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Abstract
The relative importance of genetic drift and local adaptation in facilitating speciation remains unclear. This is particu-
larly true for seabirds, which can disperse over large geographic distances, providing opportunities for intermittent 
gene flow among distant colonies that span the temperature and salinity gradients of the oceans. Here, we delve into 
the genomic basis of adaptation and speciation of banded penguins, Galápagos (Spheniscus mendiculus), Humboldt 
(Spheniscus humboldti), Magellanic (Spheniscus magellanicus), and African penguins (Spheniscus demersus), by analyz-
ing 114 genomes from the main 16 breeding colonies. We aim to identify the molecular mechanism and genomic adap-
tive traits that have facilitated their diversifications. Through positive selection and gene family expansion analyses, 
we identified candidate genes that may be related to reproductive isolation processes mediated by ecological thermal 
niche divergence. We recover signals of positive selection on key loci associated with spermatogenesis, especially dur-
ing the recent peripatric divergence of the Galápagos penguin from the Humboldt penguin. High temperatures in 
tropical habitats may have favored selection on loci associated with spermatogenesis to maintain sperm viability, 
leading to reproductive isolation among young species. Our results suggest that genome-wide selection on loci asso-
ciated with molecular pathways that underpin thermoregulation, osmoregulation, hypoxia, and social behavior ap-
pears to have been crucial in local adaptation of banded penguins. Overall, these results contribute to our 
understanding of how the complexity of biotic, but especially abiotic, factors, along with the high dispersal capabilities 
of these marine species, may promote both neutral and adaptive lineage divergence even in the presence of gene flow.
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Introduction
Strong environmental gradients in temperature and salin-
ity across oceanic basins and the geographic isolation of is-
lands are key factors that underpin the remarkable 
evolutionary radiation of many phenotypically unique 
plants and animal lineages (Warren et al. 2015). Islands 
are also hypothesized to have been fundamental to the di-
versification of several seabird lineages across the globe 
(e.g. shearwaters, Procellariidae, Obiol et al. 2023; tropic-
birds, Phaethontidae, Varela et al. 2024). Given the high 
dispersal capacity of seabirds with shallow genetic diver-
gence among species being characteristic of several clades 
(e.g. gulls, Laridae, Sonsthagen et al. 2016; shags, Phalacro-
coracidae, Rawlence et al. 2022; skuas, Stercorariidae, 
Mikkelsen and Weir 2023), it seems that long periods of 
isolation in allopatry are unlikely to be the only, or even 
the most important, driver of lineage diversification in sea-
birds, thereby fundamentally differing from drivers of lin-
eage formation among landbirds (Cai et al. 2020). This 
raises the question of the relative importance of accumu-
lating genetic differences through genetic drift versus 
through natural selection (local adaptation) in shaping lin-
eage formation among seabirds. This question is particu-
larly pertinent given that both genetic drift and local 
adaptation are modulated by the extent of gene flow 
among populations and lineages (Via 2009). While the ex-
tensive movement of seabirds across large geographical 

ranges facilitates genetic exchange among populations, 
factors such as oceanic barriers, degree of population iso-
lation, and specialized breeding behaviors (prezygotic bar-
riers) can lead to divergence by restricting gene flow 
(Welch et al. 2012; Danckwerts et al. 2021; Kersten et al. 
2021).

The mechanisms driving the accumulation of differ-
ences between populations can be prezygotic (e.g. morph-
ology and breeding behavior) or postzygotic (mechanical 
incompatibility and infertility), often working synergistical-
ly to result in reproductive isolation. During the early 
stages of speciation, genetic divergence between popula-
tions is expected to occur at a few key loci (Via and 
West 2008; Feder et al. 2012). In the late stages of speci-
ation, genome-wide divergence is likely to be observed 
due to selection acting on multiple adaptive loci to restrict 
gene flow (Feder and Nosil 2010). The sex chromosomes 
are among the genomic regions that undergo rapid differ-
entiation, primarily due to their smaller effective popula-
tion size that makes selective sweeps more likely. 
Divergence of sex chromosomes is further influenced by 
the presence of loci associated with reproduction located 
on these chromosomes, which can ultimately lead to post-
zygotic isolation through positive selection acting on these 
loci (Dufresnes and Crochet 2022).

Banded penguins (genus Spheniscus) are exceptional for 
their ability to have successfully colonized both tropical 
and temperate latitudes and are one of the youngest 
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lineages among living penguins having originated along 
the South America coast some 1.8 million years ago 
(Mya) (Vianna et al. 2020). Four species are recognized 
in the genus. Three species are distributed along the coast 
of South America, including the Galápagos (Spheniscus 
mendiculus), Humboldt (Spheniscus humboldti), and 
Magellanic penguins (Spheniscus magellanicus), and the 
African penguin (Spheniscus demersus) is distributed along 
the south and west coasts of South Africa and Namibia. 
The Galápagos penguin holds the distinction of being 
the northernmost penguin species, straddling the equator 
(Garcia-Borboroglu and Boersma 2013). Magellanic pen-
guins range across both the Pacific and Atlantic coasts of 
South America, while the Humboldt penguin is restricted 
to the Humboldt Current in the Pacific Ocean.

Here, we evaluate several classic speciation models, of-
ten formulated for landbirds, using banded penguins as 
an exemplar system with which to further our understand-
ing of the speciation process in seabirds. First, we explore 
support for peripatric speciation between Galápagos and 
Humboldt penguins, representing an island–continent sys-
tem. Second, we explore the evidence for parapatric speci-
ation across the range boundary between Humboldt and 
Magellanic penguins. Third, we explore the extent of spe-
ciation in allopatry between the sister species African and 
Magellanic penguins. We hypothesize that speciation 
events in banded penguins were driven not only by geo-
graphical distance between continents or continent–is-
lands but also by environmental heterogeneity, leading 
to selection across the genome to facilitate adaptation 
to local conditions. This is particularly significant given 
that most extant penguin lineages are adapted to the 
low water temperatures and high salinity of the 
sub-Antarctic and Antarctic (Thomas et al. 2020; Vianna 
et al. 2020; Cole et al. 2022), while banded penguins 
must navigate a trade-off between inhabiting subtropical 
and tropical regions and maintaining thermal equilibrium 
during reproductive seasons, especially in the face of heat-
waves and shifts in local salinity levels.

Results
A total of 114 penguin genomes were obtained, covering a 
range of per-sample depth of coverage values between 3× 
and 7× (see supplementary figs. S1 and S2 and table S1, 
Supplementary Material online). On average, 7 individuals 
from each of the 16 major breeding colonies were se-
quenced, thereby enabling us to sample from across the 
geographic range encompassed by each of the 4 banded 
penguin species (Fig. 1; supplementary table S2, 
Supplementary Material online).

