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ABSTRACT

PURPOSE Prostate cancer (PCa) represents a highly heterogeneous disease that requires
tools to assess oncologic risk and guide patient management and treatment
planning. Current models are based on various clinical and pathologic pa-
rameters including Gleason grading, which suffers from a high interobserver
variability. In this study, we determine whether objective machine learning
(ML)–driven histopathology image analysis would aid us in better risk strat-
ification of PCa.

MATERIALS
AND METHODS

We propose a deep learning, histopathology image–based risk stratification
model that combines clinicopathologic data along with hematoxylin and
eosin– and Ki-67–stained histopathology images. We train and test ourmodel,
using a five-fold cross-validation strategy, on a data set from 502 treatment-
näıve PCa patients who underwent radical prostatectomy (RP) between 2000
and 2012.

RESULTS We used the concordance index as a measure to evaluate the performance of
various risk stratification models. Our risk stratification model on the basis of
convolutional neural networks demonstrated superior performance compared
with Gleason grading and the Cancer of the Prostate Risk Assessment Post-
Surgical risk stratification models. Using our model, 3.9% of the low-risk
patients were correctly reclassified to be high-risk and 21.3% of the high-
risk patients were correctly reclassified as low-risk.

CONCLUSION These findings highlight the importance of ML as an objective tool for histo-
pathology image assessment and patient risk stratification. With further val-
idation on large cohorts, the digital pathology risk classification we propose
may be helpful in guiding administration of adjuvant therapy including ra-
diotherapy after RP.

INTRODUCTION

Prostate cancer (PCa) is the secondmost commonly diagnosed
and sixth deadliest cancer among men worldwide.1 It is a
heterogeneous disease with a diverse range of histologic
patterns. PCa diagnosis and therapeutic decisions are driven
primarily by histologic descriptors of prostate tissue samples
obtained by prostate needle biopsy under transrectal ultra-
sound guidance. The biopsy Gleason score (GS) is currently the
most common grading system of prostate adenocarcinoma,2,3

where agrade is determinedby apathologist on thebasis of the
glandular architectural features observed in hematoxylin and
eosin (H&E)–stained tissue samples. Although the GS is the
strongest clinicopathologic predictor for clinical outcomes,4 its
ability to predict clinical outcome is limited by the spatial
heterogeneity of PCa5 and high interobserver variability.6

In addition to GS, a number of other clinicopathologic
variables such as age, tumor stage or volume, margin status,
and prostate-specific antigen (PSA) levels, as well as their
various combinations, have been used to predict PCa out-
comes. For example, the Cancer of the Prostate Risk As-
sessment (CAPRA)7 and its analogous derivative, CAPRA
Post-Surgical (CAPRA-S),8 represent well-validated risk
stratification solutions by offering easy-to-use and clini-
cally accurate prediction models. However, variance in PCa
grading among pathologists can still lead to undertreatment
or overtreatment of patients, affecting their survival rates
and quality of life, as well as their cost to the health care
system.

Recent applications of machine learning (ML) in digital
pathology images have shown great potential in a range of
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tasks, where the majority of the effort has been focused on
malignancy detection from needle biopsies and GS
prediction.9-15 However, because of the high interobserver
variability in GS assessment, the ground truth used to de-
velop image-based prediction algorithms remains elusive.
There has been little research on directly linking digital
histopathology to PCa outcome or response to therapies.16-19

For example, Nagpal et al16 reported that the GS predicted by
the ML algorithm, as opposed to assigned by pathologists,
achieved slight improvement in risk stratification (concor-
dance index [CI], improved from0.63 to 0.65). In a follow-up
study by the same group on a larger cohort, Wulczyn et al17

achieved a CI value of 0.82 for PCa-specific mortality using
ML-basedGleason gradingwarranting further evaluation for
improving disease management.

Building on this body of work, we propose CCHEK (CAPRA-S
1 CNN H&E & Ki-67), an ML-driven PCa risk assessment
method that combines clinicopathologic data with
computer-generated features from H&E- and Ki-67–
stained tissue microarrays. Compared with the state-of-
the-art CAPRA-S model for patient risk stratification,
CCHEK is more accurate in predicting biochemical recur-
rence (BCR), as well as overall survival (OS), as evaluated on
our radical prostatectomy (RP) patient data set.

MATERIALS AND METHODS

Cohort Construction and Clinical Data

A total of 502 treatment-naı̈ve PCa patients who underwent
RP between 2000 and 2012 were included in this study
(Table 1). The studywas approved by the University of British
Columbia institutional Clinical Research Ethics Board (CREB
H15-01064). As previously described,20 tissue microarray
(TMA) blocks (one to four cores per patient) constructed
from RP and stained by H&E and Ki-67 markers were

scanned at 403 magnification using an SCN400 Slide
Scanner (Leica Microsystems, Wetzlar, Germany). The cores
were scored on the basis of the currently recommended
International Society of Urological Pathology GS standards.21

CAPRA and CAPRA-S

The CAPRA method generates a pretreatment score. Coop-
erberg et al22 introduced a new postsurgical score (CAPRA-S)
that is improved over CAPRA via incorporation of pathologic
data. On the basis of PSA, pathologic GS, surgical margins,
extracapsular extension, seminal vesicle invasion, and
lymph node invasion, the CAPRA-S score was developed and
validated as a predictor of downstream oncologic end points
including BCR and systemic progression.8 The CAPRA-S
score divides the patients into three groups of low-risk
(CAPRA-S ≤2), intermediate-risk (CAPRA-S 3-5), and
high-risk (CAPRA-S ≥6).

Proposed Risk Stratification Pipeline

A schematic representation of our proposed risk stratifica-
tion method CCHEK is shown in Figure 1. We first extracted
up to 48 7683 768-pixel patches from each TMA core image.
In addition tomanually engineered feature sets,23 we trained
a CNN to extract the most relevant features from individual
image patches. A survival regression model on the basis of
the Cox proportional hazards model24 with elastic net reg-
ularization was then trained to predict a risk score for every
image patch. Finally, in an aggregation step, a smooth
maximum function estimated a patient’s overall risk score
from all their patch-wise risk scores.

The CCHEK risk stratification models were trained on three
categories of data: clinicopathologic data, manually engi-
neered image features consisting of 276 features from H&E
images and 282 features from Ki-67 images,23 and CNN-

CONTEXT

Key Objective
To develop a risk stratification model on the basis of Cancer of the Prostate Risk Assessment Post-Surgical (CAPRA-S) and
hematoxylin and eosin (H&E)– and Ki-67–stained tissue microarrays to predict the risk scores for biochemical recurrence
and overall survival in prostate cancer (PCa).

Knowledge Generated
The comparison of concordance indices for the outcomes of interest revealed that using CAPRA-S, H&E, and Ki-67 features
is the most effective method among various models accessing different data. Moreover, reclassifying patients on the basis
of risk scores demonstrated the importance of digital pathology in outcome prediction for disease management.

Relevance
Machine learning and image-based pipelines to link digital histopathology images directly to cancer outcomes are of value,
as they may provide improved risk classification (as demonstrated here in PCa). Additionally, this approach may be the
basis for automatization and reduction of inter-observer variability in pathology.
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extracted features from the 48 patches of each core image.
The details of the proposed ML pipeline can be found in the
Data Supplement Text.

Statistical Methods

To evaluate the proposed models, we used a five-fold cross-
validation strategy. CI was used to evaluate the performance
of various risk stratification models, and the Student’s
t-test25 was used to evaluate whether the differences be-
tween the performance of various models were statistically

significant. Statistical tests were performed on the bootstrap
sets of 100 held-out samples.

