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ABSTRACT 
Aim: The aim of current study is to explore the epigenetic changes and function of KCTD8 in human 
hepat oc ellular carcinoma (HCC). 
M aterials & metho ds: HCC cell lines and tissue samples w er e employ ed . Methylation specific PCR, 
flow cytometry, immunoprecipitation and xenograft mouse models w er e used . 
Results: KCTD8 w as methyla ted in 44.83% (104/232) of HCC and its methylation may act as an 
independent poor prognostic marker. KCTD8 expression was regulated by DNA methylation. KCTD8 
suppressed HCC cell growth both in vitro and in vivo via inhibiting PI3K/AKT pa thw ay. 
Conclusion: Methylation of KCTD8 is an independent poor prognostic marker, and epigenetic 
silencing of KCTD8 increases the malignant tendency in HCC. 
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. Background 

epat oc ellular carcinoma (HCC) is a highly fatal malig-
ant cancer with 5-year overall survival (OS) of approx-

mately 18% [ 1 , 2 ]. The infection of Hepatitis B and C
iruses was considered to be the main cause of HCC. HBV
 accine inocula tion and an tivir al ther apy hav e decr eased
he incidence apparently [ 2 ]. However, other risk fac-
 ors, such as nonalc oholic st eat ohepatitis and alc oholic
iv er disease, ar e becoming incr easingly important [ 3 ].

olecular alterations in genomics have been extensively
tudied to develop targeting therapeutics in various
ancers. How ev er, the genomic-based pr ecision has not
een well established in HCC and most mutations are
ot actionable [ 4–6 ]. Sorafenib was the first appr ov ed
ulti-target tyrosine kinase inhibitor for advanced-stage
CC. Then, lenv a tinib w as appr ov ed for first -line ther apy.
egorafenib and cabozantinib w er e appr ov ed for second-

ine trea tmen t. However, the efficacy of these inhibitors
s modest in improving pa tien t out c omes [ 5 , 7 , 8 ]. Find-
ng new curative therapeutic approaches is urgently
eeded. Better understanding the mechanism of HCC
ay develop novel therapeutic strat eg ies. A few sig naling

a thw a ys ha ve been found pla ying important roles in
CC initiation and pr ogr ession, such as R as/R af/MAPK,
I3K/Akt/mTOR, JAK/STAT, Wn t/ β-ca t enin, Hippo, Not ch
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and Hedgehog pa thw ays [ 5 , 9 ]. It is noticeable that certain
signaling pa thw a ys ma y exhibit conflicting roles under
div erse envir onmen ts in HCC, such as Wn t/ β-ca tenin and
NF- κB signaling pa thw ays [ 10 ]. The contradictory effects
may be attributed to distinct mechanisms, such as NF-
κB signaling, which is inv olv ed in both inflammation
and DNA damage repair (DDR). Furthermore, in addition
to driver gene mutations that activate cancer-related
signaling pa thw ays, the epigenetic silencing of tumor
suppressor gene expression can also c ontribut e t o car-
cinogenesis by disrupting signaling transduction [ 11–13 ].
Dysregulation of these signaling pa thw ays r epr esents a
major mechanism of cancer development. R emar kable
efficacy was observed in lung cancer with EGFR mutation
by targeting tyrosine kinase. Most of targeting drugs
appr ov ed in clinic w er e mainly specific to proteins
encoded by mutated oncogenes. How ev er, therapeutic
targeting some of oncogenes was challenged due to lack
of enzymatic activity or proper binding sites for drugs,
such as transcription factor MYC [ 14–17 ]. Gene mutation
and epigenetic abnormality of tumor suppressors were
usually r egar ded as undruggable [ 18–20 ]. Epigenetic
alterations ar e mor e fr equently in canc er c ompared
with driver gene mutations [ 21 ]. Epigenetic regulation
plays important roles in gr owth-r ela ted pa thw ays by
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egulating the expression of its key component. Similar
ith genetic alterations, epigenomic changes may also

ause peculiar phenotypes in canc er. A s epigenetic
odifica tions are poten tially r ev ersable, therapeutics by

argeting epigenetic regulating enzymes are becoming
romising anticancer trea tmen t. However, the toxicity of

hese reagen ts w as constan tly reported in pre-clinical and
linical trials [ 22 ]. Epigenetic-based “synthetic lethality”

nnov a ted the strategy of targeting therapy [ 23–26 ].
o exploit more effective ther apeutic str at eg ies, it is
ec essary t o clarify the regulat ory network of cell fate or
DR-relat ed sig naling pa thw ays, as well as the aberran t
lterations of their key components in cancer. 

The potassium channel tetramerization domain
KCTD) family is composed of 25 members [ 27 ]. At
he N-terminal, these proteins share a conserved
TB (Broad complex, Tr amtr ak and Bric-a-br ac)/POZ

poxvirus zinc finger) domain, which is a motif (95
mino acids) to perform biological function and
r otein-pr otein interaction [ 28–31 ]. The C-terminal
equences of KCTD proteins are highly variable [ 32 ].
ost studies related to these proteins have focused
ainly on the pathophysiology of neur odev elopmental

iseases [ 31 , 33 , 34 ]. The biological functions of most
CTD family members are not well characterized. A few
CTD members have been identified to participate in
evelopment and tumorigenesis by involving in different
ignal transduction pa thw ays [ 27 ]. KCTD9 was found
o suppress colorectal cancer growth by inhibiting

nt signaling, while KCTD12 was shown to inhibit AKT
ignaling in breast cancer [ 35 , 36 ]. Additionally, KCTD5
as observed to inhibit the PI3K/AKT pa thw ay in HEK293T

ells and KCTD5 was int eract ed with KCTD8 through the
-terminal [ 37 , 38 ]. The methylation status of KCTD8 in
reast cancer was detected by utilizing a combined
ppr oach inv olving the methyl-CpG enrichment
echnique and microarr ay-based compar ative genomic
ybridization assay [ 39 ]. In this study, the mechanism
nd expr ession r egulation of KCTD8 w er e inv estigated in
CC. 