Diversity and Diversification
Nucleotide diversity, heterozygosity, and the number of 
private alleles were lowest in the Galápagos penguin and 
greatest in the Magellanic penguin (Fig. 1; supplementary 
figs. S3 and S4 and tables S3 and S4, Supplementary 

Material online). The percentage of sequence dissimilarity 
within species was lower in the Galápagos penguin 
(<0.004%) relative to the other 3 banded penguin species 
(supplementary fig. S4a, Supplementary Material online). 
Relatedness coefficients were consistently highest among 
Galápagos penguins and lowest among Magellanic pen-
guins (supplementary fig. S4b, Supplementary Material on-
line). Tajima’s D was positive for all 4 species, indicating a 
deficit of rare alleles, a result consistent with population 
contraction (supplementary fig. S4c, Supplementary 
Material online).

We performed a principal component analysis (PCA) 
with data set 1B (refer to supplementary table S3, 
Supplementary Material online). The PCA revealed that in-
dividuals were clustered by species (Fig. 2a), where the first 
principal component explained 27.7% of the variance and 
the second principal component explained 9.4% of the vari-
ance. Sex-linked sites show higher divergence between the 
Magellanic and African penguins than between Humboldt 
and Galápagos penguins (supplementary figs. S5 and S6, 
Supplementary Material online). Phylogenetic analyses 
performed on 4,740 ultraconserved elements (UCE) and 
16,966 coding sequences (CDS) each placed the 
Galápagos and Humboldt penguins as sister species and 
the African and Magellanic penguins as sister species 
(Fig. 2b; supplementary fig. S7, Supplementary Material on-
line), supporting previous phylogenomic hypotheses of 
species relationships (Pan et al. 2019; Vianna et al. 2020; 
Cole et al. 2022).

Pairwise comparisons of the 2D site frequency spectrum 
further indicated that the Galápagos and Humboldt pen-
guins are sister species, with the Galápagos and African 
penguins exhibiting the highest level of sequence diver-
gence compared to the other species pairs examined 
(supplementary fig. S8, Supplementary Material online). 
The results from admixture analyses recovered K = 4 
as the optimal number of clusters. This result corroborates 
the PCA and phylogenomic analyses, with all 4 species 
being delimited with little indication of recent interspecific 
admixture (Fig. 2c). In contrast, the results from Treemix re-
covered 2 vectors whose placement suggests that gene flow 
may have occurred over the entire history of the diversifi-
cation of banded penguins. A vector with low migration 
weight (close to 0) extends from the ancestral taxon of 
the Humboldt–Galápagos clade to the Magellanic penguin 
(Fig. 2d), and there is an intraspecific vector between popu-
lations of Humboldt penguin. Results from using the 
ABBA-BABA test (D-statistic Z-score > 3) are consistent 
with the Treemix results, suggesting that interspecific 
gene flow over the evolutionary history of banded penguins 
has occurred between Humboldt and Magellanic penguins 
(supplementary table S5, Supplementary Material online).

The degree of intraspecific population structure ob-
served among sampled colonies spanning each species dis-
tributional range was limited, with levels of genomic 
differentiation between populations within species (Fst) 
varying between 0.001 and 0.006 (supplementary table 
S6, Supplementary Material online). PCA, EEMS, and 
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Fig. 1. Geographic distribution and genetic diversity of banded penguin species. a) Geographic distribution of the breeding banded penguin 
colonies sampled in this study with the number of individuals sampled indicated. Color codes correspond to the 4 banded penguin 
(Spheniscus) species. b) Nucleotide diversity vs. genome-wide heterozygosity. c) Number of private alleles restricted to each species: African 
(AFR), Magellanic (MAG), Humboldt (HUM), and Galápagos Penguin (GAL).

Fig. 2. Population structure and demographic history of banded penguins. a) PCA based on genome-wide SNP data. b) Maximum likelihood 
topology generated with 4,700 UCEs. c) Estimates of admixture (K = 4). d) Maximum likelihood tree generated using Treemix, with the 
most significant ancestral periods of introgression indicated. Note that here we made use of neutral gene regions from whole-genome sequence 
data from a subset of individuals belonging to each of the breeding colonies. e) Demographic history inferred from the PSMC using a single 
genome of high coverage (∼30×). f) Demographic inference carried out with the set of populations belonging to the same species with stairway 
plot 2. Breeding colonies of Galápagos penguin: El Muñeco (GEM), Caleta Iguana (GCI), and Bartolomé (GBA); Humboldt penguin: Punta San 
JUAN (HPSJ), Pan de Azucar (HPAZ), Isla Chañaral (HCHA), Isla Cachagua (HCACH), and Puñihuil (HPU); Magellanic penguin: Puñihuil (MPU), 
Isla Magdalena (MIM), Malvinas/Falkland Island (MFALK), Monte Entrance (MME), and Isla Quiroga (MIQ); African penguin: Dassen Island 
(ADI), Stony Point (ASP), and Dyer Island (ADYI).
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BayesAss also support limited population structure within 
species (supplementary table S7 and figs. S9 and S10, 
Supplementary Material online).

Demographic Inference
Both the pairwise sequentially Markovian coalescent 
(PSMC) models (Li and Durbin 2011) (Fig. 2e) and 
the stairway plot 2 models (Liu and Fu 2020) (Fig. 2f) 
supported past changes in population size for each of 
the 4 banded penguin species. In the PSMC analysis, 
the effective population size (Ne) of the Galápagos 
penguin shows a consistent decline toward the present. 
Humboldt and African penguins reached a low Ne 
point around 100,000 years before present (BP), after 
which both species started to increase. In contrast to 
the other species, the Magellanic penguin shows an ex-
pansion between 500,000 and 100,000 years BP. 
Stairway plots indicated that all 4 banded penguin spe-
cies experienced a putative decline in Ne at approxi-
mately 20,000 years BP, during the last glacial 
maximum. However, confidence intervals indicate con-
siderable uncertainty for the Humboldt penguin which 
may have maintained a stable population size. 
Magellanic, African, and Galápagos penguins have con-
tinued to decline over the past 40,000 years. 
Demographic inferences of individuals from each 
sampled population (supplementary fig. S11, 
Supplementary Material online) are consistent with 
species-wide inferences of changes in Ne (Fig. 2e).

