Skip to main content
Biochemical Journal logoLink to Biochemical Journal
letter
. 1994 Jul 15;301(Pt 2):621–623. doi: 10.1042/bj3010621

Product inhibition in mechanisms in which the free enzyme isomerizes.

A Cornish-Bouden
PMCID: PMC1137126  PMID: 7980771

Full text

PDF
621

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albery W. J., Knowles J. R. Energetics of enzyme catalysis. I. Isotopic experiments, enzyme interconversion, and oversaturation. J Theor Biol. 1987 Jan 21;124(2):137–171. doi: 10.1016/s0022-5193(87)80259-x. [DOI] [PubMed] [Google Scholar]
  2. Britton H. G., Carreras J., Grisolia S. Mechanism of action of 2,3-diphosphoglycerate-independent phosphoglycerate mutase. Biochemistry. 1971 Nov 23;10(24):4522–4533. doi: 10.1021/bi00800a028. [DOI] [PubMed] [Google Scholar]
  3. Britton H. G., Carreras J., Grisolia S. Mechanism of yeast phosphoglycerate mutase. Biochemistry. 1972 Aug 1;11(16):3008–3014. doi: 10.1021/bi00766a012. [DOI] [PubMed] [Google Scholar]
  4. Britton H. G., Clarke J. B. Mechanism of the 2,3-diphosphoglycerate-dependent phosphoglycerate mutase from rabbit muscle. Biochem J. 1972 Nov;130(2):397–410. doi: 10.1042/bj1300397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Britton H. G., Clarke J. B. The mechanism of the phosphoglucomutase reaction. Studies on rabbit muscle phosphoglucomutase with flux techniques. Biochem J. 1968 Nov;110(2):161–180. doi: 10.1042/bj1100161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Britton H. G. Methods of determining rate constants in single-substrate-single-product enzyme reactions. Use of induced transport: limitations of product inhibition. Biochem J. 1973 Jun;133(2):255–261. doi: 10.1042/bj1330255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Britton H. G. The concept and use of flux measurements in enzyme studies. A theoretical analysis. Arch Biochem Biophys. 1966 Oct;117(1):167–183. doi: 10.1016/0003-9861(66)90140-8. [DOI] [PubMed] [Google Scholar]
  8. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
  9. Fisher L. M., Albery W. J., Knowles J. R. Energetics of proline racemase: tracer perturbation experiments using [14C]proline that measure the interconversion rate of the two forms of free enzyme. Biochemistry. 1986 May 6;25(9):2538–2542. doi: 10.1021/bi00357a038. [DOI] [PubMed] [Google Scholar]
  10. RAY W. J., Jr, ROSCELLI G. A. THE PHOSPHOGLUCOMUTASE PATHWAY. AN INVESTIGATION OF PHOSPHO-ENZYME ISOMERIZATION. J Biol Chem. 1964 Nov;239:3935–3941. [PubMed] [Google Scholar]
  11. Raines R. T., Knowles J. R. Enzyme relaxation in the reaction catalyzed by triosephosphate isomerase: detection and kinetic characterization of two unliganded forms of the enzyme. Biochemistry. 1987 Nov 3;26(22):7014–7020. doi: 10.1021/bi00396a024. [DOI] [PubMed] [Google Scholar]
  12. Rebholz K. L., Northrop D. B. Kinetics of enzymes with iso-mechanisms: analysis of product inhibition. Biochem J. 1993 Dec 1;296(Pt 2):355–360. doi: 10.1042/bj2960355. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES