
Genome analysis

Investigating alignment-free machine learning methods for 
HIV-1 subtype classification
Kaitlyn E. Wade1, Lianghong Chen1, Chutong Deng1, Gen Zhou1, Pingzhao Hu 1,2,�

1Department of Computer Science, University of Western Ontario, London, ON N6A 3K7, Canada 
2Department of Biochemistry, University of Western Ontario, London, ON N6A 3K7, Canada
�Corresponding author. Department of Biochemistry, University of Western Ontario, Medical Sciences Building, Rm. 362, London, ON N6A 3K7, Canada.  
E-mail: phu49@uwo.ca
Associate Editor: Shaun Mahony

Abstract
Motivation: Many viruses are organized into taxonomies of subtypes based on their genetic similarities. For human immunodeficiency virus 1 
(HIV-1), subtype classification plays a crucial role in infection management. Sequence alignment-based methods for subtype classification are 
impractical for large datasets because they are costly and time-consuming. Alignment-free methods involve creating numerical representations 
for genetic sequences and applying statistical or machine learning methods. Despite their high overall accuracy, existing models perform poorly 
on less common subtypes. Furthermore, there is limited work investigating the impact of sequence vectorization methods, in particular natural 
language-inspired embedding methods, on HIV-1 subtype classification.
Results: We present a comprehensive analysis of sequence vectorization methods across machine learning methods. We report a k-mer-based 
XGBoost model with a balanced accuracy of 0.84, indicating that it has good overall performance for both common and uncommon HIV-1 sub-
types. We also report a Word2Vec-based support vector machine that achieves promising results on precision and balanced accuracy. Our study 
sheds light on the effect of sequence vectorization methods on HIV-1 subtype classification and suggests that natural language-inspired encod-
ing methods show promise. Our results could help to develop improved HIV-1 subtype classification methods, leading to improved individual pa-
tient outcomes, and the development of subtype-specific treatments.
Availability and implementation: Source code is available at https://www.github.com/kwade4/HIV_Subtypes

1 Introduction
Human immunodeficiency virus 1 (HIV-1) is a global public 
health concern with over 39 million active cases worldwide 
as of 2023 (World Health Organization 2023). HIV-1 has a 
high degree of genetic variability due to its high mutation 
rates (Cuevas et al. 2015, Adhiambo et al. 2021), leading to 
varying degrees of pathogenicity and drug resistance (Taylor 
et al. 2008, Nastri et al. 2023). HIV-1 subtype classification 
or subtyping, refers to the categorization of HIV-1 into dis-
tinct taxonomic group based on genetic similarity.

HIV-1 isolates are divided into 4 main groups: M, N, O, and P, 
with group M being the most prevalent (Taylor et al. 2008). 
Group M is further subdivided into 9 pure subtypes: A, B, C, D, F, 
G, H, J, and K, and over 100 circulating recombinant forms 
(CRFs), which are the results of recombination events between 
pure subtypes (Kuiken et al. 2003). The most common HIV-1 sub-
types are C, A, CRF 01_AE, and B (Serwin et al. 2021). Subtype 
C is by far the most common and accounts for nearly half of all 
global HIV-1 infections (Williams et al. 2023). Subtype B accounts 
for only 9% of infections worldwide but is responsible for 56% of 
infections in North America, South America, Western Europe, and 
Central Europe, leading to overrepresentation in HIV-1 research 
and online databases (Williams et al. 2023).

Within HIV-1 subtypes, genetic variation ranges from 15% 
to 20%, while variation between subtypes can be as much as 

35% (Hemelaar et al. 2006). Furthermore, genetic differences 
in HIV-1 subtypes lead to different clinical manifestations due 
to variations in pathogenicity, disease progression, and suscepti-
bility to treatments (Nastri et al. 2023). In HIV-1, rates of dis-
ease progression vary significantly among subtypes (Robertson 
et al. 2000), making subtype classification a crucial step in infec-
tion management (Clumeck et al. 2008, Hirsch et al. 2008). In 
addition, there are ongoing efforts to develop vaccines and 
treatment options designed to target-specific HIV-1 subtypes 
(Elangovan et al. 2021). Thus, HIV-1 subtype classification is a 
crucial and challenging problem in the field of virology.

Traditional methods for HIV-1 subtype classification use 
sequence alignment-based methods, which involve aligning 
input or query genetic sequences with curated subtype refer-
ence sequences and comparing homologous nucleotide pat-
terns or motifs (Foley et al. 2018). Since many alignment- 
based methods involve computing similarity statistics over a 
sliding window (Rozanov et al. 2004, Pineda-Pe~na et al. 
2013), these approaches can be very computationally expen-
sive, making them impractical for long sequences and large 
datasets. Alignment-based classification methods may also 
perform poorly on highly variable regions of the genome 
(Solis-Reyes et al. 2018). Furthermore, there can be reproduc-
ibility issues with these approaches because they rely on ad 
hoc parameter settings for handling gaps and mismatches, as 
well as manually curated reference sequences.
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Due to these limitations, various alignment-free HIV-1 
subtyping methods have been developed. Alignment-free 
methods involve creating feature vectors, or numerical repre-
sentations of genetic sequences, and applying statistical or 
machine learning models. Kameris (Solis-Reyes et al. 2018) is 
an alignment-free HIV-1 subtyping method that uses a k-mer 
sequence vectorization method and classifies HIV-1 subtypes 
using a support vector machine (SVM) with linear and poly-
nomial kernels. Although Kameris achieves high overall accu-
racy, it has poor recall across minority classes. Kevolve also 
uses k-mer encoding, but extracts a minimum feature set and 
uses an ensemble learning method based on SVMs (Lebatteux 
and Diallo 2021). Although Kevolve achieves good classifica-
tion performance, it tends to mistakenly classify recombinant 
subtypes as pure subtypes. Others (Tang et al. 2021) use a 
k-mer and position-based vectorization method in conjunc-
tion with multi-class k-nearest neighbours (KNN) algo-
rithm that uses a majority vote. This approach has nearly 
perfect HIV-1 subtype classification performance, however, 
this model was developed using only a single gene, so the 
results may not generalize well to the full-length HIV-1 ge-
nome. Furthermore, previous work lacks reproducibility as 
the software developed is no longer maintained and the 
datasets and specific implementation details are often 
unavailable.