Detection of Outlier Loci, Gene Family Expansion, 
and Contraction
A total of 1,532 single nucleotide polymorphisms (SNPs) 
on autosomal scaffolds (between Galápagos–Humboldt, 
Humboldt–Magellanic, and Magellanic–African) were 
identified through species pair comparisons using 3 com-
monly used methods to detect outlier loci: OUTFLANK 
(Whitlock and Lotterhos 2015), PCAdapt (Luu et al. 
2017), and GWDS (de Jong et al. 2021) (Fig. 3; 
supplementary table S8, Supplementary Material online). 
The top 4 enriched biological processes (Fig. 3a) were cel-
lular process (GO:0009987), biological regulation 
(GO:0065007), metabolic process (GO:0008152), and re-
sponse to stimulus (GO:0050896). SNPs were distributed 
across CDSs, genes, messenger RNAs (mRNA), and pseu-
dogenes (supplementary table S8, Supplementary 
Material online). Depending on the species pair com-
pared, between 364 and 645 SNPs were retrieved by 
all 3 methods (Fig. 3a1 to a3; supplementary table S8, 
Supplementary Material online). Signals of selection asso-
ciated with these biological functions are linked to the 
ecological habits of the banded penguins, highlighting 
molecular adaptation to hypoxia, osmoregulation, and 
visual and olfactory stimuli, as well as muscular develop-
ment and cognitive capabilities related to social behaviors, 
memory, and learning (Fig. 3b; supplementary tables S9 
and S10, Supplementary Material online). Fst of outlier 
SNPs was lower between Galápagos and Humboldt pen-
guins and higher between Humboldt and Magellanic 

(a) (b)

(c)

Fig. 3. Whole-genome divergent selection between pairwise Spheniscus species. a) The primary GO and enrichment analysis conducted in the 
selection analysis between species (a1 to a3). Venn diagrams illustrate the number of outlier SNPs recovered using OUTFLANK, PCAadpt, and 
GWDS and their intersection. b) The biological functions inferred to be under selection in all 4 banded penguin species. c) Manhattan plots 
illustrate the SNPs between species and their degree of differentiation.
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and Magellanic and African penguins (Fig. 3c). The bio-
logical processes showing the highest gene enrichment be-
tween Galápagos and Humboldt species (Fig. 3a) were 
spermatogenesis (GO:0007283), response to heat (GO: 
0031072), and morphogenetic regulation (GO:0009653; 
supplementary table S11, Supplementary Material online). 
Comparison between Galápagos and Humboldt penguin 
recovered 645 SNPs under selection; 183 (28%) SNPs un-
der divergent selection are involved in spermatogenesis 
(e.g. SPAG4, ADCY10, MROH2B, DRC1, SUN3, ARHGAP24, 
HSD17B11, YTHDC1, SUN2, CFAP61, and CCDC42; 
Fig. 3b), with several of these loci functionally linked to 
each other (Fig. 3; supplementary table S9, Supplementary 
Material online).

A Human Phenotype Ontology analysis revealed en-
riched phenotypic characteristics associated with the smal-
ler body sizes of Galápagos penguins compared to 
Humboldt penguins. Among the most prominent pheno-
typic features were “growth delay,” “microcephaly,” “short 
digit,” “hypogonadism,” “short nose,” “hypothyroidism,” 
“short toe,” “short finger,” “short neck,” and “small nail.”

We used molecular data to identify the sex of each indi-
vidual revealing a ratio of 52% males to 48% females in our 
data set. We found 4 sexual scaffolds inferred to be “Z” 
VULB01013104.1 (P = 3.96446519251287e−83), VULB0 
1007854.1 (P = 3.54081731216743e−102), VULB010040 
53.1 (P = 7.39397430999582e−136), and VULB01013990.1 
(P = 3.77227071588691e−65). In males (2 copies of the 
Z-chromosome), 622 SNPs were recovered across the 4 pu-
tative Z-chromosome scaffolds for the Galápagos– 
Humboldt (60 SNPs), Humboldt–Magellanic (219 SNPs), 
and Magellanic–African penguin comparisons (343 SNPs) 
(supplementary fig. S12, Supplementary Material online). 
The pairwise comparisons indicate a diverse range of 
biological processes in common, including molecular 
transducer activity binding (GO:0005488), structural mol-
ecule activity (GO:0005198), and catalytic activity (GO: 
0003824). Among the uniquely enriched biological pro-
cesses for the Z-chromosome scaffolds in pairwise species 
comparisons are GAL-HUM molecular function regulator 
activity (GO:0098772), HUM-MAG cytoskeletal motor activ-
ity (GO:0003774), ATP-dependent activity (GO:0140657), 
and MAG-AFR translation regulator activity (GO:0045 
182). We confirmed the presence of a gene block on the 
Z-chromosome (DCC, MEX3C, POLI, MAPK4, PARP8, 
RAB27B, and TCF4) that has been lost in other bird lineages 
such as Galliformes and passerines (Fig. 4; Friocourt et al. 
2017; Patthey et al. 2017).

Restricting the analyses to females (single copy of the 
Z-chromosome), 828 SNPs were detected to be under se-
lection on the Z-chromosome across the Galápagos– 
Humboldt (159 SNPs), Humboldt–Magellanic (293 SNPs), 
and Magellanic–African (376 SNPs) comparisons 
(supplementary fig. S13, Supplementary Material online). 
The findings suggest a broad array of shared biological pro-
cesses, including binding (GO:0005488), structural mol-
ecule activity (GO:0005198), molecular function regulator 
activity (GO:0098772), and catalytic activity (GO:0003824).

OrthoFinder (Emms and Kelly 2019) identified 299 gene 
families that are shared among all banded penguin species 
(Fig. 5; supplementary tables S12 to S25, Supplementary 
Material online), whereas 325 gene families were categorized 
as single-copy orthogroups including all species. Gene family 
expansion and contraction were investigated using CAFE5 
(Mendes et al. 2021), with the gene birth rate estimated to 
be 0.00100 when accounting for duplications per gene per 
million years. Employing this approach, a total of 888 gene 
families across the 5 species (4 banded species and little pen-
guin as outgroup) were found to have experienced note-
worthy expansion, and 1719 experienced contraction 
events (Fig. 5). The primary biological and molecular pro-
cesses that have accelerated the rate of evolution among spe-
cies are associated with intermediate filament bundle 
assembly (P-value 5.05E−27), visceral muscle development 
(P-value 2.62E−09), and nucleosome assembly (P-value 
0.00; supplementary fig. S14, Supplementary Material online). 
Several of the expanding gene families among banded 
penguin species could be involved in biological processes re-
lated to the response to environmental stimuli such as olfac-
tory receptors (Fig. 5; supplementary figs. S15a and S16, 
Supplementary Material online), feather diversification 
(Fig. 5d; supplementary fig. S15b, Supplementary Material on-
line), osmoregulation, and visual receptors, among others 
(e.g. histone gene families, Fig. 5e). The Galápagos penguin ex-
hibits 1,009 rapidly evolving gene families, consisting of 299 
gene family expansions and 710 contractions. Notably, the ex-
panded gene families in Galápagos penguins were predomin-
antly associated with biological processes such as 
spermatogenesis (P-value 2.9E−04; Fig. 5; supplementary fig. 
S17, Supplementary Material online), gamete generation 
(P-value 2.14E−08), and reproduction structures (P-value 
7.7E−32). Additionally, the results suggest an exclusive ex-
pansion and accelerated evolutionary rate in the heat shock 
gene families of the Galápagos penguin and genes involved 
with spermatogenesis and osmoregulation (Fig. 5f to i). In 
terms of gene families that have contracted, these genes en-
coded various proteins such as odorant receptors, keratin 
proteins, and sodium chloride–channel proteins, among 
others.

Comparisons of the Occupancy of Niche Space 
among Banded Penguin Species
The Galápagos and Humboldt penguins show uneven dy-
namic niche occupation (Fig. 6; supplementary figs. S18 
to S24 and tables S26 to S31, Supplementary Material
online). The ecological niche of the Humboldt penguin 
spans a much higher range of environmental tolerances, 
whereas the niche occupied by the Galápagos penguin 
is restricted to the environment of the Galápagos’ 
Islands (supplementary fig. S18, Supplementary Material
online). This results in the Galápagos penguin occupying 
a novel niche (Schöener’s D overlap of 10%) compared to 
the Humboldt penguin. In the Galápagos penguin, the 
species occupancy of islands near the equator represents 
a unique thermal niche expansion that comprises 99% of its 
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niche space (supplementary table S26, Supplementary 
Material online). This difference is visualized as a thermal 
gap in Fig. 6 showing that the colonization of the 
Galápagos Islands represents a steep transition from its sister 
species, the Humboldt penguin, by being adapted to sea-
water that is on average 2 to 4 degrees warmer than the 
waters occupied by the Humboldt penguin (supplementary 
fig. S18, Supplementary Material online). Differences ob-
served in the chlorophyll content of the sea are not as pro-
nounced, with 25.6% overlap in trophic levels between 
Galápagos and Humboldt penguins (supplementary table 
S27, Supplementary Material online).

Magellanic and Humboldt penguins represent the only 
pair of banded penguin species that have a partially sym-
patric range, coexisting along the Southern Pacific coastline 
of South America. Consequently, their macroecological 
niche overlap is the highest among banded penguins, 
reaching 53%, and their thermal niche overlap is 55% com-
prising nearly 100% of the niche stability (retained niche 
space) of Humboldt over Magellanic penguins. Thus, 
Humboldt penguins do not occupy any unique niche ther-
mal space with respect to Magellanic penguins (Fig. 6; 
supplementary table S5, Supplementary Material online). 
The unique part of the Magellanic penguin thermal niche 
(some 37%) can be attributed to the cold waters (down 
to 5 °C) of the southernmost parts of its range, where 
Humboldt penguins do not reach. The higher thermal limit 
of Humboldt and Magellanic penguins is remarkably 

similar, showing a high degree of niche conservatism, 
with neither species occupying waters >20 °C suggesting 
this isotherm may be an important ecophysiological barrier 
(table S26, Supplementary Material online). The salinity 
and chlorophyll levels encompassed by the distributional 
ranges of Humboldt and Magellanic penguins overlap 
(50% and 74%; supplementary figs. S19 and S20, 
Supplementary Material online) with a small expansion 
of the niche for Magellanic penguins (12% and 20%; 
supplementary fig. S21 and tables S27 to S29, 
Supplementary Material online).

Magellanic and African penguins consistently exhibit a 
high degree of niche overlap with the Humboldt penguin, 
with percentages of 53% and 32%, respectively. Addition-
ally, they share an 18% overlap with each other. The ther-
mal niche, salinity, and chlorophyll levels of the niche 
space occupied by these species remain consistent, indi-
cating a strong niche conservatism in environmental con-
ditions (supplementary figs. S22 to S24 and tables S26 to 
S29, Supplementary Material online).

We also recovered niche differences among populations 
within species that are consistent with the observation 
of 2 genetic clusters obtained by EEMS for Galápagos, 
Humboldt, and Magellanic penguins (supplementary figs. 
S22 to S24 and tables S30 and S31, Supplementary Material
online).

The results of the redundancy analysis (RDA) reveal a 
statistically significant association of a set of environmental 

(a) (b)

(c)

Fig. 4. Enrichment results of the SNPs under divergent selection between Galápagos and Humboldt penguins. a) The GO of the most relevant 
biological processes, along with SNPs under selection, identified throughout the genomes of Galápagos and Humboldt penguins. b) The relative 
proportion of SNPs under selection, linked to genes associated with functions pertaining to spermatogenesis and sperm motility. c) Associations 
between spermatogenesis loci revealing functional relationships between genes. Interaction types include direct interactions, gene expression 
regulation, or participation in shared biochemical pathways.
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and genetic variation among banded penguin species 
(supplementary figs. S25 and S26 and tables S26 to S29, 
Supplementary Material online). These results from an 
RDA suggest that Galápagos penguins tend to be positively 
associated with the average speed of present ocean currents 
(VELO) and the annual mean temperature variable (BIO1), 
while Magellanic penguin tends to be positively correlated 
with chlorophyll levels in the ocean (CHLO).

Discussion
Young species assemblages that occur across environmental 
gradients provide excellent systems to investigate molecular 
and ecological mechanisms that drive local adaptation. 
Changes in climate across the southern oceans from the 
Pleistocene to the present likely led to the current distribu-
tion of banded penguins (Vianna et al. 2020). Our results in-
dicated that gene flow following postglacial range expansion 
appears to have facilitated genetic homogenization of allelic 
diversity within species, leading to minimal spatial genetic 
structure within each banded penguin species. Further, our 
results indicate that both genetic drift among geographically 
isolated species and local adaptation of populations across 
ecological gradients have facilitated the diversification of 
banded penguins and helped to maintain species boundaries 
in these highly mobile seabirds.

Our analyses suggest that origins of the Galápagos pen-
guin are consistent with the expectations of peripatric spe-
ciation. The demographic inference of Galápagos penguins 

indicated a low effective population size over several hun-
dred thousand years, which is indicative of a small founding 
population with genetic drift leading to the loss of low- 
frequency alleles. We hypothesize that Galápagos penguins 
colonized the Galápagos Islands long after the origin and es-
tablishment of the cold Humboldt Current (between the 
Neogene and the climatic fluctuations of the Quaternary; 
Thiel et al. 2007) and likely followed the northerly direction 
of the Humboldt Current and became isolated in the 
Galápagos Islands after a rare open ocean dispersal event.

Glacial cycles likely significantly disrupted the Humboldt 
Current due to the presence of ice sheets along the 
Southern Pacific coast of South America as suggested by geo-
logical evidence (Rabassa et al. 2000) and effective population 
size reduction in other marine species (Pardo-Gandarillas et al. 
2018; Dantas et al. 2019; Weinberger et al. 2021). Effective 
population size of endemic species reliant on one of the 
world’s largest upwelling systems, such as the Humboldt pen-
guin, appears to have been impacted by the drop in sea sur-
face temperature and disruption of the Humboldt Current 
during glacial cycles. The changes to oceanic conditions al-
tered nutrient supply and thereby likely influenced the repro-
ductive success and population dynamics of coastal breeding 
populations of penguins (Kim et al. 2002; Thiel et al. 2007; 
Montecino and Lange 2009; Dantas et al. 2019).