. Materials & methods 

.1. HCC cell lines & primary tumor samples 

el-7405, PLC/PRF5, HCCLM3, SNU449 and Huh7 cell lines
 er e utilized . All cell lines w er e cultur ed in RPMI-1640
edium (Gibco, #31800089) or DMEM (Gibco, #12100061)

upplemented with 1% penicillin/str eptomy cin solution
Biosharp, #BL505A) and 10% fetal bovine serum. STR pro-
ling for authen tica tion and myc oplasma det ection w er e
erformed in these c ells. A t otal of 232 cases of primary
CC without chemo or r adiother apy before surgery were
 ollect ed in the Department of Hepatobiliar y Surger y of
Chinese PLA General Hospital from 2009 to 2019. Fresh
HCC tissue samples w er e immediately snap-fr o z en and
st ored at -80 ◦C aft er surgery. All samples obtained w er e
diagnosed as primary HCC by pathological manifestation.
TNM stage was performed by the 8th Edition of AJCC. All
prot oc ols were appro ved b y the Ethics Committee of the
Chinese PLA General Hospital (IRB number: 20090701-
015). 

2.2. RNA preparation, DNA modification & PCR 

amplification 

HCC cells w er e seeded at a density of ∼30% c onfluenc e
for growing 12 h. The medium was changed every
24 h during cell trea tmen t with 2 μM 5-aza (Sigma,
#A3656) for 96 h. TRIzol (Invitrogen, #15596026) was
utilized to ex trac t total RNA. Five micrograms of RNA was
utilized for synthesizing cDNA (Thermo Fisher Scientific,
#K1691). Each reaction included 20 μl mixture and was
dilut ed t o 100 μl. To avoid experimental bias, 5 reactions
w er e mixed together after cDNA quality assessment.
Primers sequences of KCTD8 for r ev erse transcription
PCR (RT-PCR) are as below: 5 ′ -CAT GGTGGCGT GT AACT CC
T- 3 ′ (forward), 5 ′ - GGGAGT GCTT GCCT CT GAAT-3 ′ (r ev ers
e). The GAPDH primer sequences used for internal control
and the detailed thermal cycling parameters w er e as
previously described [ 25 ]. 

Genomic DNA ex trac tion and sodium bisulfite modi-
fication w er e performed as pr eviously [ 25 ]. Methylation
was det ect ed b y methylation-specific PCR (MSP). T he MSP
primer sequences are as below: 5 ′ -CGT TGTT TCGAAT TT TG
AGCGGGGTC- 3 ′ (methylation sense), 5 ′ - TA CA CTTT CT CGT
TCC CGAAAC CC G-3 ′ (methyla tion an tisense); 5 ′ -T GT TGTT
GT TT TGAATT TT GAGT GGGGTT -3 ′ (unmethylation sense), 
5 ′ -ACTA CA CTTT CT CATT CC CAAAAC CCA-3 ′ (unmethylatio
n antisense). The amplification conditions w er e described
previously [ 25 ]. 

2.3. Construction of KCTD8 vectors & identification 

of KCTD8 expressing monoclonal cells 

The human KCTD8 (GenBank ac c ession number:
NM_386617) coding region was applied for the
construction of expr ession v ector with pCDH-CMV-
MCS-pur o plasmid . Primers for amplification w er e
designed as below: 5 ′ -T GCTCTAGACT AT GGCT CT GA
AGGACAC-3 ′ (forward), 5 ′ C GGGATC CCTATAAC CCATA
CTT CT GCAAC-3 ′ (r ev erse). KCTD8 expr essing or empty
vect ors with packag ing plasmids (pLP1, pLP2 and VSVG)
w er e transfected into HEK293T cells with Lipofectamine
3000 reagent (Invitrogen, #L3000008) following the
manufac turer’s instruc tions. The len tiviral superna tan t
was c ollect ed aft er culturing the c ells for 48 h and
then was filtered through a 0.22 μm filter membrane.
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ubsequen tly, the len tiviral superna tan t w as added
nto Bel-7405 and PLC/PRF5 cell culture medium at a
atio of 1:1. The polybrene (Sigma-Aldrich, #H9268) was
dded into the culture medium at a final c onc entration of
0 μg/ml to enhance transfection efficiency. The medium
as replaced with fresh RPMI-1640 after growing for 12 h.
ells w er e tr eated with pur omy cin (MCE, #HY-15695)

or 3 days at a concen tra tion of 1.0 μg/ml. Limited
ilution assay was utilized to obtain monoclonal cells

or expression of KCTD8, which was further validated by
estern blot. 

.4. SiRNA knockdown technique 

NAiMax (Invitrogen, #13778075) was utilized to
nock do wn IMPDH2. T he targeting siRNA sequences
f IMPDH2 w er e as below: sense- siRNA#1: 5 ′ - GGA
AGACCUGAAGAAGAATT- 3 ′ ; antisense- siRNA#1:
 
′ - UUCUUCUUCAGGUCUGUCCTT- 3 ′ ; sense- siRNA#2:
 
′ -GC AGCC AGAA CA GA UA UUUTT-3 ′ ; antisense-siRNA#2:
 
′ - AAAUAUCUGUUCUGGCUGCTT- 3 ′ ; sense- siRNA#3:
 
′ -GC CAGGACAUUGGUGC CAATT-3 ′ ; antisense-siRNA#3:
 
′ - UUGGCACCAAUGUCCUGGCTT- 3 ′ . The efficiency was
 alida ted by western blot. 

.5. MTT, colony formation & transwell assays 

el-7405 and PLC/PRF5 cells with or without KCTD8
xpr ession w er e pla ted in to 96-well pla tes a t an initial
ensity of 2000 cells per w ell . The M TT assay was utilized

o ev alua te the ability of cell proliferation at the time point
f 0, 24, 48, 72 and 96 h (KeyGEN Biotech, # KGT5251).
he OD values w er e det ect ed at a wavelength of 490 nm.
or the colony formation assay, KCTD8 silenced and re-
xpressed Bel-7405 and PLC/PRF5 cells were inoculated

nto 6-well plates at a density of 500 cells each w ell . Cells
 er e fixed and stained with crystal violet 12 days after

eeding (Solarbio, #C8470). 
For the migration study, 3 × 10 4 cells w er e added to

he upper chamber (Corning, #3422) and grown for 24 h.
ells tha t migra ted to the lower surface of the membrane
 er e fixed and stained following previous description

nd images w er e taken under a microscope. For the
nvasion assay, cells (3 × 10 4 ) w er e suspended into the
pper chamber of the Transwell appara tus coa ted with
atr igel (B ect on-Dickinson Bioscienc es, #356234), and

imilar pr ocedur es with migration assay w er e performed .
ll the experiments w er e triplicated . 

.6. Western blot & immunoprec ipita tion assays 

etailed pr ocedur e of w ester n blot was descr ibed in
revious study [ 25 ]. Antibodies used were listed as
elow: KCTD8 (Lifespan, #LS-C165463-400), MMP2 (Pro-
 eint ech, #10373-2-P), MMP7 (Prot eint ech, #10374-2-
P), MMP9 (Prot eint ech, #27306-1-AP), caspase-3/cleaved
caspase-3 (Prot eint ech, #19677-1-AP), BAX (Cell Sig nal-
ing Technology, #2772S), BCL-2 (Cell Signaling Technol-
ogy, #4223S), IMPDH2 (Prot eint ech, #67663-1-Ig), AKT
( Abcam, #ab8805), Ser473-p-AKT (C ell Signaling Tech-
nology, #4060S), PI3K110 β (Prot eint ech, #67121-1-Ig), β-
actin (Beyotime, #AF0003), mTOR (Cell Signaling Technol-
ogy, #2972S) and Ser2448-p-mTOR (ZENBIO, #R381548).
IP technique is br iefly descr ibed as below. Cell ly sat es
w er e incubated with an antibody overnight and then
incubat ed with prot ein A/G agarose beads (YEASEN,
#36403ES08) for 4 h at 4 ◦C. The beads w er e c ollect ed and
washed to obtain the c o-precipitat ed prot eins. Products
w er e separated and examined by SDS-PAGE and stained
with silver. The bands that were clearly distinguishable
bands in the experimental group but not in the IgG group
w er e excised for further mass spectrometry analysis. 

2.7. Ap optosis a nalysis 

FACScan Flow Cyt omet er was utilized for apoptosis
analysis . C ells w er e stained with the A nne xin V-FITC/PI
Apopt osis Det ec tion Kit and followed the manufac turer’s
instructions (KeyGen Biotech, #KGA106). The experiments
w er e triplicated . 

2.8. HCC cell xenograft tumor model 

Nude mice w er e or der ed fr om SBF Biotech (Beijing, China)
and grouped randomly (n = 6). Bel-7405 cells (3 × 10 6 )
without or with KCTD8 expression were inoculated into
mice subcutaneously. The inoculation position was in
right side of dorsal. The volume was calculated using
the formula: V = L × W 

2 /2. Tumor volume was exam-
ined every 3 days. The levels of KCTD8 (Lifespan, #LS-
C165463-400), PI3K110 β (Prot eint ech, #67121-1-Ig), p-
AKT (Cell Signaling Technology, #4060S), p-mTOR (ZEN-
BIO, #R381548) and ki67 (ZSBIO, TA800648) in xenografts
w er e assessed by IHC. They w er e dilut ed t o 1:50, 1:400,
1:500, 1:200 and 1:500, r espectiv ely. H scor e was used
to quantify the degree of immunostaining ac c ording t o
the staining intensity and the percentage of positive
cells. All the animal experiment prot oc ols were performed
ac c ording t o the A nimal E thics Committee at Chinese PLA
General Hospital (approval number: 2022-X18-72). 

2.9. St atistical analy sis 

SPSS 21.0 software and GraphPad Prism 8.0 were utilized
for statistical analysis. The chi-square test was performed
for independent dichotomous variables. For difference
comparison in two experimental groups, the student’s
t test was employ ed . Kaplan-Meier and log-rank tests
w er e used for the OS analysis . C ox proportional hazards
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HCC cells. 
 egr ession models w er e used t o assess risk fact ors for OS.
 < 0.05 indicated a statistically significant difference. 