RESULTS

Table 2 shows the CI results for the risk stratificationmodels
on the basis of (1) time to BCR and (2) OS after treatment
(surgery/radiation). The median follow-up time was
65.9months after surgery/radiation. Of the 502 patients, 102
had experienced BCR.

GSFromRPRemains theMost Significant Risk Predictor
for PCa

We evaluated the contribution of various clinicopathologic
factors in the risk stratification of our PCa cohort. In linewith
previous findings,16,23 GS from RP (CI5 0.70 and 0.82 on row
9) remains the most significant postsurgical risk predictor
for both BCR and OS. This provides evidence that our patient
cohort was representative of the entire PCa population.

ML-Based H&E Image Features Outperform Most
Clinicopathologic Predictors

We next sought to evaluate the performance of the CCHEK
model in predicting BCR and OS from H&E- and Ki-67–
stained histopathology slides. Although ML models built
upon handcrafted features did not improve over GS from RP,
deep learning (DL)–based models applied to H&E- and Ki-
67–stained TMA slides (Table 2, rows 11 and 15) improved
CIs associated with BCR and OS. It is important to note that
although the DL-based features were extracted from TMA
cores, they improved upon risk stratification on the basis of
GS that was assessed by pathologists through the inspection
of the entire RP specimen. This suggests that DL models
extract subtle information in the TMA images that are not
captured by conventional and previously characterized
morphologic features and Gleason grading.

ML Improves Upon CAPRA-S

Wenext sought to investigate whether the CCHEK risk scores
could complement CAPRA-S.

In a multivariate Cox regression model, when ML-based
H&E features were added, the CIs improved from 0.68 in
BCR and 0.80 in OS (CAPRA-S, Table 2 row 16) to 0.73 and
0.83, respectively (combined CAPRA-S and image features,
row 18; P: .00998 and .0112). Furthermore, when Ki-67 was
added, the CIs further increased to 0.76 and 0.85 (row 22; P:
.00013 and .00016, respectively). The Ki-67 protein is a
cellular marker of cell proliferation. Its prognostic value has
been investigated in various cancer types, including breast,
soft tissue, lung, and prostate.26-29 Overall, these results
indicate that integrating clinicopathologic data with ML-
based digital histopathology in our complete CCHEK model

TABLE 1. Patient Cohort Summary: Clinical and Surgical Parameter
Distribution

Clinical and Pathologic
Parameter Distribution

Treatment 35 patients underwent adjuvant radiation;
47 patients underwent salvage radiation

Age, years 64.9 (mean) 6 7.5 (SD)

Biopsy GS (total 494), No.

6 228

3 1 4 140

4 1 3 61

8 42

9-10 23

Preop PSA, ng/mL 7.2797 (mean) 6 4.8766 (SD)

Clinical T stage (total 494), No.

T1c 233

T2a 180

T2b/c 70

T3 11

Pathologic T stage (total 499), No.

T0 1

T2a 40

T2b/c 307

T3/T4 151

GS from RP (total 495), No.

6 127

3 1 4 211

4 1 3 94

8 25

9-10 38

Surgical margins (total 499), No.

Positive 140

Negative 359

Lymph node status (total 496), No.

N1 16

N0 258

Nx 222

Abbreviations: GS, Gleason score; PSA, prostate-specific antigen; RP,
radical prostatectomy; SD, standard deviation.
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could enhance patient risk stratification in comparison with
existing state-of-the-art models.

Furthermore, we experimented the classification power of
CAPRA-S, CCHE (CAPRA-S 1 CNN H&E), and CCHEK in
estimatingwhether a patientmight have a BCR in 5 years.We
censored patients whose last follow-up was <5 years. We
used the risk scores and set the threshold in a way to predict
BCR for the same ratio of patients who had BCR in 5 years.
19.58% of the patients had recurrence in the 5-year period.
After sorting the risk scores, we picked the threshold for the
methods on the basis of the patient who had lower risk score
than 19.58%of the patients.We predicted that those patients
are going to have BCR in 5 years. The macro averaged F1
score, precision, and recall was 62% for CAPRA-S, 67% for
CCHE, and 73% for CCHEK. Moreover, decision curve
analysis to compare the net benefit of CAPRA-S, CCHE, and
CCHEK on the basis of BCR in 5 years suggested that CCHEK
has the most net benefit compared with other methods
(Fig 2).

