indicated relative protein expression level. ns: no significance. Each experiment was repeated in triplicate.

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Figure 2. The effect of KCTD8 on cell proliferation, migration, invasion and apoptosis. (A) MTT assay showing the effect of KCTD8 on the
cell proliferation of Bel-7405 and PLC/PRF5 cells. (B) Effect of KCTD8 on colony formation in Bel-7405 and PLC/PRF5 cells. The average
number of clones was represented by the bar diagram. Scale: 10 mm. (C) Transwell assay showing the effect of KCTD8 on cell migration
and invasion for Bel-7405 and PLC/PRF5 cells. The average number of migration cells was presented by a bar diagram. Scale: 100 m.
(D) western blots showing the levels of MMP2, MMP7 and MMP9 in KCTD8 unexpressed and re-expressed HCC cells. B-actin served as
control. The histogram showing the statistical analysis of the indicated relative protein expression level. (E) Flow cytometry assay
showing the effect of KCTD8 on apoptosis in HCC cells. The average percentage of apoptotic cell was presented by a bar diagram. (F)
The levels of caspase-3, cleaved caspase-3, BAX and BCL-2 in KCTD8 unexpressed and over-expressed cells. The histogram showing the
statistical analysis of the indicated relative protein expression level. ns: no significance. Each experiment was repeated in triplicate
(cont.).

*p < 0.05; **p < 0.01; **p < 0.001; ****p < 0.0001.

no obvious change was found in KCTD8 re-expressed  3.6. KCTD8 suppressed BEL-7405 cell xenografts
cells (Figure 3J & K). No obvious changes in the total levels growth

of AKT or mTOR were observed whether IMPDH2 was
knocked down or not. The results suggest that KCTD8
inhibits PI3K/AKT/mTOR signaling pathway by interacting
with IMPDH2.

The function of KCTD8 in vivo was investigated by
employing xenograft mice. The tumor volume was
656.28 4 104.44 mm? vs. 116.62 4 44.30 mm? (Figure 4B,
p < 0.0001) and the tumor weight was 0.24 4+ 0.03 g
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vs. 0.05 £ 0.01 g (Figure 4C, p < 0.0001), before 4. Discussion
and after re-expressing KCTD8 in BEL-7405 cells. The
tumor volume and weight were reduced significantly by
expressing KCTD8. Additionally, immunohistochemistry
staining showed reduced levels of PI3K1108, p-AKT, p-
mTOR and ki67 by re-expressing KCTD8 in xenograft
tumors (Figure 4D & E), demonstrating the inhibitory
effect of KCTD8 on PI3K/AKT signaling in vivo.

With the exhaustion of genomic resources, it is neces-
sary to dig the mechanism of cancer-related signaling
regulation and to widen the application of DNA and
protein modifications in the field of precision medicine.
Epigenetic dysregulation has been regarded as one
of the major causes of cancer initiation and progres-
sion [18,97-99]. Epigenetic drugs (epi-drugs) have been
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Figure 3. KCTD8 suppressed PI3K/AKT pathway by interacting with IMPDH2. (A) Polyacrylamide gel showing the results of
immunoprecipitation with KCTD8 antibodies in Bel-7405 cells. The red arrow showing the distinct band in KCTD8 expressed cells. (B)
IMPDH2 was validated to be the binding protein of KCTD8 by Co-IP (Up) and reciprocal Co-IP (down). (C) The levels of IMPDH2,
PI3K1108, p-AKT, AKT, p-mTOR and mTOR in KCTD8 unexpressed and re-expressed HCC cells. (D) The histogram showing the statistical
analysis of the relative protein expression level in (C). (E) MTT assay showing the effects of KCTD8 and NVP-BEZ235 on the cell
proliferation of HCC cells. NVP-BEZ235: a dual PI3K/mTOR inhibitor; Vector: KCTD8 unexpressed control cells; Vector +: KCTD8
unexpressed control cells treated with NVP-BEZ235 (10 nM); KCTD8: KCTD8 over-expressed cells; KCTD8+: KCTD8 over-expressed cells
treated with NVP-BEZ235. (F) western blot showing the levels of PI3K1108, p-AKT, AKT, p-mTOR and mTOR in NVP-BEZ235 treated and
untreated HCC cells. (G) The histogram showing the statistical analysis of the indicated relative protein expression level in (F). (H)
western blot showing the efficiency of siRNA for IMPDH2 knockdown. Scrambled: siRNA negative control; siRNA#1, siRNA#2 and
siRNA#3: siRNA for IMPDH2. (I) The histogram showing the statistical analysis of the relative IMPDH2 expression level after knockdown.
(J) The levels of PI3K110., p-AKT, AKT, p-mTOR and mTOR before and after transfection with silMPDH2#3. (K) The histogram showing
the statistical analysis of the indicated relative protein expression level in (J). ns: no significance. Each experiment was repeated in
triplicate.