Although there has been much work investigating sequence 
vectorization methods, there has been limited work compar-
ing sequence vectorization methods across machine learning 
models. Furthermore, many representation methods are 
based on sequence statistics such as k-mer frequency, nucleo-
tide distribution, and average position and the application of 
natural language-inspired vectorization methods has yet to be 
explored for HIV-1 subtype classification. Thus, we aim to 
develop an improved method for HIV-1 subtype classifica-
tion. We compare the performance of existing sequence vec-
torization methods across a variety of machine learning 
models. We also explore the effect of two natural language- 
inspired embeddings, Word2Vec and Word2Vec with Term 
Frequency-Inverse Document Frequency (TF-IDF), and inves-
tigate their impact on HIV-1 classification.

2 Methods
We aim to explore 10 different sequence vectorization meth-
ods for HIV-1 subtype classification using 7 different ma-
chine learning and deep learning models (Fig. 1).

2.1 Dataset and preprocessing
We obtained 20 110 full-length HIV-1 genome sequences 
from the Los Alamos National Laboratory (LANL) HIV 
Sequence Database (Kuiken et al. 2003), representing 289 
HIV-1 subtypes. We omit any unknown sequences to ensure 
our data is labelled. Using a threshold of 18, as used in previ-
ous work (Solis-Reyes et al. 2018), we discard subtypes con-
taining 18 or fewer examples. The resulting dataset 
comprised 15 018 sequences from 28 different subtypes, of 
which, 19 are recombinant subtypes and 9 are pure subtypes. 
Subtype counts range from 19 to 9806 samples. Subtype B 
comprises over 65% of our dataset and this overrepresenta-
tion is consistent with the existing Euro-centric bias in HIV-1 
research (Williams et al. 2023). Subtypes C, CRF 01_AE, 

and A are among the most common subtypes in our dataset 
and comprise 12.7%, 7.9%, and 3.5%, of the dataset, respec-
tively. This reflects the real-world prevalence of these sub-
types. For further details about the HIV-1 subtypes used in 
our study, see Supplementary Table 1.

2.2 Sequence embedding and vectorization
Unaligned genomic sequences have variable lengths and in 
order for these sequences to be used in machine learning 
models, they must first be vectorized to create feature 
vectors of equal length. In our study, we explore ordinal, 
k-mer, natural vector, and natural language-based encod-
ing methods.

2.2.1 Ordinal encoding
Ordinal encoding, which represents our baseline encoding, 
involves representing each of the four nucleotides (A, T, C, 
and G) as a number between 0 and 1. For example, A is 
encoded as 0.25, T as 0.50, C as 0.75, and G as 1.00. To en-
sure all feature vectors are of equal length, zeroes are 
appended to the beginning of each feature vector. While one- 
hot encoding is more standard for categorical genetic data, 
classical machine learning methods generally do not accept 
one-hot encoded data due to its sparsity and the additional 
channel dimension it introduces.

2.2.2 k-mer
k-mers are k length substrings contained within a biological 
sequence, and are commonly used for representing and com-
paring biological sequences (Blaisdell 1986). Generating 
k-mer feature vectors involves counting the frequency of all 
substrings of length k. For genetic sequences composed of 
4 nucleotides, there are 4k possible k-mers. We generate all 
possible k-mers of length 5, 6, 7, and 8 and determine the 
frequency of each k-mer to create feature vectors of size 
1024, 4096, 16 384, and 65 536. Our choice of k is based on 
previous HIV-1 subtype classification studies that use k¼6 
(Solis-Reyes et al. 2018) and k¼8 (Ma et al. 2020). We 
normalize all feature vectors by the length of the sequence, 
ensuring that the representations are invariant to se-
quence length.

2.2.3 Natural vector
The natural vector sequence encoding method (Deng et al. 
2011) creates a 12D feature vector that incorporates nucleo-
tide frequency and sequence-wide position information for 
each nucleotide (Huang et al. 2014). Let S¼ ðs1; s2; . . . snÞ be 
a nucleotide sequence of length n and let M¼ fA;C;G;Tg. 
For m 2M, let the indicator function wmð�Þ : M ! f0;1g be 
defined as: 

wmðsiÞ ¼
1; if si ¼ m;
0; otherwise

(

(1) 

such that si 2M and i¼ 1;2; . . . ;n. Let the count of each nu-
cleotide m in S be: 
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nm ¼
Xn

i¼1

wmðsiÞ (2) 

The average location (μ) of nucleotide m in sequence S is: 

μm ¼
Xn

i¼1

i
wmðsiÞ

nm
(3) 

The second central moment of position (D2) for nucleotide m 
in S is given by: 

Dm
2 ¼

Xn

i¼1

ði − μmÞ
2wmðsiÞ

nmn
(4) 

Thus, the 12D natural vector is defined as follows: 

ðnA;nT;nC; nG; μA; μC; μG; μT ;D
A
2 ;D

C
2 ;D

G
2 ;D

T
2 Þ

After computing the 12D natural vector, we normalize each 
component by the sequence length.

2.2.4 Natural vector with covariance
Since the traditional 12D natural vector representation only 
considers the distribution of each nucleotide in isolation, this 
method cannot account for relationships between pairs of 
nucleotides (Sun et al. 2022). To address this, six additional 
terms representing the pairwise covariance of nucleotides can 
be added to the natural vector representation. In this method, 
the indicator function wmlð�Þ : M ! f0;1g, where l;m 2M, is 
defined as follows: 

wmlðsiÞ ¼ wlmðsiÞ ¼
1; if si ¼ m or l;
0; otherwise

(

(5) 

The covariance between nucleotides m and l is given by: 

Covðm; lÞ ¼
Xn

i¼1

ði − μmÞði − μlÞwmlðsiÞ

n
ffiffiffiffiffiffi
nm
p ffiffiffiffi

nl
p (6) 

This gives the following 18D natural vector representation 
that includes pairwise covariance: 

ðnA;nT;nC; nG; μA; μC; μG; μT ;DA
2 ;D

C
2 ;D

G
2 ;D

T
2 ;

CovðA;CÞ;CovðA;GÞ;CovðA;TÞ;CovðC;GÞ;
CovðC;TÞ;CovðG;TÞÞ

After computing the 18D natural vector with covariance 
terms, we normalize each component by the sequence length.

2.2.5 Subsequence natural vector
The 12D and 18D natural vector representations capture 
only global nucleotide distributions. However, since nucleoti-
des are not distributed equally across the HIV-1 genome (de 
Lima-Stein et al. 2014), these representation may be insuffi-
cient. Thus, to capture local nucleotide distributions, we use 
the subsequence natural vector representation method (He 
et al. 2020).

In this method, the sequence is divided into P nonoverlap-
ping segments or subsequences. We select the value for P as 
130 using the following equation (He et al. 2020): 

A. Workflow

D. Aim 3: Predict HIV subtypes and evaluate model performance

B. Aim 1: Explore different ways to vectorize DNA sequences

C. Aim 2: Select features from vectorized DNA sequences

DNA sequences 
vectorization 

Feature selection

Predict HIV 
subtypes

Accuracy
Macro-precision
Macro F1-score

AUROC
AUPRC

Cohen's Kappa
Balanced accuracy

Confusion Matrix

Feature vector

Label

Data

Evaluation
Numerical results

SVM

LASSO

Naive Bayes

Logistic Regression

KNN

CNN

Average of Predictions

Predictions Predictions Predictions

XGBoost Predictions

XGBoost

Ordinal
5-mer     6-mer
7-mer     8-mer
Natural vector

Natural vector with covariance
Subsequence natural vector

Word2vec
Word2vec-TFIDF

Embedding

Embedding

PCA

Feature vectors

Figure 1. Outline of the proposed research. (A) Overview of the workflow. (B) Sequence vectorization methods. (C) Dimensionality reduction using 
principal component analysis. (D) Classifying HIV-1 subtypes and evaluating model performance.
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P ¼ bH=ð12 � logðHÞÞc (7) 

where H is the number of HIV-1 samples in our dataset. We 
then compute the natural vector for each subsequence, as de-
fined above. After concatenating the natural vectors for each 
subsequence, we are left with 1560D feature vectors.

2.2.6 Word2Vec
Word2Vec (Mikolov et al. 2013) is generally used to map 
natural language vocabularies to high-dimensional vector 
spaces with a core idea of capturing semantic relationships 
between words by analysing their distribution patterns in 
context. This model learns the representation of each word as 
a fixed-length vector through observing its co-occurrence pat-
terns within the context window. Word2Vec has two main 
architectures: Skip-gram, which predicts the context words 
given a target word, and continuous bag of words (CBOW), 
which predicts the target word using the context words.

Our Word2Vec model is based on the CBOW architecture 
and has 3 layers (Fig. 2). The first is the input layer, denoted 
as z, which is a one-hot encoded representation of context 
words; the second is the hidden layer denoted by h, and is 
obtained by multiplying the input layer z with a weight ma-
trix W: 

h ¼WTz (8) 

The third layer is the output layer, where a score uj is com-
puted for each target, followed by the application of the 
Softmax function to obtain the posterior distribution of the 
target words. This layer is represented as: 

uj ¼ ðv0wj
Þ
Th (9) 

where v0wj 
is the j-th column of the weight matrix for hidden 

layer to output; 

p wjjwI
� �

¼ yj ¼
expðujÞ

PV
j0¼1 expðuj0 Þ

¼
expððv0wj

Þ
TvwIÞ

PV
j0¼1 expððv0wj0

Þ
TvwIÞ

(10) 

where yj is the output of the j-th unit in the output layer, 
pðwjjwIÞ represents the conditional probability of the target 
word wj given the context word wI, I represents the index po-
sition of the context word, and V is the size of the vocabu-
lary. During training, the model predicts the surrounding 
context words for each target word. After training, the 
weights of the hidden layer contain the learned word embed-
dings. We trained the Word2Vec model with the CBOW ar-
chitecture to learn the patterns of k-mer tokens in our HIV-1 
genome sequences. We used a sliding window of length k 
with a step size of 1 to produce overlapping k-mers. We then 
took the average vector of those k-mers in each sentence. In 
our study we explore k-mer tokens of size 5, 6, 7, and 8, and 
vectors ranging from 50 to 300 dimensions.

2.2.7 Word2Vec with TF-IDF
Despite the simplicity and effectiveness of the original 
Word2Vec method, it still overlooks the impact of vocabu-
lary frequency on the importance of different words. 
Therefore, we introduced the TF-IDF into our Word2Vec 
method to weigh the k-mers. The core idea of TF-IDF is that 
if a word or phrase has a high frequency (TF) in a sentence 
and occurs rarely in other sentences, it is considered to have 
good discriminatory power, making it suitable for classifying 
that sentence (Dang et al. 2020). We utilized scikit-learn tools 
to generate the TF-IDF values for each word, and then calcu-
lated the average vector of each sentence with words multi-
plied by their respective TF-IDF weights. As with Word2Vec, 
we explored using 5-, 6-, 7-, and 8-mers as words and feature 
vectors ranging from 50 to 300 dimensions.

Figure 2. Overview of Word2Vec. (A) To create the vocabulary for Word2Vec, each HIV-1 sequence (feature vector) is divided into k-mers, which 
represents words. Each word is then encoded using one-hot encoding. (B) The Word2Vec architecture consists of three layers—the input layer, the 
hidden layer, and the output layer, which involves applying Softmax.
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2.3 Dimensionality reduction: principal 
component analysis
Principal component analysis (PCA) (Pearson 1901) is a 
widely used statistical method for reducing dimensionality. It 
transforms the original features into a new set of orthogonal 
components, ordered by the variance they explain. In our 
study, we use a threshold of 90% for the cumulative 
explained variance ratio (Supplementary Table 2). For subse-
quence natural vector and the 5-, 6-, and 7-mer encodings, 
we train our models with and without PCA. We perform an 
ablation analysis to assess the effect of PCA on classification 
(Supplementary Table 3). Due to the high-dimensionality and 
sparsity of the ordinal and 8-mer encodings, we opt to train 
our model using PCA rather than without it. Since natural 
vector, natural vector with covariance, Word2Vec, and 
Word2Vec with TF-IDF have lower dimensionality, we do 
not apply PCA.

2.4 Random oversampling
After applying PCA, we split our data into training (80%) 
and testing (20%) sets that are stratified by subtype. To ad-
dress the imbalance in our dataset, we use random oversam-
pling (Lemâıtre et al. 2017), in which examples from 
minority classes are randomly duplicated, to create a desired 
minority class size. Although random oversampling is able to 
achieve good performance in empirical studies (Batista et al. 
2004), there can be generalization issues that arise from du-
plicating data. To mitigate the possibility of overfitting, we 
use a conservative oversampling strategy in which minority 
class sizes are tripled.

2.5 Subtype classification
Our approach encompasses an analysis of both classical ma-
chine learning and deep learning techniques for HIV-1 sub-
type classification. Each model is trained on preprocessed 
feature vectors and for each model and we tune hyperpara-
meters using RandomizedSearchCV from scikit-learn (version 
1.3.2) using the suggested parameter ranges in the documen-
tation (Pedregosa et al. 2011). We set the number of parame-
ter combinations to 10, use 5-fold cross-validation, and use 
accuracy as the scoring metric. The best-performing model is 
then used to classify HIV-1 subtypes in both the training and 
testing datasets. For a detailed overview of each machine 
learning method, please refer to Supplementary Section 1.

2.5.1 Multi-class logistic regression
The core of logistic regression (LR) is to model the probabili-
ties of different classes based on input features using a logistic 
function (Cox 1958). Our multi-class LR model is based on 
scikit-learn’s Multinomial LR framework, which utilizes the 
Softmax function (Pedregosa et al. 2011) to predict probabili-
ties and cross-entropy loss for training. The hyperparameter 
search for our multi-class LR model explores values of the in-
verse regularization parameter ranging from 0.01 to 10, con-
siders the ‘newton-cg’, ‘saga’, and ‘sag’ solver algorithms, 
and varies the number of iterations from 100 and 10 000.

2.5.2 eXtreme Gradient Boosting
eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin 
2016) is a powerful and efficient implementation of gradient 
boosting algorithms. Since it can effectively capture complex 
nonlinear patterns in data, it performs well in multi-class clas-
sification tasks using biological data (Chen et al. 2019). 

XGBoost uses gradient-boosted decision trees as base learners, 
which are built sequentially. Each new tree corrects the errors 
made in previous iterations, thereby improving the model’s 
accuracy step by step. This iterative approach, combined with 
regularization options, makes XGBoost an efficient model 
that is well-suited to multi-class classification tasks.

Our model is based on the framework defined in the 
XGBoost (version 2.0.2) Python package (Chen and Guestrin 
2016) using a subsample ratio of 0.5 and a column subsam-
ple ratio for each tree of 0.5. In the hyperparameter search, 
we vary the learning rate from 0.01 to 0.3, the maximum 
depth from 1 to 10, the number of estimators from 10 to 
200, and the minimum loss reduction from 0 to 2.