. Results 

.1. The regulation of KCTD8 expression by DNA 

methylation 

o assess the potential epigenetic regulation of KCTD8
xpression in HCC, the Cancer Genome Atlas (TCGA)
a tabase ( h ttp:// xena.ucsc.edu/ ) was utilized. KCTD8
RNA and the methyla tion sta tus of CpG sites around

he transcription start site (TSS) w er e ex trac ted from
15 cases of HCC. A significant inverse association was

ound between KCTD8 expression and methylation of the
r omoter r egion (cg07650252, p = 0.0345; cg12300353,
 = 0.0053; Figure 1 A & B). Subsequently, KCTD8
xpression and promot er reg ion methylation status w er e
ssessed using RT-PCR and MSP in HCC cells. Loss of
CTD8 expression was found in Bel-7405, PLC/PRF5,
CCLM3, SNU449 and Huh7 cells, and c omplet e methy-

ation of the pr omoter r egion was observ ed in these
ells. The expression of KCTD8 was induced by 5-aza-2 ′ -
eoxyc ytidine (5-aza), a DNA meth yltransf erase (DNMT)

nhibitor ( Figure 1 C & D). The afore mentioned findings
uggest that KCTD8 expression is regulated by methyla-
ion in the promoter region in HCC cells. 

.2. Methylation of KCTD8 was a p o or pro gnostic 
marker in HCC 

o ev alua te the sta tus of KCTD8 methylation, MSP assay
as utilized. It was observed that KCTD8 was methy-

ated in 44.83% (104/232) of HCC ( Figure 1 E). KCTD8
ethyla tion w as significan tly associa ted with TNM stage

 p = 0.023), while there was no significant association
etween KCTD8 methylation and age, gender, tumor size,
ifferen tia tion, metastasis of lymph node or liver cir r hosis

all p > 0.05, Table 1 ). For 117 cases of primary HCC
ith available follow-up data, 49 cases w er e methylated

nd 68 cases w er e unmethylated . The median age was
5 years old (range 29–71 years old), and the ratio
f men to women was 6.31. The Kaplan-Meier model
nd Cox proportional hazards model were utilized to
nalyze the association of methylation with survival. In
he KCTD8 unmethylation group, the mean survival time
 as 52 mon ths (95% CI 45–60 mon ths), while in the

CTD8 methylation group, the mean survival time was
4 months (95% CI 24–43 months). The OS was longer

n KCTD8 unmethylated patients than in methylated
a tien ts ( Figure 1 F, p = 0.0095). KCTD8 methylation was
 ev ealed to be an independent poor prognostic marker
c c ording t o the multiv aria t e analy sis ( Table 2 , p = 0.041).
3.3. KCTD8 suppressed HCC cell proliferation, 
colony formation, migration & invasion & 

induced a p optosis 

To investigate the function of KCTD8 in HCC, KCTD8
stably expressed cells were established in KCTD8 silenced
Bel-7405 and PLC/PRF5 c ells. MTT and c olon y f ormation
assays w er e c onduct ed t o ev alua te the role of KCTD8 in
c ell proliferation. A s shown in Figure 2 A, the OD values
of the KCTD8 silenced and r e-expr essed Bel-7450 and
PLC/PRF5 cells w er e 0.919 ± 0.027 vs. 0.721 ± 0.034
and 0.934 ± 0.033 vs. 0.675 ± 0.033, r espectiv ely (both
p < 0.0001). The OD value was reduced significantly by
r e-expr essing KCTD8, indicating that KCTD8 inhibits cell
proliferation. Without and with expression of KCTD8 in
these cells, the clone number was 353 ± 16 vs. 269 ± 19
and 415 ± 23 vs. 317 ± 26, r espectiv ely ( Figur e 2 B,
both p < 0.01). Clone number was decreased in KCTD8
r e-expr essed Bel-7405 and PLC/PRF5 cells compared
with unexpressed cells. These findings demonstrate that
KCTD8 exerts a suppr essiv e effect on cell clonogenicity in
HCC. 

In Transwell assay, the mig rat ory c ells w er e 249 ± 32
vs. 110 ± 31 ( p < 0.01) in Bel-7405 cells and 122 ± 20
vs. 55 ± 4 ( p < 0.01) in PLC/PRF5 cells without and with
KCTD8 expr ession. A decr eased number of mig rat ory c ells
was observed by forced KCTD8 expression ( Figure 2 C). For
KCTD8 silenced and forced expression cells, the number
of invasive cells was 173 ± 14 vs. 64 ± 20 ( p < 0.01)
in Bel-7405 cells and 123 ± 5 vs. 54 ± 16 ( p < 0.01)
in PLC/PRF5 cells, r espectiv ely. Similarly, r e-expr ession of
KCTD8 resulted in a reduction in the number of invasive
cells, indicating the inhibitory role of KCTD8 in cell inva-
sion ( Figure 2 C). The levels of MMP2, MMP7 and MMP9,
which are the migration and invasion related proteins,
w er e examined . They w er e r educed by r estoration of
KCTD8 expression in Bel-7405 and PLC/PRF5 cells, further
suggesting that KCTD8 suppresses cell migration and
invasion ( Figure 2 D). 

Flow cytometry technique was utilized to analyze
the effect of KCTD8 on apoptosis. The percentage
was 4.56 ± 0.66% vs. 7.04 ± 1.04% ( p < 0.05) and
4.01 ± 0.16% vs. 8.06 ± 0.23% ( p < 0.0001) for apop-
t otic c ells in KCTD8 unexpr essed and r e-expr essed Bel-
7405 cells and PLC/PRF5 cells, r espectiv ely ( Figur e 2 E).
The molecular level of apopt osis-relat ed prot eins was
examined . Incr eased lev els of BAX and cleav ed caspase-
3 w er e observ ed in KCTD8 ov er-expr essed Bel-7405 and
PLC/PRF5 cells, while the level of BCL-2 was reduced
( Figure 2 F), indicating that KCTD8 induc es apopt osis in