The bathymetric differences between the Atlantic coast 
compared to the Pacific coast likely resulted in the expos-
ure of the Patagonian Continental Shelf during glacial con-
ditions (Violante et al. 2014). This geographical feature is 

Fig. 5. Comparative gene family analyses among banded and little blue penguins. a) Cluster and protein counts of orthogroups found among 
banded and little blue penguins. b) Cluster and protein count of orthogroups found among banded penguins. c) Maximum likelihood tree based 
on single-copy genes showing the gain (red) and loss (blue) of genes across banded penguins lineages. d) Feather keratin Cos2-3 family gene 
expansion. e) Histone H2B family gene expansion. f) The gene family associated with heat stress response includes the heat shock transcription 
Y-linked gene. (g and h) The adenylate cyclase type 10 and chromodomain Y-like gene are part of the spermatogenesis expanded gene family. 
i) The gain in the osmoregulation gene family involved sodium channel genes.
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postulated to have provided emerging nesting sites for 
intertidal marine vertebrates such as sea lions (Hoffman 
et al. 2016), rockhopper penguins (Vianna et al. 2020) 
and Magellanic penguins along the Atlantic coast of 
South America (Fig. 2) as sea levels fell during the 
mid-Pleistocene glaciations (Cavallotto et al. 2011).

The limited but ongoing gene flow, the adjacent geo-
graphic range with overlapping ecological niches, and 
ecological niche conservatism support our hypothesis 
that Humboldt and Magellanic penguins likely diverged 
in parapatry. Interglacial periods in the South 
American Austral region would have facilitated second-
ary contact (Sersic et al. 2011; González-Wevar et al. 
2016; Ceballos et al. 2016) and hybridization where spe-
cies ranges overlap (Simeone et al. 2009; Hibbets et al. 
2020; Vianna et al. 2020). Our findings reveal that while 
such hybridization is infrequent, it has likely persisted 
for thousands of years, with directional gene flow from 
Humboldt to Magellanic penguins (Fig. 2d). This result 
is consistent with the emerging viewpoint that 

admixture between different lineages is common and 
widespread in recently diverged species (Richards et al. 
2019), highlighting the relevance of speciation with 
gene flow as an important mechanism of lineage diver-
gence in seabirds.

Previous studies indicate that South America served as 
the point of origin for banded penguins (Spheniscus; 
Vianna et al. 2020), with the Benguela current playing a 
crucial role in facilitating dispersal between South 
America and Africa, thereby promoting speciation 
through allopatry during the Pleistocene. Our results sug-
gest that after penguins reached Southern Africa, African 
penguins experienced decreases in effective population 
size during glacial periods, which may have impacted re-
productive success during adverse climatic periods 
(Barrable et al. 2002; Quick et al. 2022).

The analyses investigating selection across the genome 
suggest that outlier SNPs, encompassing diverse gene func-
tions, may be undergoing positive or purifying selection in 
banded penguins. These include loci associated with 
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Fig. 6. Banded penguin ecological niche overlap. a) Sea surface temperature across the globe, with breeding colony locations where environ-
mental data were obtained. Graphical representation of the extent of niche overlap (in purple and dark blue) in pairwise comparisons between 
banded species: b) Galápagos penguins (green) vs. Humboldt (pink); c) Humboldt (pink) vs. Magellanic penguins (yellow); d) Magellanic (yellow) 
vs. African penguins (light blue).
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biological processes related to hypoxia, osmoregulation, 
and sensory perception, which could be advantageous 
for diving birds, enabling penguins to detect prey within 
deep and dimly lit waters. These genetic adaptations ap-
pear to align with patterns observed for several seabird 
species (Pincemy et al. 2009; Coffin et al. 2011; Höglund 
et al. 2019; Mendelson and Safran 2021; Cole et al. 2022; 
Sin et al. 2022). Additionally, positive selection and gene 
family expansion for loci associated with environmental 
stimuli, such as olfactory and visual receptors, feather ker-
atin, and inner ear balance, suggest the potential reliance 
of penguins on a combination of sensory cues to navigate 
their environments and locate food sources, although fur-
ther research is warranted to confirm these hypotheses.

According to our outlier analyses, genetic variants at 
specific positions within the genes SPAG4, ADCY10, SUN3, 
MROH2B, and DRC1—known for their roles in spermato-
genesis, sperm motility, and resilience to heat shock 
(Frohnert et al. 2011; Calvi et al. 2015; Kenigsberg et al. 
2017; Yang et al. 2018; Akbari et al. 2019; Pereira et al. 
2019; Zhang et al. 2021)—might play a crucial role in up-
holding species boundaries between Galápagos and 
Humboldt penguins. Several gametogenesis genes tend to 
evolve rapidly, are under positive selection (Swanson 
et al. 2003; Dean et al. 2008; Kopania et al. 2022), and 
have been described as “speciation genes” for some model 
species of birds (Irwin 2018), mammals (Mihola et al. 2009), 
and insects (Orr et al. 2004; Presgraves 2008). Our results 
suggest that the signals of selection on loci associated 
with gametogenesis have been stronger and more frequent 
in island endemic species such as the Galápagos penguin.

Environmental temperature could have shaped how 
spermatogenesis genes accumulate genomic differences 
among populations (Tao et al. 2007; Qvarnström et al. 
2016). For instance, male infertility has been related to 
high temperatures that deform and kill sperm cells (Cai 
et al. 2021; Schou et al. 2021; Gao et al. 2022). Galápagos 
penguins experienced the highest maximum sea surface 
temperatures during the Pleistocene glaciations relative 
to the remaining banded penguin species (Lyle et al. 
1992; Liu and Herbert 2004; Vianna et al. 2020). Thus, selec-
tion on alleles at loci associated with spermatogenesis may 
have been necessary to maintain fertility at higher sea sur-
face temperatures for the Galápagos penguin and thereby 
facilitated divergence from the Humboldt penguin by in-
creasing the degree of postzygotic isolation in this young 
species pair. Results from our RDA analyses suggest that 
currently, annual mean temperatures tend to be positively 
associated with genotype traits in Galápagos penguins. 
These findings, coupled with those from the ecological 
niche analyses, suggest that niche divergence related to 
temperature, along with signals of selection in genes asso-
ciated with spermatogenesis, may have been key factors in 
the ecological speciation of Galápagos penguins. 
Furthermore, our results suggest that species boundaries 
are being reinforced by the apparent current absence of 
gene flow between Galápagos and Humboldt penguins. 
The absence of gene flow is most likely due to the presence 

of a thermal isolation barrier (Fig. 6), that Humboldt pen-
guins do not cross despite their ability to travel long dis-
tances at sea.