*p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 3. KCTD8 suppressed PI3K/AKT pathway by interacting with IMPDH2. (A) Polyacrylamide gel showing the results of
immunoprecipitation with KCTD8 antibodies in Bel-7405 cells. The red arrow showing the distinct band in KCTD8 expressed cells. (B)
IMPDH2 was validated to be the binding protein of KCTD8 by Co-IP (Up) and reciprocal Co-IP (down). (C) The levels of IMPDH2,
PI3K1108, p-AKT, AKT, p-mTOR and mTOR in KCTD8 unexpressed and re-expressed HCC cells. (D) The histogram showing the statistical
analysis of the relative protein expression level in (C). (E) MTT assay showing the effects of KCTD8 and NVP-BEZ235 on the cell
proliferation of HCC cells. NVP-BEZ235: a dual PI3K/mTOR inhibitor; Vector: KCTD8 unexpressed control cells; Vector 4-: KCTD8
unexpressed control cells treated with NVP-BEZ235 (10 nM); KCTD8: KCTD8 over-expressed cells; KCTD8+: KCTD8 over-expressed cells
treated with NVP-BEZ235. (F) western blot showing the levels of PI3K1108, p-AKT, AKT, p-mTOR and mTOR in NVP-BEZ235 treated and
untreated HCC cells. (G) The histogram showing the statistical analysis of the indicated relative protein expression level in (F). (H)
western blot showing the efficiency of siRNA for IMPDH2 knockdown. Scrambled: siRNA negative control; siRNA#1, siRNA#2 and
siRNA#3: siRNA for IMPDH2. (I) The histogram showing the statistical analysis of the relative IMPDH2 expression level after knockdown.
(J) The levels of PI3K1108, p-AKT, AKT, p-mTOR and mTOR before and after transfection with silMPDH243. (K) The histogram showing
the statistical analysis of the indicated relative protein expression level in (J). ns: no significance. Each experiment was repeated in

triplicate (cont.).
*p < 0.05; **p < 0.01; ***p < 0.001.

developed to target regulatory enzymes, including writer
(addition of modifications to DNA or histone), reader
(recognition of epigenetic modifications) and eraser
(removal of DNA or histone modifications) [21,22,100].
The most extensively tested epi-drugs are DNMTs and
histone deacetylase (HDAC) inhibitors. As imprecisely
targeting tumor cells, these drugs are mainly confined
to hematological cancers, and have very limited efficacy
against solid tumors [23,98]. It is desirable to deeper
understand the role of epigenetic regulation in tumor-
related signaling and discover novel abnormal modifica-
tions of components in these pathways to develop novel

therapeutic strategies. Epigenetic silencing of zinc-finger
protein ZFP82 promoted esophageal cancer cell growth
by activating NF-«B signaling pathway [101]. Methylation
of ZNF377 inhibited pyroptosis in multiple types of cancer
cell lines and paved the way for cancer therapy [102].
Epigenetic silencing of JAM3 or ZSCAN23 activated Wnt
signaling pathway in different cancers [103,104]. Tar-
geting cell fate determining signaling pathways or its
compensatory pathways may develop new therapeutic
approaches, by utilizing the epigenetic abnormality in
cancer [23]. Epigenetic silencing tumor suppressors and
dysregulating their related signaling pathways have been
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*p < 0.05; **p < 0.01; ****p < 0.0001.