http://xena.ucsc.edu/
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Figure 1. Repr esentativ e r esults of KCTD8 expr ession and methyla tion sta tus. (A) The associa tion of KCTD8 mRNA level and 
methyla tion sta tus of CpG sit es around the TSS in HCC samples extract ed from the TCGA database (n = 115). TSS: transcription start 
site. (B) Repr esentativ e scatter plots for KCTD8 expression level and CpG sites methylation level (cg07650252, cg12300353). (C) 
Semi-quantitative RT-PCR showing the expression of KCTD8 in HCC cells before and after 5-aza trea tment . 5-aza: 
5-aza-2 ′ -deoxycytidine; GAPDH: internal control for RT-PCR; H2O: double distilled water; (-): absence of 5-aza; ( + ): 5-aza treatment. (D) 
MSP results in HCC cells. MSP: methylation-specific polymerase chain reaction, U: unmethylated alleles; M: methylated alleles; IVD: in 
vitro methylated DNA, serves as methylation control; NL: normal lymphocytes DNA, serves as unmethylation contr ol . (E) Repr esentativ e 
MSP results in primary HCC. (F) Kaplan–Meier survival results showing the association between KCTD8 methylation and overall survival 
in HCC patients (n = 117, p = 0.0095). 
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.4. KCTD8 int eract ed with IMPDH2 in Bel-7405 & 

P LC/P RF5 cells 

he mechanism of KCTD8 in HCC was further explored
ith immunoprecipitation (IP) assay and mass spectrom-

try. A n e xtra distinguishable band was e xcised for mass
pectr ometry analysis fr om KCTD8 r e-expr essed Bel-7405
ells ( Figure 3 A). Among the proteins in the complex
ulled do wn b y the KCTD8 antibody, IMPDH2 exhibited

he highest score ( Supplementary Table S1 ). Utilizing Co-
P and r ecipr ocal Co-IP assay, the interaction of KCTD8
nd IMPDH2 was further validated in both KCTD8 re-
xpressed Bel-7405 and PLC/PRF5 cells ( Figure 3 B). 
3.5. KCTD8 inhibited PI3K/AKT signaling by 
interacting with IMPDH2 

IMPDH2 has been found to play important roles in
PI3K/AKT, Wnt signaling pathways and metabolism in
human cancers [ 40–44 ]. To explore the possible signaling
of KCTD8 inv olv ed in HCC cells, the pr oteins in the
complex w er e analyzed . After excluding keratin and
other cytoskeletal pr oteins, the r emaining pr oteins w er e
mor e fr equently r elat ed t o PI3K/AKT sig naling pa thw ay
( Supplementary Table S1 ) [ 40–43 , 45–96 ]. Previous studies
have demonstrated the interaction between KCTD8 and
K CTD5, and K CTD5 was observed to inhibit PI3K/AKT
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Table 1. Correlation of KCTD8 methylation with clinic-pathological features of patients in HCC (n = 232). 

Methyla tion sta tus 

Clinical parameter No. Unmethylated Methylated p -value 
232 n = 128 (55.12%) n = 104 (44.83%) 

Gender 
Male 198 111 87 0.512 
Female 34 17 17 
Age 
< 60 151 87 64 0.307 
≥60 81 41 40 
Differ entia tion 
Well/moderately 162 88 74 0.692 
Poorly 70 40 30 
TNM stage 
I/II 97 62 35 0.023 a 

III/IV 135 66 69 
Lymph node metastasis 
No 209 118 91 0.235 
Yes 23 10 13 
Tumor size 
< 5 cm 62 34 28 0.951 
≥5 cm 170 94 76 
Liver cirrhosis 
No 59 33 26 0.892 
Yes 173 95 78 
a p values are obtained from χ 2 test, significant difference. 
p < 0.05. 

Table 2. Univariate and multivariate analysis of KCTD8 methylation status with 5-year overall survival in HCC patients 
(n = 117). 

Clinical parameter Univariate analysis Multivariate analysis 

HR (95%CI) p -value HR (95%CI) p -value 

Gender (male vs. female) 1.017 (0.432,2.397) 0.969 
Age ( ≥60 vs. < 60 years) 0.796 (0.426,1.489) 0.475 
Tumor size ( ≥5 vs. < 5 cm) 1.540 (0.799,2.968) 0.197 
Differ entia tion (low vs. high or middle 
differentiation) 

1.461 (0.816,2.616) 0.202 

TNM stage (III/IV vs. I/II) 2.925 (1.515,5.649) 0.001 b 2.704 (1.392,5.252) 0.003 b 

Lymph node metastasis (Yes vs. No) 2.074 (0.642,6.699) 0.222 
KCTD8 (methylation vs. unmethylation) 2.087 (1.171,3.718) 0.013 a 1.837 (1.025,3.293) 0.041 a 

Liver cirrhosis (Yes vs. No) 1.024 (0.521,2.012) 0.946 
a p < 0.05. 
b p < 0.01. 
HR: Hazard ratio. 
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ignaling [ 37 , 38 ]. Ther efor e, w e focused on the PI3K/AKT
ig naling. Reduc ed levels of PI3K110 β , p-AKT and p-
TOR w er e observ ed with KCTD8 for ced expr ession in

el-7405 and PLC/PRF5 cells compared with unexpressed
 ells, indicating the inhibit ory role of KCTD8 in PI3K/AKT
ignaling ( Figure 3 C & D). To further v alida te the effect
f KCTD8 on PI3K/AKT pa thw ay, NVP-BEZ235, a dual

nhibitor of PI3K/mTOR was used . Befor e and after treat-
ent with NVP-BEZ235, the OD values w er e 0.797 ± 0.024

s. 0.670 ± 0.020 ( p < 0.0001) and 0.881 ± 0.034
s. 0.754 ± 0.008 ( p < 0.0001) in KCTD8 unexpressed
el-7405 and PLC/PRF5 cells, r espectiv ely ( Figur e 3 E).
ithout and with NVP-BEZ235 trea tmen t, the OD v alues
 er e 0.656 ± 0.015 vs. 0.651 ± 0.018 ( p > 0.05) and