The functional enrichment analysis using the Human 
Phenotype Ontology database suggests that selection is 
also acting on loci associated with morphogenesis between 
Galápagos and Humboldt penguins, particularly in how 
anatomical structures are generated and organized 
(supplementary table S11, Supplementary Material online). 
A reduction in body size may be related to the “island syn-
drome,” a term that refers to the rapid evolution of reduced 
dispersal capacity and smaller body sizes associated with 
high environmental temperatures and dampened temper-
ate extremes on islands (Pörtner and Farrell 2008). This ef-
fect is particularly pronounced in amphibious seabirds such 
as penguins, impacting their ability to achieve thermoneu-
trality on land and the metabolic costs associated with heat 
generation while in the sea (Stahel and Nicol 1982; Bevan 
et al. 2002; Fahlman et al. 2005). Thermal body homeostasis 
in penguins is influenced by factors such as the high ther-
mal conductivity and specific heat capacity of water during 
dives, which far exceeds that of air (Stahel and Nicol 1982). 
Heat stress can also result from extended periods on land 
during breeding and molting (Wilson and Wilson 1990; 
Roberts 2016). Notably, body size is crucial for coping 
with cold stress, governed by the surface area-to-volume 
ratio (Oswald and Arnold 2012). This factor may restrict 
certain species, like the little penguin, to temperate regions 
(Stahel and Nicol 1982) and potentially also be influencing 
the distribution of Galápagos penguins. Penguins employ 
diverse mechanisms to counteract heat loss, including 
dense packing of feathers with no space between feather 
tracts, layers of blubber, and reduced blood flow to the ex-
posed appendages, especially in response to cold water in 
upwelling zones (Stonehouse 1967). However, these adap-
tations present challenges in dissipating heat within bur-
rows, potentially causing thermal stress for banded 
penguins on land (Boersma and Rebstock 2014; Holt and 
Boersma 2022; Shaun and Pichegru 2023; Welman and 
Pichegru 2023). This is particularly pertinent for 
Galápagos penguins, which may encounter air tempera-
tures exceeding 40 °C (Boersma 1976; Kemper et al. 2007; 
Boersma and Rebstock 2014).

Based on our findings, we emphasize the importance of 
identifying the presence of repeated gene blocks on Z sex 
chromosomes. These blocks, comprised of 12 genes each, 
have reportedly been lost due to chromosomal rearrange-
ment in other bird lineages and could have significant im-
plications for adaptation and survival in species that retain 
them (Friocourt et al. 2017; Patthey et al. 2017). Our results 
suggest that these gene blocks may be under selection in 
banded penguins, despite the strong purifying selection 
operating on sex chromosomes. However, caution should 
be exercised when interpreting signals of selection asso-
ciated with the sex chromosomes, as faster genetic drift 
due to the smaller effective population size of sex chromo-
somes may lead to false signatures of selection (Dean et al. 
2015).
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Positive selection and gene family expansion for loci 
associated with the response to environmental stimuli, 
such as those involved in olfactory and visual receptors, 
feather keratin, and inner ear balance, suggest that for-
aging penguins rely on a combination of olfactory, vis-
ual, integument, and mechanoreceptors to effectively 
navigate their environments and locate upwelling 
waters rich in food sources. While visual perception 
has long been recognized as crucial for avian foraging, 
recent research has shed light on the equally significant 
role of olfactory receptors in Procellariiformes (Sin et al. 
2022) and penguins (Coffin et al. 2011) in facilitating 
foraging. Visual receptors in birds are vital for detecting 
colors, shapes, and movement of prey when foraging in 
low-light environments such as underwater, as well as 
for identifying and avoiding predators such as seals 
(Höglund et al. 2019, Cole et al. 2022). Differences in vis-
ual acuity, feather density and coloration (plumage), 
and facial patterning could play a role in species-specific 
mate choice (Pincemy et al. 2009) through sexual selec-
tion and thereby serve as important mechanisms in the 
formation and maintenance of prezygotic reproductive 
isolation among these young species (Mendelson and 
Safran 2021). Olfactory receptors enhance avian for-
aging by allowing birds to detect a variety of odors as-
sociated with food availability and also could facilitate 
the homing ability of seabirds, enabling them to navi-
gate back to their breeding colonies (Silva et al. 2020; 
Bonadonna and Gagliardo 2021).

Conclusions
Our research revealed a spectrum of genetic divergence 
among banded penguin species, characterized by differing 
degrees of shared genetic variation between lineage pairs. 
These results suggest recent isolation and independent 
evolutionary trajectories in diverse environments for the 
4 species, with support for peripatric, parapatry, and allo-
patric models of speciation. Isolation and divergence in 
temperature niches between Galápagos and Humboldt 
penguins may have expedited the speciation process be-
tween these evolutionary young lineages, potentially 
through selection acting on genes associated with prezygo-
tic reproductive isolation. Signatures of selection acting on 
loci associated with hypoxia, osmoregulation, social behav-
ior, responses to external environmental stimuli, thermo-
regulation, autophagy, and starvation appear to be 
shared traits under selection in banded penguins. Future 
research should prioritize obtaining highly contiguous gen-
omes (i.e. chromosomes) to determine the importance of 
structural variation on species adaptation. While we have 
explored the potential significance of the genes we identi-
fied to be under selection and gene family dynamics linked 
to the putative diversification of banded penguins, a com-
prehensive understanding of their evolutionary history ne-
cessitates incorporation of data from transcriptomic 
analyses and functional experiments. Such data would sig-
nificantly improve our understanding of the underlying 

molecular adaptations that have enabled banded penguins 
to occupy waters that span from the subantarctic to the 
equator.

Materials and Methods
Sampling
A total of 114 blood samples were collected from 16 breed-
ing colonies of the 4 species of Spheniscus penguins: 
Galápagos, Humboldt, Magellanic, and African penguins 
(Fig. 1; supplementary table S2, Supplementary Material
online). Individuals were captured, and approximately 1 
to 1.5 mL of blood was extracted by puncturing the bra-
chial vein or the dorsal aspect of the foot, after which 
the birds were released. The blood was preserved by add-
ing 96% ethanol, or lysis buffer, or by spotting onto Fast 
Technology for Analysis of nucleic acids cards.

DNA Isolation and Genomic Library Preparation
DNA was isolated from blood samples using a phenol- 
chloroform or salt extraction protocol (Aljanabi and 
Martinez 1997). The concentration and integrity of the iso-
lated genomic DNA were determined using a Qubit spec-
trophotometer (Thermo Fisher Scientific) and by 1% 
agarose gel electrophoresis. Genomic DNA was fragmen-
ted using an ultrasonicator. Once fragmented, the DNA 
was processed for the purpose of constructing paired-end 
libraries with the Illumina TruSeqNano kit. The genomic 
fragments obtained were ligated to polyA tails, index adap-
ters, and barcodes. Six cycles of polymerase chain reaction 
were carried out, and the amplified libraries were bead 
purified and then quantified with the Qubit. The resulting 
libraries were sequenced at ∼5× coverage with paired-end 
151 base pair reads using an Illumina NovaSeq 6000 S4 
platform at the University of California, Berkeley.

Quality Control
The quality of the raw DNA sequences was accessed using 
FastQC v0.11.4 (Andrews 2010) before and after read and 
quality trimming. Demultiplexing and the trimming of 
lower quality flanking regions were carried out (establish-
ing a quality threshold of 25) using a sliding window of 4:15 
with Trimmomatic (Bolger et al. 2014).

Resequencing and Variant Discovery
Reads were aligned against the little blue penguin 
Eudyptula minor novaehollandiae genome assembly 
VULB01 SAMN12384878 (accession: PRJNA556735 ID: 
556735; Pan et al. 2019) using BWA-MEM (Li and 
Durbin 2009). Four of the banded penguin genomes, 
with approximately 31× coverage each 
(supplementary table S1, Supplementary Material on-
line), were obtained from Vianna et al. (2020). The 
aligned SAM and BAM files were processed prior to 
SNP identification with SAMtools (Danecek et al. 
2021), Picard Tools, RealignerTargetCreator, and 
IndelRealigner (Van der Auwera et al. 2013) to remove 
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duplicates, correct relationship pair information, cor-
rect unmapped read flags, and obtain overall mapping 
statistics. We identified variants for each individual 
using BCFtools mpileup and BCFtools call implemented 
in BCFtools (Danecek et al. 2021). We used 
the approach of Nursyifa et al. (2022) to identify scaf-
folds comprising the sex chromosomes. This method 
is based on mapping sequence fragments using differ-
ences in relative read depth among scaffolds to iden-
tify contigs that map to the sex chromosomes. We 
recovered 4 sex scaffolds that mapped to the 
Z-chromosome “Z” VULB01013104.1 (P =  
3.96446519251287e−83), VULB 
01007854.1 (P = 3.54081731216743e−102), VULB0100 
4053.1 (P = 7.39397430999582e−136), and VULB0101 
3990.1 (P = 3.77227071588691e−65). Variant site call-
ing files (VCF) were filtered by quality, keeping only 
those with genotype quality equal to or greater than 
30 in Phred score, and covered by at least 3 reads 
and a maximum of 7 reads.

Low coverage genomes (∼5×) were used to estimate 
population structure, genetic diversity, and for selection 
scans, whereas both high (4 ∼30 ×  genomes) and low cover-
age genomes were used for demographic reconstruction.

The average coverage and average missing data for each 
individual genome are summarized in the supplementary 
figs. S1 and S2, Supplementary Material online, respective-
ly. We identified 60,076,142 SNPs, and specific filters were 
used to optimize each data set for different analyses 
(supplementary table S3, Supplementary Material online). 
SNPs located on the scaffolds comprising the sex chromo-
somes represented 7% of the data set. Mitochondrial scaf-
folds were excluded from all analyses.

Population Structure
To characterize intra- and interspecific genetic variability, we 
estimated genomic diversity using the following estimators: 
(i) nucleotide diversity (π) estimated as the average number 
of nucleotide differences per site between 2 DNA sequences 
within a population (Nei 1975); (ii) heterozygosity; and (iii) 
Tajima’s D that compares 2 estimators of genetic diversity 
π (nucleotide diversity) and θ which is the Watterson’s esti-
mator of the population mutation rate (Tajima 1989) 
(supplementary fig. S3, Supplementary Material online). 
Genome-wide heterozygosity was computed using the for-
mula in the R package sambaR (de Jong et al. 2021).

Here, nH represents the count of heterozygous sites ob-
served for an individual within the SNP data set, nind sig-
nifies the number of nonmissing data points for that 
individual within the SNP data set, nsnps indicates the to-
tal number of SNPs in the data set, and ntotal denotes the 
total number of sequenced sites, encompassing both 
monomorphic and polymorphic loci.

We used PCA to explore broad genetic affinities among 
the banded penguin individuals using Plink 1.9 (Purcell 
et al. 2007) (Fig. 2; supplementary fig. S9, Supplementary 
Material online). We estimated ancestry coefficients of the 

different banded penguin individuals at both the species 
and population level with ADMIXTURE v1.3 (Alexander 
and Lange 2011). ADMIXTURE uses a cross-validation pro-
cedure to select the most probable number of clusters 
(K) that explain the structure of the data (Fig. 2).

The occurrence of admixture among lineages was fur-
ther investigated using the interspecific SNP data set 
with Treemix v1.12 (Fig. 2). Treemix models the relation-
ship among the sample populations with the ancestral 
population using genome-wide allele frequency data and 
a Gaussian approximation of genetic drift. The optimal 
m-value (m = 2) was estimated using the OptM R package 
(Fitak 2021).

To determine the extent of hybridization and intro-
gression between Humboldt and Magellanic penguins, 
we used Dsuite (Malinsky et al. 2021) to obtain the 
D-statistic and f4-ratios. The D-statistic, also known as 
the ABBA-BABA test, is commonly used to assess evidence 
of gene flow between 2 taxa. Under this approach, 4 taxa 
are analyzed, and the ancestral alleles (“A”) and derivatives 
(“B”) are considered. The allelic patterns “ABBA” and 
“BABA” occur with the same frequency in a scenario with-
out introgression, while the excess of either of the allelic 
patterns is considered to be indicative of introgression be-
tween 2 taxa and in the test is reflected by the D-statistic 
being significantly different from 0 (supplementary table 
S5, Supplementary Material online). The contemporary 
gene flow rates were estimated using BayesAss3-SNP 
(Mussmann et al. 2019; supplementary table S7, 
Supplementary Material online). We set the number of 
iterations to 1,000,000, the burn-in to 100,000, and the del-
ta values to 0.1.

Estimation of Effective Migration Surface
We analyzed patterns of gene flow among banded pen-
guin populations in a spatial context to determine how 
landscape features impact genetic variation. We used 
EEMS (Petkova et al. 2016) to estimate gene flow across 
the landscape. We generated a biallelic matrix of geno-
types with Plink 1.9 that was then transformed with 
bed2diff (available from the EEMS GitHub repository) 
into a genetic differentiation matrix. Each individual 
was georeferenced, and a habitat polygon was manually 
constructed with the help of the Google Maps API 
v3 Tool (http://www.birdtheme.org/useful/v3tool.html). 
The study area was covered with a dense regular grid 
composed of triangular demes. EEMS was run independ-
ently for each species using the runeems_SNPS script and 
the default setting for 10 million steps and a 1 million 
step burn-in with 400 demes. We used the R-scripts de-
scribed at https://github.com/dipetkov/reemsplots2 to 
visualize the results.