We next divided patients into three risk groups on the basis
of CAPRA-S scores as suggested in the previous study8: low-
risk (CAPRA-S ≤2), intermediate-risk (CAPRA-S 3-5), and
high-risk (CAPRA-S ≥6). The risk groups are used in de-
termining patient management. To facilitate comparison
between our proposed AI-based risk models and CAPRA-S
through Kaplan-Meier survival analysis, we also divided the
cohort into the low-risk, intermediate-risk, and high-risk

groups of the same ratio as the CAPRA-S groups, but with
patient grouping determined on the basis of our two ML-
based risk stratification models: (1) combination of CAPRA-
S– and CNN-based features from H&E images (Table 2 row
18), and (2) combination of CAPRA-S– and CNN-based
features from H&E and Ki-67 images (Table 2 row 22).
CAPRA-S predicts 52.23% of patients as low-risk, 38.26% of
patients as intermediate-risk, and the rest 9.51% are
grouped as high-risk. Therefore, after sorting risk scores, we
chose the risk-score threshold for low-risk group on the
basis of the patient who has higher risk score than 52.23% of
patients. We also chose the risk-score threshold for high-
risk group on the basis of the patientwhohas lower risk score
than9.51%of the patients. The patientswhohave a risk score
between these two values are grouped as the intermediate-
risk group. With this process, we would end up having the
same ratio of patients as in CAPRA-S groups.

Kaplan-Meier survival curves30 associated with BCR and OS
corresponding to the three groups (Fig 3) suggest that the
CCHEK risk stratification model performed better than
CAPRA-S and CCHE by correctly identifying more low- and
high-risk patients.

Although 84.3% of low-risk patients on the basis of
CAPRA-S were BCR-free 10 years after surgery/radiation,
the CCHE model (row 18) identified a low-risk group in
which 88.0% were BCR-free after 10 years. Interestingly,
when we added Ki-67 to themodel (row 22), we identified a
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FIG 1. Overview of the proposed ML method to link histopathology to outcome (eg, BCR or OS). The signal processing pipeline takes as
input the H&E and Ki-67 images and produces as output the risk score (eg, BCR) for a given patient. BCR, biochemical recurrence; CNN,
convolutional neural network; CPH, Cox proportional hazards; H&E, hematoxylin and eosin; ML, machine learning; OS, overall survival; RF-
QMI, Random Forest Quadratic Mutual Information.
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low-risk group in which 90.7% were free of BCR 10 years
after surgery/radiation. Investigation of the Kaplan-Meier
curves associated with OS also revealed similar findings.
More specifically, while 95% of low-risk patients on the
basis of CAPRA-S survived beyond 10 years, the CCHE (row
18) and CCHEK (row 22) models identified a low-risk group
in which 100%were alive after 10 years. Furthermore, when
we added Ki-67 to themodel (row 22), all the patients in our
identified low-risk group survived beyond 10 years after
surgery/radiation.

The median 10-year BCR-free survival in the high-risk
groups decreased from 69.6 (CAPRA-S) to 51.8 (CCHE)
and 48.2 months (CCHEK), suggesting that both CNN-
based models identify higher-risk patients compared
with CAPRA-S. Further investigation revealed that four
(1.6%) of the patients identified by CAPRA-S as low-risk
were reclassified as high-risk and three (6.4%) of high-risk
patients were reclassified as low-risk by the CCHE model
(Fig 4A). Interestingly, all four new high-risk patients
experienced BCR and the three new low-risk patients did
not. Upon pathologic review of the TMA cores associated

TABLE 2. CI Results and the Associated SDs (100 bootstrap sets) for Risk Stratification Models on the Basis of Various Clinicopathologic and
ML-Driven Features

Data Row Risk Score
Follow-Up After Surgery/Radiation.