.732 ± 0.019 vs. 0.710 ± 0.028 ( p > 0.05) in KCTD8
r e-expr essed Bel-7405 and PLC/PRF5 cells, r espectiv ely
( Figure 3 E). These findings provided more evidence for
the inhibitory function of KCTD8 in PI3K/AKT signaling.
These r esults w er e v alida t ed by det ecting the major
componen ts a t the pr otein lev el . After tr ea tmen t with
NVP-BEZ235, the levels of PI3K110 β , p-AKT and p-mTOR
w er e decr eased in KCTD8 silenced Bel-7405 and PLC/PRF5
cells, whereas without obvious changes in KCTD8 re-
expressed cells ( Figure 3 F & G). 

To clarify the inhibitory role of KCTD8 on
PI3K/AKT/mTOR signaling through IMPDH2, siRNA
knockdown technique was employ ed . The knockdown
efficiency of siRNA was shown in Figure 3 H & I. In KCTD8
methylation silenc ed HCC c ells, PI3K110 β , p -AKT and p -
mTOR w er e decr eased by k nock ing down IMPDH2, while
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Figure 2. The effect of KCTD8 on cell prolifer ation, mig r ation, inv asion and apoptosis. (A) MTT assay showing the effect of KCTD8 on the 
c ell prolifera tion of Bel-7405 and PLC/PRF5 c ells. (B) Effect of KCTD8 on c olony forma tion in Bel-7405 and PLC/PRF5 c ells. T he a verage 
number of clones was r epr esent ed b y the bar diag r am. Scale: 10 mm. (C) Tr answell assay showing the effect of KCTD8 on cell mig r ation 
and invasion for Bel-7405 and PLC/PRF5 cells. The average number of migration cells was presented by a bar diag r am. Scale: 100 μm. 
(D) western blots showing the levels of MMP2, MMP7 and MMP9 in KCTD8 unexpressed and re-expressed HCC cells. β-actin served as 
contr ol . The histog r am showing the statistical analysis of the indicated r elativ e pr otein expr ession lev el . (E) Flo w cyt ometry assay 
showing the effect of KCTD8 on apoptosis in HCC cells. The average percentage of apoptotic cell was presented by a bar diag r am. (F) 
The levels of caspase-3, cleaved caspase-3, BAX and BCL-2 in KCTD8 unexpressed and over -e xpressed cells. The histog r am showing the 
statistical analysis of the indicated r elativ e pr otein expr ession lev el . ns: no significance. Each e xperimen t was repea ted in triplica te. 
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 



936 J. ZHOU ET AL. 

E

F

KCTD8

ca
sp

as
e-

3

cl
ea

ve
d 

ca
sp

as
e-

3
BAX

BC
L-

2

*

Bel-7405

Vector

* * *

KCTD8

ca
sp

as
e-

3

cl
ea

ve
d 

ca
sp

as
e-

3
BAX

BC
L-

2

0

1

*

R
e

la
ti

v
e

 p
ro

te
in

 l
e

v
e

l

PCL/PRF5
3

Vector

2

0

1

R
e

la
ti

v
e

 p
ro

te
in

 l
e

v
e

l

3

2

* * *

Bel-7405

K
C

T
D

8

V
e

c
to

r

PLC/PRF5

K
C

T
D

8

V
e

c
to

r

KCTD8

Caspase3

Cleaved-
Caspase3

BAX

BCL-2

�-actin

52KD

32KD

21KD

17KD

26KD

42KD

0

2

8

*

P
e

rc
e

n
ta

g
e

 o
f

a
p

o
p

to
ti

c
 c

e
ll

s
 (

%
)

Bel-7405
10

4

6

KCTD8Vector

0

2

8

****

P
e

rc
e

n
ta

g
e

 o
f

a
p

o
p

to
ti

c
 c

e
ll

s
 (

%
)

PLC/PRF5
10

4

6

KCTD8Vector

B
e

l-
7

4
0

5

104

1
0

3
1

0
4

1
0

5
1

0
6

105

Q1-UL

(0.15%)

Q1-UR

(3.04%)

Q1-LL

(95.95%)

Q1-LR

(0.84%)

106 107 104

1
0

3
1

0
4

1
0

5
1

0
6

105

Q1-UL

(0.27%)

Q1-UR

(7.05%)

Q1-LL

(91.56%)

Q1-LR

(1.12%)

106 107

P
L

C
/P

R
F

5

103

1
0

2
1

0
3

1
0

4
1

0
5

104

Q1-UL

(2.68%)

Q1-UR

(3.06%)

Q1-LL

(93.16%)

FITC

P
I

Q1-LR

(1.10%)

105 106 103

1
0

2
1

0
3

1
0

4
1

0
5

104

Q1-UL

(2.98%)

Q1-UR

(6.12%)

Q1-LL

(89.13%)

Q1-LR

(1.77%)