reported in HCC. However, the biological roles of tumor-
related genes vary depending on their surrounding
microenvironment [105]. Unlike other tumors, epigenetic
changes were not well studied in HCC. The researches on
epigenomic landscape in HCC are very limited [22,106]. To
find novel tumor suppressor and further understand the
mechanisms in HCC may provide more opportunities for
its treatment. The character of KCTD8 was not explored
in HCC. In the present investigation, a high frequency
of KCTD8 methylation and the regulatory role of DNA
methylation were observed. KCTD8 methylation was
associated with TNM stage and poor OS, suggesting that
epigenetic regulation of KCTD8 is involved in HCC pro-
gression. To further elucidate the mechanism of KCTDS,
the biological function was investigated in HCC cells.
Our findings demonstrated that KCTD8 exerted inhibitory
role in cancer development in vitro and suppressed
HCC cell xenografts growth in mice, implicating that
KCTD8 may act as a tumor suppressor in HCC. Co-IP
and mass spectrometry assays were employed to clarify
the mechanism of KCTD8. The interaction of KCTD8
and IMPDH2 was identified and further validated by
western blot and reciprocal IP assay. Notably, IMPDH2 is
reported to be involved in the PI3K signaling pathway.
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Figure 5. The schematic graphic illustrating that epigenetic
silencing of KCTD8 activated PI3K/AKT signaling in HCC.
M: Methylation; U: Unmethylation.

Then, the role of KCTD8 in PI3K signaling was explored
in HCC. The results showed that KCTD8 inhibited PI3K
signaling both in vitro and in vivo. As shown in Graphical
Abstract (Figure 5), PI3K signaling was inhibited by KCTD8
interacting with IMPDH2, it was activated by IMPDH2 after
epigenetic silencing of KCTDS.

The function of PI3K signaling pathway is very com-
plex. It involves in cell proliferation, apoptosis, chemo-
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resistance, DDR and other biological behaviors [107].
In various cancers, PI3K signaling may join distinct
regulatory networks through crosstalk under the different
circumstance [108-110]. Therefore, it is crucial to compre-
hensively analyze the gene regulatory networks in HCC
to develop new therapeutic approaches. Our results pave
the way for precision medicine in HCC.

Utilizing abnormal epigenetic events for cancer ther-
apy has been becoming an important topic. The appli-
cation of synthetic lethality principle has revolutionized
cancer therapeutic strategy, killing cancer cells specif-
ically, without hurting normal cell [23,111]. Epigenetic
regulation of key components in different signaling
pathways makes epigenetic defects more important for
precision medicine, including cell fate and DNA damage
repair genes [21]. The precise cancer DNA methylome is
still waiting for completion. Finding key components in
these pathways and deep understanding their roles, as
well as epigenetic regulation, may offer more opportuni-
ties for epigenetic-based synthetic lethality strategy.

5. Conclusion

In summary, our findings revealed the regulatory role
of DNA methylation in KCTD8 expression. Methylation
of KCTD8 was a potential independent poor prognostic
marker in HCC. KCTD8 suppressed HCC by inhibiting
PI3K/AKT pathway in vitro and in vivo.

Article highlights

- Epigenetic dysregulation is a new hallmark for cancer therapy.

« Classical epi-drugs are mainly targeting epigenetic regulators,
without tumor cell specificity.

« Deep understanding the role of epigenetic regulation in
cancer-related signaling pathways may provide novel therapeutic
targets.

+ KCTD8 is frequently methylated in HCC.

- KCTD8 methylation is an independent poor prognostic biomarker
in HCC.

+ KCTD8 inhibits HCC cells growth both in vitro and in vivo.

« Epigenetic silencing of KCTD8 activates PI3K/AKT signaling
pathway in HCC.

+ KCTD8 is a novel tumor suppressor in HCC.
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