Censor: BCR
Follow-Up After Surgery/Radiation. Censor:

Death

Clinicopathologic
data

1 Biopsy GS 0.63 6 0.07 0.68 6 0.10

2 Clinical T stage 0.56 6 0.07 0.64 6 0.10

3 Preop PSA 0.57 6 0.06 0.60 6 0.08

4 Preop PSA, biopsy GS 0.64 6 0.07 0.68 6 0.09

5 Preop PSA, biopsy GS, clinical T
stage

0.66 6 0.07 0.71 6 0.10

6 Pathologic T stage 0.69 6 0.05 0.79 6 0.09

7 Pathologic T stage, clinical T stage 0.70 6 0.06 0.81 6 0.08

8 GS from TMA cores 0.66 6 0.07 0.74 6 0.10

9 GS from RP 0.70 6 0.06 0.82 6 0.07

ML 10 Handcrafted H&E 0.69 6 0.08 0.68 6 0.09

11 CNN H&E 0.72 6 0.06 0.72 6 0.10

12 Handcrafted Ki-67 0.66 6 0.07 0.67 6 0.09

13 CNN Ki-67 0.68 6 0.07 0.70 6 0.09

14 Handcrafted H&E, Ki-67 0.71 6 0.07 0.70 6 0.10

15 CNN H&E, Ki-67 0.74 6 0.08 0.75 6 0.09

Postsurgical 16 CAPRA-S 0.68 6 0.06 0.80 6 0.09

17 CAPRA-S, handcrafted H&E 0.71 6 0.07 0.82 6 0.09

18 CAPRA-S, CNN H&E 0.73 6 0.07 0.83 6 0.09

19 CAPRA-S, handcrafted Ki-67 0.69 6 0.06 0.81 6 0.08

20 CAPRA-S, CNN Ki-67 0.71 6 0.06 0.82 6 0.10

21 CAPRA-S, handcrafted H&E, Ki-67 0.73 6 0.07 0.83 6 0.08

22 CAPRA-S, CNN H&E, Ki-67 0.76 6 0.07 0.85 6 0.09

NOTE. Preop represents measurements before RP. Bold values indicate highest numbers in each column.
Abbreviations: BCR, biochemical recurrence; CAPRA-S, Cancer of the Prostate Risk Assessment Post-Surgical; CI, concordance index; CNN,
convolutional neural network; GS, Gleason score; H&E, hematoxylin and eosin; ML, machine learning; PSA, prostate-specific antigen; RP, radical
prostatectomy; SD, standard deviation; TMA, tissue microarray.
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with these patients, we did not observe any revision in
Gleason grades, suggesting that the ML models identify
subtle features in the images that were not captured by
Gleason grading. When we investigated the risk groups on
the basis of the CCHEK model (row 22: CAPRA-S 1 CNN
H&E, Ki-67), we identified 10 high-risk patients (repre-
senting 3.9%) by CAPRA-S who were reclassified as low-
risk and 10 low-risk patients (representing 21.3%) who
were reclassified as high-risk (Fig 4B). Although all the
newly identified high-risk patients experienced BCR, none
of the newly classified low-risk patients did. A pathologic
review of H&E TMA cores associated with these 20 patients
did not result in the revision of GSs. However, Ki-67 scores
associated with the newly identified high-risk group were
higher than the low-risk group (mean Ki-67 score 15 v 51
per 1 mm2), suggesting that Ki-67 likely contributes to
better risk stratification.