105 106

Figure 2. The effect of KCTD8 on cell prolifer ation, mig r ation, inv asion and apoptosis. (A) MTT assay showing the effect of KCTD8 on the 
c ell prolifera tion of Bel-7405 and PLC/PRF5 c ells. (B) Effect of KCTD8 on c olony forma tion in Bel-7405 and PLC/PRF5 c ells. T he a verage 
number of clones was r epr esent ed b y the bar diag r am. Scale: 10 mm. (C) Tr answell assay showing the effect of KCTD8 on cell mig r ation 
and invasion for Bel-7405 and PLC/PRF5 cells. The average number of migration cells was presented by a bar diag r am. Scale: 100 μm. 
(D) western blots showing the levels of MMP2, MMP7 and MMP9 in KCTD8 unexpressed and re-expressed HCC cells. β-actin served as 
contr ol . The histog r am showing the statistical analysis of the indicated r elativ e pr otein expr ession lev el . (E) Flo w cyt ometry assay 
showing the effect of KCTD8 on apoptosis in HCC cells. The average percentage of apoptotic cell was presented by a bar diag r am. (F) 
The levels of caspase-3, cleaved caspase-3, BAX and BCL-2 in KCTD8 unexpressed and over -e xpressed cells. The histog r am showing the 
statistical analysis of the indicated r elativ e pr otein expr ession lev el . ns: no significance. Each e xperimen t was repea ted in triplica te 
(c ont .). 
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 
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o obvious change was found in KCTD8 r e-expr essed
ells ( Figure 3 J & K). No obvious changes in the total levels
f AKT or mTOR w er e observ ed whether IMPDH2 was
nocked down or not. The results suggest that KCTD8

nhibits PI3K/AKT/mTOR signaling pa thw ay by in teracting
ith IMPDH2. 
 

3.6. KCTD8 suppressed BEL-7405 cell xenografts 
growth 

The function of KCTD8 in vivo w as investiga ted by
employing xenog raft mic e. The tumor volume was
656.28 ± 104.44 mm 

3 vs. 116.62 ± 44.30 mm 
3 ( Figure 4 B,

p < 0.0001) and the tumor weight was 0.24 ± 0.03 g
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s. 0.05 ± 0.01 g ( Figure 4 C, p < 0.0001), before
nd after r e-expr essing KCTD8 in BEL-7405 cells. The
umor volume and weight were reduced significantly by
xpressing KCTD8. Additionally, immunohistochemistry
taining showed reduced levels of PI3K110 β , p-AKT, p-
TOR and ki67 by r e-expr essing KCTD8 in xenograft

umors ( Figure 4 D & E), demonstrating the inhibitory
ffect of KCTD8 on PI3K/AKT signaling in vivo . 
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igure 3. KCTD8 suppressed PI3K/AKT pathway by interacting with IM
mmunoprecipitation with KCTD8 antibodies in Bel-7405 cells. The red
MPDH2 was validated to be the binding protein of KCTD8 by Co-IP (Up
I3K110 β , p -AK T, AK T, p -m TOR and m TOR in KCTD8 unexpr essed and r
nalysis of the r elativ e pr otein expr ession lev el in (C) . (E) MTT assay sh
roliferation of HCC cells. NVP-BEZ235: a dual PI3K/mTOR inhibitor; Vec
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reated with NVP-BEZ235. (F) western blot showing the levels of PI3K1
ntreated HCC cells. (G) The histog r am showing the statistical analysis
estern blot showing the efficiency of siRNA for IMPDH2 knockdown. 
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he statistical analysis of the indicated r elativ e pr otein expr ession lev el
riplicate. 
 p < 0.05; ** p < 0.01; *** p < 0.001. 
4. Discussion 

With the exhaustion of genomic r esour c es, it is nec es-
sary to dig the mechanism of canc er-relat ed sig naling
regulation and to widen the application of DNA and
protein modifications in the field of precision medicine.
Epigenetic dysregulation has been regarded as one
of the major causes of cancer initiation and pr ogr es-
sion [ 18 , 97–99 ]. Epigenetic drugs (epi-drugs) have been
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Figure 3. KCTD8 suppressed PI3K/AKT pathway by interacting with IMPDH2. (A) Polyacrylamide gel showing the results of 
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IMPDH2 was validated to be the binding protein of KCTD8 by Co-IP (Up) and r ecipr ocal Co-IP (down). (C) The levels of IMPDH2, 
PI3K110 β , p -AK T, AK T, p -m TOR and m TOR in KCTD8 unexpr essed and r e-expr essed HCC cells. (D) The histog r am showing the statistical 
analysis of the r elativ e pr otein expr ession lev el in (C) . (E) MTT assay showing the effects of KCTD8 and NVP-BEZ235 on the cell 
proliferation of HCC cells. NVP-BEZ235: a dual PI3K/mTOR inhibitor; Vector: KCTD8 unexpressed control cells; Vector + : KCTD8 
une xpressed con trol cells treated with NVP-BEZ235 (10 nM); KCTD8: KCTD8 over -e xpressed cells; KCTD8 + : KCTD8 over -e xpressed cells 
treated with NVP-BEZ235. (F) western blot showing the levels of PI3K110 β , p -AK T, AK T, p -m TOR and m TOR in NVP-BEZ235 treated and 
untreated HCC cells. (G) The histog r am showing the statistical analysis of the indicated r elativ e pr otein expr ession lev el in (F) . (H) 
western blot showing the efficiency of siRNA for IMPDH2 knockdown. Scrambled: siRNA negative control; siRNA#1, siRNA#2 and 
siRNA#3: siRNA for IMPDH2. (I) The histog r am showing the statistical analysis of the r elativ e IMPDH2 expression level after knockdown. 
(J) The levels of PI3K110 β , p -AK T, AK T, p -m TOR and m TOR bef ore and after transf ection with siIMPDH2#3. (K) The histog r am showing 
the statistical analysis of the indicated r elativ e pr otein expr ession lev el in (J) . ns: no significance. Each e xperimen t was repeated in 
triplica te (c ont .). 
* p < 0.05; ** p < 0.01; *** p < 0.001. 
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eveloped to target regulatory enzymes, including writer
addition of modifications to DNA or histone), reader
rec og nition of epigenetic modifications) and eraser
removal of DNA or histone modifications) [ 21 , 22 , 100 ].
he most extensively tested epi-drugs ar e DNM Ts and
ist one deac etylase (HDAC) inhibit ors. A s imprecisely