2.5.3 Least Absolute Shrinkage and Selection Operator
Least Absolute Shrinkage and Selection Operator (LASSO) 
(Tibshirani 1996) is frequently used to analyse high- 
dimensional datasets because it introduces a regularization 
term to the loss function and encourages simpler models with 
fewer parameters. These characteristics are particularly bene-
ficial in the context of high-dimensional genetic data and help 
to prevent overfitting and enhance model interpretability.

Our model is based on the multinomial LR framework 
from scikit-learn (Pedregosa et al. 2011) and uses a ‘1 penalty 
with the ‘saga’ solver. For hyperparameter tuning, the value 
of the inverse regularization coefficient (C) ranges from 0.01 
to 5, and the maximum number of iterations ranges from 100 
to 500.

2.5.4 Naive Bayes
Due to its simplicity, the Naive Bayes classifier (John and 
Langley 1995) is also a popular option for multi-class classifi-
cation tasks. The classifier is based on Bayes’ theorem and 
operates under the assumption that the features in the dataset 
are independent of each other. Although this assumption is 
naive, the model is able to handle high-dimensional genetic 
data and has performed well on bioinformatics tasks such as 
classifying virus proteins (Feng et al. 2013). For our model, 
we use scikit-learn’s Gaussian Naive Bayes framework 
(Pedregosa et al. 2011) and for hyperparameter tuning, the 
value for variance smoothing varies between 1e−8 
and 1e −10.

2.5.5 K-nearest neighbours
The KNN algorithm (Fix and Hodges 1985) is widely used in 
multi-task classification tasks. The core of the KNN model 
involves classifying each data point based on the majority la-
bel of its closest neighbours in the feature space. KNN has 
two key parameters: The number of neighbours (K) and the 
distance metric used for identifying neighbours. During train-
ing, the model identifies KNNs based on the distance metric 
and the classification is performed by a majority vote among 
these K neighbours. The class that appears most frequently 
within this subset is assigned to the data point.

To build our model, we use scikit-learn’s 
KNeighborsClassifier (Pedregosa et al. 2011), which uses the 
KNNs vote algorithm. The hyperparameter search explores 
values between 1 and 30 for the number of neighbours, 
Euclidean and Manhattan distance metrics, and ‘uniform’ 
and ‘distance’ weight functions. Using the ‘uniform’ setting, 
all points in a neighbourhood are weighted equally, while 
‘distance’ weighs points based on the inverse distance.
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2.5.6 Support vector machine
SVMs (Cortes and Vapnik 1995) are commonly used for clas-
sification tasks and involve finding a hyperplane that best 
separates classes in feature space. Although SVMs are binary 
classifiers, their functionalities can be extended to multi-class 
tasks using the One-versus-Rest (OvR) strategy. The OvR ap-
proach involves training multiple binary classifiers to differ-
entiate one class from all remaining classes. Using this 
approach, the decision function is computed for each classi-
fier, and the class corresponding to the classifier with the 
highest decision function value is chosen as the output.

Using scikit-learn (Pedregosa et al. 2011), we wrap an 
SVM model within a OneVsRestClassifier to train one classi-
fier per class. The target class is treated as the positive class, 
while all other classes form the negative class. The hyperpara-
meter search explores regularization parameter values rang-
ing from 0.1 to 10, linear, polynomial, and radial basis 
function kernels, and sets gamma values to ‘auto’ or ‘scale’. 
Using ‘auto’, the value of gamma is 1=num_features, and us-
ing ‘scale’, the value is 1=(num_features � X.var()), where X 
is the feature matrix and var() is the variance.

2.5.7 1D convolutional neural network
One Dimensional Convolutional Neural Networks (1D- 
CNNs) have shown success for tasks involving sequential 
data such as genetic data (Zhang et al. 2021). Our 1D-CNN 
architecture is constructed using the Keras framework 
(Chollet 2015) and begins with a 1D convolutional layer and 
we specify the number of filters and the kernel size. Each fil-
ter in this layer performs convolution operations on the input 
sequence, which can effectively capture local dependencies. 
Following the convolutional layer, a max-pooling layer with 
a pool size of 2 is used to reduce the dimensionality of the 
data, enhancing the network’s ability to generalize and reduc-
ing the computational load. The network then flattens the 
pooled features and passes them through a dense layer with a 
specified number of units, each employing a ReLU activation 
function for nonlinearity. The final layer is a Softmax layer, 
which can output the probability distribution across the HIV- 
1 subtypes. Figure 3 outlines the architecture of our network.

The hyperparameter search explores kernel sizes ranging 
from 2 to 4 and varies the numbers of filters (16, 32, and 64) 
and dense units (32, 64, and 128). It also explores batch sizes 

of 8, 10, and 16, epoch sizes of 50, 100, or 150, and consid-
ers the ‘adam’ and ‘rmsprop’ optimizers.

2.6 Evaluation metrics
To evaluate the performance of our HIV-1 subtype classifica-
tion models, we consider eight performance metrics: 
Accuracy, balanced accuracy, precision, recall, F1-score, area 
under the receiver operating characteristic (AUROC), area 
under the precision-recall curve (AUPRC), and Cohen’s 
Kappa. In addition, a confusion matrix is created for each 
model in order to assess model performance across all 28 
classes. All performance metrics are computed using scikit- 
learn. For a detailed overview of the evaluation metrics, 
please see Supplementary Section 2.