Interestingly, of the seven patients who were reclassified
by the H&E-based ML model, six were a subset of the
20 patients identified by the H&E 1 Ki-67 ML model.
These results suggest that H&E images potentially con-
tain subtle features that are not captured by GS but
contribute to risk stratification. This is evidenced by new
ML model developments in which Ki-67–stained images
were virtually constructed fromH&E images,31 suggesting
that H&E images carry information about the Ki-67
status.

DISCUSSION

We proposed an ML- and image-based pipeline for linking
digital histopathology images directly to PCa outcome after
RP. Our proposed pipeline achieved superior performance
compared with the current GS-based risk stratification and
CAPRA-S, which suggests that artificial intelligence (AI)–
based risk stratification models could potentially introduce
significant changes in PCa management. Our work validates
thefindings of other studies17 as it confirms the effectiveness
of ML in PCa risk stratification. Furthermore, we show the
utility of ML in predicting BCR and improving patient
stratification relative to well-validated nomograms (ie,
CAPRA-S). Finally, our work gleans on the links between Ki-
67 status and patient outcome, as the Ki-67 scores in the
patients who were reclassified as high-risk by our model
were higher than those in the low-risk group.

Using the proposed CCHEK risk stratificationmodel, 21.3% of
patients identified to be high-risk by CAPRA-S were reclas-
sified as low-risk and another 3.9%of patients identified tobe
low-risk by CAPRA-S were reclassified as high-risk. These
patients may have been counseled and managed differently
had this information been available after RP. For example, the
digital pathology risk classification could steer one higher-
risk patient with adverse pathologic features toward adjuvant
radiation but another lower-risk patient with the same
pathologic features toward surveillance.

CAPRA-S 0-2: 258 Low-risk: 258

CAPRA-S 3-5: 189 Intermediate-risk: 189

CAPRA-S ≥6: 47 High-risk: 47

CAPRA-S 0-2: 258 Low-risk: 258

CAPRA-S 3-5: 189 Intermediate-risk: 189

CAPRA-S ≥6: 47 High-risk: 47

A B

FIG 4. Sankey diagrams showing reassignment of patients from CAPRA-S risk categories to newML-based risk groups. (A) CAPRA-S (Table 2
row 16) versus CAPRA-S1 CNNH&Emodel (Table 2 row 18), and (B) CAPRA-S (row 16) versus CAPRA-S1 CNNH&E Ki-67 model (Table 2 row
22). Each row represents one patient. CAPRA-S, Cancer of the Prostate Risk Assessment Post-Surgical; CNN, convolutional neural network;
H&E, hematoxylin and eosin; ML, machine learning.
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Accurate risk stratification is critically important also in de-
ciding on initial management of men with newly diagnosed,
localized PCa. Men predicted to have indolent disease may
undergo active surveillance (AS), while men with high-risk
disease may require aggressive multimodal therapy. Current
risk stratification tools on the basis of clinical and pathologic
parameters have clinical utility but still do not allow optimal
distinction of patients best suited for AS versus single or
combinedmodality therapy. Our CCHEKmodel was developed
on RP specimens and not prostate biopsies. If it can be val-
idated on prostate biopsies, it could be evaluated as a bio-
marker to guide patients to either AS or definitive treatment.

Our CCHEKmodel was trained on TMA images rather than RP
sections. As PCa is amultifocal cancerwith different biology in

each focus, TMA cores sampled from RP material do not
overcome the limitations of spatial heterogeneity and there-
fore theproposedmodelsmayperformevenbetter if thewhole
RP sections were used. Nonetheless, our models outperform
establishedmodels evenwith this limitation. Furthermore, our
study only considered H&E and Ki-67 histopathology data
with CAPRA-S. Other predictive tools, such as Decipher32 or
ArteraAI,18 could be used in future studies.

Although our results suggest that AI-based models have the
promise to refine practice in PCa, further training and val-
idation of ourmethods on largermulti-institutional external
data sets are necessary. Nevertheless, our models show the
potential of ML analysis of histopathology data to influence
disease management on the basis of outcome prediction.
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