argeting tumor cells, these drugs are mainly confined
 o hemat olog ical canc ers, and hav e v ery limited efficacy
gainst solid tumors [ 23 , 98 ]. It is desirable to deeper
nderstand the role of epigenetic regulation in tumor-

elat ed sig naling and disc o ver no vel abnormal modifica-
ions of components in these pathways to develop novel
ther apeutic str at eg ies. Epigenetic silencing of zinc-finger
protein ZFP82 promoted esophageal cancer cell growth
by activ a ting NF- κB signaling pa thw ay [ 101 ]. Methyla tion
of ZNF377 inhibited pyroptosis in multiple types of cancer
cell lines and paved the way for cancer therapy [ 102 ].
Epigenetic silencing of JAM3 or ZSCAN23 activ a ted Wn t
signaling pa thw ay in differen t cancers [ 103 , 104 ]. Tar-
geting c ell fat e det ermining sig naling pa thw ays or its
c ompensat ory pathway s may develop new therapeutic
approaches, by utilizing the epigenetic abnormality in
cancer [ 23 ]. Epigenetic silencing tumor suppressors and
dysregulating their related signaling pa thw a ys ha ve been
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eported in HCC. However, the biological roles of tumor-
ela ted genes v ary depending on their surrounding

icr oenvir onment [ 105 ]. Unlike other tumors, epigenetic
hanges w er e not w ell studied in HCC. The r esear ches on
pigenomic landscape in HCC are very limited [ 22 , 106 ]. To
nd novel tumor suppressor and further understand the
echanisms in HCC may provide more opportunities for

ts trea tmen t. The character of KCTD8 w as not explored
n HCC. In the present investigation, a high frequency
f KCTD8 methylation and the regulatory role of DNA
ethylation w er e observ ed . KCTD8 methyla tion w as

ssociated with TNM stage and poor OS, suggesting that
pigenetic regulation of KCTD8 is inv olv ed in HCC pr o-
 ression. To further elucidat e the mechanism of KCTD8,

he biological function was investigated in HCC cells.
ur findings demonstrated that KCTD8 exert ed inhibit ory

ole in cancer development in vitro and suppressed
CC c ell xenog rafts g rowth in mic e, implica ting tha t
CTD8 may act as a tumor suppressor in HCC. Co-IP
nd mass spectrometry assays were employed to clarify
he mechanism of KCTD8. The interaction of KCTD8
nd IMPDH2 was identified and further validated by
estern blot and reciprocal IP assay . Notably , IMPDH2 is

eport ed t o be inv olv ed in the PI3K signaling pa thw ay.

 

Then, the role of KCTD8 in PI3K signaling was explored
in HCC. The results showed that KCTD8 inhibited PI3K
signaling both in vitro and in vivo . As shown in Graphical
Abstract ( Figure 5 ), PI3K signaling was inhibited by KCTD8
interacting with IMPDH2, it was activated by IMPDH2 after
epigenetic silencing of KCTD8 . 

The function of PI3K signaling pa thw ay is very com-
plex. It inv olv es in cell pr oliferation, apoptosis, chemo-
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esistanc e, DDR and other biolog ical behaviors [ 107 ].
n various canc ers, PI3K sig naling may join distinct
 egulatory netw orks thr ough cr osstalk under the differ ent
ir cumstance [ 108–110 ]. Ther efor e, it is crucial t o c ompre-
ensively analyze the gene regulatory networks in HCC

o develop new therapeutic approaches. Our results pave
he way for precision medicine in HCC. 

U tilizing abnor mal epigenetic events for cancer ther-
py has been becoming an important topic. The appli-
ation of synthetic lethality principle has r ev olutionized
ancer ther apeutic str ategy, killing cancer cells specif-

cally, without hurting normal cell [ 23 , 111 ]. Epigenetic
egulation of key components in different signaling
a thw ays makes epigenetic defects more important for
recision medicine, including cell fate and DNA damage

epair genes [ 21 ]. The precise cancer DNA methylome is
till waiting for completion. Finding key components in
hese pa thw ays and deep understanding their roles, as
ell as epigenetic regulation, may offer more opportuni-

ies for epigenetic-based synthetic lethality strategy. 

. Conclusion 

n summary, our findings r ev ealed the regulatory role
f DNA methylation in KCTD8 expression. Methylation
f KCTD8 was a potential independent poor prognostic
arker in HCC. KCTD8 suppressed HCC by inhibiting

I3K/AKT pa thw ay in vitro and in vivo . 

Article highlights 

• Epigenetic dysregulation is a new hallmark for cancer therapy. 
• Classical epi-drugs are mainly targeting epigenetic regulators, 

without tumor cell specificity. 
• Deep understanding the role of epigenetic regulation in 

canc er-rela ted signaling pathways may provide novel therapeutic 
targets. 

• KCTD8 is frequently methylated in HCC. 
• KCTD8 methylation is an independent poor prognostic biomarker 

in HCC. 
• KCTD8 inhibits HCC cells growth both in vitro and in vivo . 
• Epigenetic silencing of KCTD8 activates PI3K/AKT signaling 

pathway in HCC. 
• KCTD8 is a novel tumor suppressor in HCC. 
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