3 Results
3.1 Ordinal encoding
Table 1 summarizes the performance of ordinal-based sequence 
vectorization for HIV-1 subtype classification. Overall, ordinal 
encoding has poor performance across each machine learning 
and deep learning model we explored. In particular, the Naive 
Bayes classifier ranks among the lowest for all performance 
metrics. This may be because the Gaussian Naive Bayes classi-
fier assumes that all features are independent and that each 
class follows a Gaussian distribution. Evolutionary constraints 
in key functional regions of the HIV-1 genome, along with the 
presence of hypermutation, which introduces nonrandom pat-
terns of nucleotide substitutions, may lead to dependencies 
among nucleotides (de Lima-Stein et al. 2014). Thus, the 
assumptions of a Gaussian distribution and nucleotide indepen-
dence may not hold.

While the values for accuracy, precision, AUROC, and 
Cohen’s Kappa fall in the range of 0.7 to 0.8 for LR, LASSO, 
KNN, and SVM, these metrics may be artificially high due to 
the class imbalance in our dataset. Since subtype B greatly 
outnumbers the other subtypes, this class may be predicted 
more frequently than other classes, leading to high overall ac-
curacy. In addition, the high precision scores indicate that the 
model is likely making accurate predictions for subtype B, 
but missing most of the minority classes. The poor predictive 
ability of minority classes is evident from the low balanced 

Figure 3. 1D-CNN architecture for HIV-1 subtype classification. L, length of the feature vector.
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accuracy, recall, F1-score, and AUPRC scores. Overall, ordi-
nal encoding yields poor performance.

3.2 k-mer encoding
Based on the results of our PCA ablation study 
(Supplementary Table 3), we find 5-mer and 6-mer encodings 
perform better without PCA. From the results of Table 2, as 
the length of k increases from 5 to 7, the overall performance 
of the model improves. However, as k increases from 7 to 8, 
performance drops across all performance metrics, suggesting 
that the 8-mer encoding is much less effective. This is likely 
because the 8-mer encoding is very sparse, so it is more diffi-
cult for the model to find meaningful patterns.

Across the machine learning and deep learning models we 
explored, the 6-mer encoding generally outperforms the 5- 
mer encoding, and the 7-mer encoding generally outperforms 
the 6-mer and 5-mer encodings. In fact, the 7-mer sequence 
encoding, in combination with XGBoost, outperforms nearly 

every other k-mer-based model, as well as every other vectori-
zation method. Our 7-mer and XGBoost model used a learn-
ing rate of 0.196, maximum depth of 5, a gamma value of 
0.409, and 134 estimators. 7-mer encoding with XGBoost 
has very high accuracy (0.98), AUROC (0.92), precision 
(0.94), and Cohen’s Kappa (0.97), along with good balanced 
accuracy (0.84), recall (0.84), F1-score (0.87), and AUPRC 
(0.80), indicating that this combination performs well for 
both majority and minority classes. This is also evident in its 
confusion matrix (Supplementary Fig. 1), where the model 
makes very few mistakes overall, as seen by the diagonal line 
in the confusion matrix. The model tends to struggle with 
subtypes that contain few examples, such as subtype A3, 
which contains only 19 examples. It also tends to misclassify 
CRF subtypes that originated from the same pure subtypes. 
For example, the model misclassifies some examples of CRF 
31_BC as CRF 07_BC. Both of these recombinant subtypes 
originate from unique recombination events between subtype 

Table 1. Performance of ordinal encoding for sequence vectorization across machine learning models.

Performance metrics�

Method Model Accuracy Balanced accuracy Precision F1 score AUROC AUPRC Cohen’s Kappa

XGBoost 0.86 0.31 0.68 0.39 0.65 0.30 0.69
Logistic Regression 0.87 0.42 0.66 0.48 0.70 0.34 0.74
LASSO 0.88 0.41 0.63 0.47 0.70 0.34 0.75
Naive Bayes 0.47 0.32 0.34 0.27 0.65 0.18 0.20
KNN 0.81 0.33 0.79 0.42 0.65 0.32 0.53
SVM 0.88 0.38 0.79 0.47 0.68 0.37 0.74

Ordinal Encoding CNN 0.86 0.37 0.55 0.43 0.68 0.29 0.79

� The highest value for each performance metric is highlighted in bold. 

Table 2. Performance of k-mer-based encoding methods for sequence vectorization across machine learning models.

Performance metrics�

Method Model Accuracy Balanced accuracy Precision F1 Score AUROC AUPRC Cohen’s Kappa

5-mer (no PCA) XGBoost 0.97 0.73 0.88 0.77 0.86 0.68 0.95
Logistic Regression 0.98 0.80 0.88 0.82 0.90 0.74 0.96
LASSO 0.98 0.80 0.89 0.83 0.90 0.76 0.97
Naive Bayes 0.97 0.72 0.84 0.75 0.86 0.63 0.95
KNN 0.97 0.74 0.80 0.72 0.87 0.63 0.94
SVM 0.98 0.79 0.89 0.82 0.89 0.73 0.96
CNN 0.98 0.78 0.86 0.80 0.89 0.72 0.96

6-mer (no PCA) XGBoost 0.98 0.75 0.89 0.78 0.87 0.70 0.97
Logistic Regression 0.98 0.80 0.89 0.83 0.90 0.75 0.97
LASSO 0.98 0.80 0.89 0.83 0.90 0.75 0.97
Naive Bayes 0.91 0.38 0.60 0.41 0.69 0.29 0.82
KNN 0.97 0.77 0.82 0.76 0.88 0.67 0.95
SVM 0.98 0.79 0.91 0.81 0.89 0.74 0.96
CNN 0.98 0.76 0.84 0.74 0.89 0.71 0.95

7-mer (with PCA) XGBoost 0.98 0.84 0.94 0.87 0.92 0.80 0.97
Logistic Regression 0.98 0.80 0.88 0.82 0.90 0.75 0.97
LASSO 0.98 0.78 0.87 0.80 0.89 0.72 0.96
Naive Bayes 0.75 0.76 0.64 0.64 0.88 0.56 0.59
KNN 0.88 0.49 0.84 0.59 0.74 0.48 0.73
SVM 0.97 0.80 0.83 0.80 0.90 0.72 0.95
CNN 0.98 0.77 0.88 0.81 0.89 0.73 0.96

8-mer (with PCA) XGBoost 0.63 0.03 0.03 0.03 0.50 0.04 0.02
Logistic Regression 0.52 0.03 0.03 0.03 0.50 0.04 0.02
LASSO 0.58 0.03 0.03 0.03 0.50 0.04 0.03
Naive Bayes 0.05 0.02 0.04 0.01 0.49 0.04 0.01
KNN 0.61 0.04 0.03 0.03 0.50 0.04 0.01
SVM 0.55 0.03 0.03 0.03 0.48 0.04 0.01
CNN 0.63 0.02 0.03 0.01 0.50 0.04 0.02

� The highest value for each performance metric is highlighted in bold. 
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B and subtype C (Williams et al. 2023). This suggests that the 
7-mer sequence encoding may fail to fully capture subtle ge-
netic differences between CRFs that originate from the same 
pure subtypes.

3.3 Natural vector encoding
Across every model we explored, the 12D natural vector and 
18D natural vector with covariance encoding methods have 
similar, yet suboptimal performance (Table 3). This suggests 
that the covariance terms provide little additional informa-
tion. These encoding methods have good accuracy, yet poor 
balanced accuracy, precision, recall, and AUPRC, indicating 
that like ordinal encoding, these methods are especially sensi-
tive to the imbalance in our data. In addition, the poor classi-
fication performance indicates that 12 or 18 dimensions are 
insufficient for distinguishing between HIV-1 subtypes.

The subsequence natural vector encoding outperforms both 
the 12D and 18D natural vector encoding methods, achieving 
an accuracy of 0.96, precision of 0.86, AUROC of 0.80, and 
Cohen’s Kappa of 0.92. In contrast, balanced accuracy and 
F1-score are �0.6, while AURPRC is 0.51. Although the sub-
sequence natural vector encoding method is similar in dimen-
sionality to the 5-mer encoding (Supplementary Table 2), the 
5-mer encoding achieves consistently higher performance, in-
dicating that k-mer encoding is a superior method.

3.4 Natural language encoding
Based on the results of Table 4, the Word2Vec encoding 
shows promise. We systematically evaluate Word2Vec using 
k-mer tokens of size 5, 6, 7, and 8 and explore feature vectors 
ranging from 50 to 300 dimensions. Our best-performing 
Word2Vec encoding uses 6-mers as tokens and a 250D fea-
ture vector (Supplementary Table 4). With this encoding, an 
SVM with a regularization parameter of 2.52, a polynomial 
kernel, and ‘auto’ gamma values achieves accuracy, AUROC, 
and Cohen’s Kappa values of 0.90 or greater. It also has a 
precision value of 0.88, an AUPRC of 0.74, an F1-score of 
0.82, and a balanced accuracy of 0.80.

Although these metrics are lower in comparison to the 5- 
mer, 6-mer, and 7-mer encoding methods across all models, 
Word2Vec outperforms natural-vector-based methods on 
nearly all performance metrics, despite. Furthermore, 
Word2Vec also outperforms the ordinal and Word2Vec with 
TF-IDF encoding methods. These results show that although 
Word2Vec was designed for natural language, it is able to 
capture similarities between genetic sequences. There is, how-
ever, room for improvement to further tune Word2Vec in or-
der to attain improved performance on genetic data. Overall, 
this indicates that Word2Vec has unexplored potential as a 
sequence encoding method.

In contrast, Word2Vec with TF-IDF achieves poor perfor-
mance, suggesting that the addition of TF-IDF hinders perfor-
mance. Although Word2Vec and Word2Vec with TF-IDF 
consider the occurrences of ‘words’ (k-mers), TF-IDF is par-
ticularly sensitive to rare words. Rare k-mers can be useful 
when distinguishing between subtypes, but since intrasubtype 
variability can be as high as 20% in HIV-1 (Hemelaar et al. 
2006), rare k-mers could introduce noise, leading to more 
classification mistakes.

4 Discussion
Out of all the encoding methods we explored, k-mer encod-
ing generally outperforms others across metrics and machine 
learning models, with the notable exception of 8-mer encod-
ing, which achieves the lowest performance. In contrast, 7- 
mer encoding achieves the highest predictive performance, 
with the best overall combination being 7-mer with 
XGBoost. Our k-mer and Word2Vec models achieve accu-
racy scores of �98% for LR and SVMs, while Kameris 
achieves accuracy scores of �95% and 97% on these models 
(Solis-Reyes et al. 2018). A recent study achieved accuracy 
scores of over 99% (Tang et al. 2021), however, the dataset 
used in the study was imbalanced and metrics such as bal-
anced accuracy, which can assess overall model performance 
are omitted. Since it considers all classes, balanced accuracy 

Table 3. Performance of natural vector-based encoding methods for sequence vectorization across machine learning models.

Performance metrics�

Method Model Accuracy Balanced accuracy Precision F1 Score AUROC AUPRC Cohen’s Kappa

XGBoost 0.88 0.42 0.63 0.48 0.71 0.36 0.76
Logistic Regression 0.79 0.29 0.29 0.27 0.64 0.19 0.59
LASSO 0.80 0.30 0.29 0.28 0.64 0.19 0.59
Naive Bayes 0.67 0.31 0.25 0.26 0.65 0.16 0.41
KNN 0.88 0.48 0.55 0.49 0.73 0.34 0.77
SVM 0.84 0.31 0.71 0.39 0.65 0.31 0.63

Natural Vector CNN 0.83 0.43 0.43 0.40 0.71 0.27 0.68
XGBoost 0.89 0.42 0.65 0.48 0.71 0.36 0.77
Logistic Regression 0.80 0.30 0.28 0.28 0.64 0.20 0.59
LASSO 0.80 0.32 0.29 0.29 0.65 0.21 0.60
Naive Bayes 0.62 0.32 0.22 0.22 0.65 0.14 0.33
KNN 0.88 0.48 0.57 0.50 0.74 0.34 0.77
SVM 0.87 0.48 0.52 0.49 0.74 0.34 0.74

Natural Vector with Covariance CNN 0.85 0.49 0.45 0.46 0.74 0.30 0.72
XGBoost 0.95 0.51 0.83 0.59 0.75 0.48 0.90
Logistic Regression 0.96 0.59 0.71 0.63 0.79 0.49 0.92
LASSO 0.96 0.60 0.71 0.64 0.80 0.50 0.92
Naive Bayes 0.55 0.44 0.37 0.34 0.71 0.24 0.37
KNN 0.90 0.51 0.50 0.50 0.75 0.34 0.82
SVM 0.95 0.57 0.86 0.64 0.78 0.51 0.91

Subsequence Natural Vector CNN 0.95 0.53 0.71 0.59 0.77 0.45 0.90

� The highest value for each performance metric is highlighted in bold. 
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may provide a more reliable indication of a model’s overall 
performance. Although our overall accuracy is slightly lower, 
our best-performing XGBoost model performs well for ma-
jority and minority classes.

However, outside of the k-mer encoding methods, 
Word2Vec with SVM achieves the next highest performance. 
We also note that both XGBoost and LR have good perfor-
mance across different sequence vectorization methods. 
These models may outperform other machine learning and 
deep learning models because they may more accurately cap-
ture complex decision boundaries without overfitting, leading 
to increased generalizability.

Our results also indicate that the choice of sequence vecto-
rization method is just as important as the choice of machine 
learning model for HIV-1 subtype classification. Since ordi-
nal encoding is based solely on single nucleotides, it fails to 
capture local and global motifs that may be unique to HIV-1 
subtypes. While natural vector-based methods consider 
global and local sequence characteristics, these methods are 
based on summary statistics and may fail to capture subtype- 
specific motifs, especially in minority classes. k-mer encoding 
and Word2Vec, which consider local sequence composition 
and relative frequency, have improved performance.

Word2Vec’s moderate performance may be attributed to 
the fact that it relies on semantic relationships between words 
in a corpus, an assumption that may not directly translate to 
genetic sequences. In natural language texts, meaning is con-
veyed through semantic relationships between adjacent ele-
ments. While this may be true to an extent for genetic 
sequences, there are also intricate patterns of nucleotide inter-
actions across the genome. These regions may exhibit com-
plex interactions and dependencies that are not adequately 
captured by the vector representations learned by Word2Vec. 
Despite its success in other bioinformatics applications such 
as RNASeq clustering (Moussa and M�andoiu 2018), 
Word2Vec with TF-IDF yields poor performance for HIV-1 
subtype classification. Since HIV-1 has high variability within 
and between subtypes, it may be challenging to classify sub-
types solely based on the rarity of particular k-mers.

Although the results of our work are promising, our study 
has some limitations. Despite our efforts to address the im-
balance in our dataset through random oversampling, this 
approach may be insufficient. Further studies could involve 
exploring more sophisticated oversampling methods such as 

Synthetic Minority Oversampling Technique (SMOTE) in ad-
dition to undersampling strategies such as NearMiss that use 
a KNN-based approach (Krawczyk 2016). In addition, since 
our method for hyperparameter tuning relies on a random 
search, we are not guaranteed to find the optimal set of 
parameters. Future work could involve using a more through 
hyperparameter approach such as Grid Search. In addition, 
given the promise of the Word2Vec, further studies are 
needed in order to explore Word2Vec in combination with 
other CNN architectures and other deep learning models.

5 Conclusion
Our work presents a comprehensive analysis of sequence vec-
torization techniques and machine learning models for HIV-1 
subtype classification. Based on our findings, the sequence 
vectorization method and machine learning model chosen are 
of equal importance for HIV-1 subtype classification. We re-
port a 7-mer encoding method that in combination with 
XGBoost, achieves high predictive accuracy across majority 
and minority classes. While k-mer encoding methods outper-
form Word2Vec, the combination of Word2Vec with SVM 
still shows promise for classifying both minority and majority 
classes. Our thorough analysis of HIV-1 sequence vectoriza-
tion methods may pave the way for future HIV-1 subtype 
classification models that are well-suited to classifying rare 
and recombinant subtypes, leading to improved patient out-
comes and the development of novel subtype-specific drugs 
and vaccines.
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