Demographic History
We made use of PSMC version 0.6.5-r67 (Li and Durbin 
2011) to reconstruct the demographic history of each spe-
cies over deep time using both the high coverage (Fig. 2) 
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and low coverage genomes (supplementary fig. S11, 
Supplementary Material online). For the PSMC analysis, 
we first called variants for each individual. To do so, we 
used SAMtools version 1.3.1 with HTSlib 1.3.1 and the 
vcfutils.pl script from BCFtools 1.3.1 with the command 
“samtools mpileup -C50 -uf ref.fa aln.bam | BCFtools 
view -c - | vcfutils.pl vcf2fq -d 10 -D 100 | gzip &gt; di-
ploid.fq.gz”. Following the recommendation of the PSMC 
documentation (https://github.com/lh3/psmc), we used 
a third of the average read depth as the minimum read 
depth (-d) and at least twice the average read depth as 
the maximum read depth (-D) (-d 3 -D 12). The generated 
consensus fasta file was made through the fq2psmcfa com-
mand, and then, PSMC was run with parameters “-N25 
-t15 -r5 -p 4 + 25*2 + 4 + 6”. Once we obtained the psmcfa 
files, sex-linked scaffolds and CDS regions were removed 
with the seqtk (Li 2012) and seqkit (Shen et al. 2016) tools. 
Prior to bootstrapping, we carried out the splitfa function, 
which is a tool for splitting a multi-FASTA file into individ-
ual files, with each file containing a single sequence, and 
then, the inference of population size history of each 
pseudohaploid fasta sequences was made with the psmc 
command. We assumed a nucleotide substitution rate of 
m = 1.91*10−9 substitutions/site/year based on the chick-
en lineage (Gallus gallus) multiplied by the generation time 
of banded penguin species (g = 8) as described by Vianna 
et al. (2020).

To estimate demographic history over more recent 
time periods (last 40,000 years), we made use of stairway 
plots v2.0 using the total set of neutral SNPs of all genomes 
(low and high coverage) for each species. This method 
makes use of a likelihood approach to determine values 
that best reproduce the observed SFS and then uses this 
information to estimate changes in Ne through time. We 
generated the frequency spectra of folded sites through 
ANGSD realSFS (Korneliussen et al. 2014). Stairway plot 
2 was run on the folded SFS with the same mutation 
rate parameters and generation time estimates as used 
for the PSMC analyses.

Genome-Wide Locus Phylogeny
We obtained UCEs and CDSs from the pseudohaploid fas-
ta files. We used BCFtools norm to align BAM reads to the 
left, to perform the normalization of the indels, and to 
check if alleles match the reference. Then, a fasta consen-
sus sequence was generated for each individual with 
BCFtools consensus. We identified missing sites with bed-
tools genomecov and masked them with bedtools mask-
fasta. Once such sites were masked, UCE loci were 
extracted with PhylUCE (Faircloth 2016) using these func-
tions phyluce_probe_run_multiple_lastzs_sqlite and phy-
luce_probe_slice_sequence_from_genomes. UCEs present 
in more than 70% of the taxa were retained for analysis. 
CDS and exon loci were extracted with Gffreads (Pertea 
and Pertea 2020). Each of the UCEs, CDS, and exon data 
sets was separately aligned with MAFFT v7.245 (Katoh 
and Standley 2013). Phylogenetic trees were estimated 

from the concatenated data obtained with catfasta2-
phyml.pl https://github.com/nylander/catfasta2phyml
using IQTREE v1.5.3 (Minh et al. 2020) which makes use 
of the maximum likelihood optimality criteria. The nucleo-
tide substitution model used was GTR + G with branch 
support determined using an ultrafast bootstrap (Minh 
et al. 2013).

Detecting Signatures of Selection across the Genome
Given the recent divergence of the banded penguin spe-
cies from each other, they constitute an ideal clade with 
which to identify regions of recent genomic differentiation 
and candidate loci under selection. We compared sister 
species Galápagos–Humboldt and Magellanic–African 
through Fst-based selection analyses because genetic di-
vergence due to background drift is minimized. We also 
compared Humboldt–Magellanic penguins due to their 
recent introgression events. To screen as many SNPs as 
possible, we filtered the whole genome raw vcf files with 
the following parameters using vcftools –minQ 30 – 
minDP 3 –max-missing 1 -min count 2 and no missing 
data. Outlier analyses were conducted via several R 
packages, including OUTFLANK, that works to detect un-
usually high or low levels of genetic differentiation be-
tween populations through Fst pairwise genetic 
differentiation metrics using false discovery rate (FDR) to 
reduce false positive; PCAadapt, which combines PCA 
with linear regression; and GWDS that conducts a 
SNP-by-SNP analysis comparing allele frequencies between 
pairs of populations in a data set of biallelic SNPs with 
Bonferroni correction. We conducted an independent se-
lection analyses on autosomes and sex scaffolds. The gen-
omic positions of outlier SNPs were mapped using the 
reference genome Eudyptula minor novaehollandiae GFF 
file, which enabled the identification of genes, CDSs, 
mRNA, and other genome regions.

For analysis of selection on the sex scaffolds, we filtered 
the raw whole genome VCF files using VCFtools with the 
following parameters: –minQ 30, –minDP 3, –max-missing 
1, –min-count 2, and no missing data. Then, we con-
structed a VCF file containing only the Z sexual scaffolds. 
After this, we generated separate VCF files for males (2 
copies of the Z-chromosome) and females (a single copy 
of the Z-chromosome) and subsequently performed selec-
tion analyses based on Fst, similar to those described in the 
previous section.

We performed functional enrichment analyses including 
Gene Ontology (GO and Human Phenotype Ontology 
(HPO) using Uniprot (The UniProt Consortium 2015), 
PANTHER (Thomas et al. 2022), and g:Profiler (Kolberg 
et al. 2020). We used Fisher’s exact test with FDR correction 
to compute significance of associations. GO terms in the 
categories of biological process, molecular function, and cel-
lular component with a FDR of less than 0.05 were consid-
ered significantly enriched. We evaluate the functional 
interactions of proteins encoded by genes using STRING 
(Szklarczyk et al. 2021).
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Protein Family Evolution Analyses
We used 5 genome protein sequences of penguin species, 
including, Galápagos SAMN12384884, Humboldt 
SAMN12384883, Magellanic SAMN12384882, and African 
SAMN12384881 penguins to identify gene families (Pan 
et al. 2019). Little penguin was chosen as the outgroup. We 
employed OrthoFinder v3 (Emms and Kelly 2019) to infer 
orthogroups identifying a total of 11,607 gene families 
(Fig. 5a), encompassing a vast repertoire of 64,058 genes 
when compared to little penguin (supplementary tables 
S12 to S25, Supplementary Material online). The evolution 
of gene families (gain and loss) was analyzed using CAFE v5 
(Mendes et al. 2021), with the lambda parameter used for 
calculating birth and death rates. We used single-copy genes 
to infer an ultrametric tree with FastTree2 (Price et al. 2010) 
and calibrated with the divergence time (13 Mya) of the 
most recent common ancestor between little penguin and 
Banded penguins, obtained from Vianna et al. (2020).

Ecological Niche Overlap between Species
Macroecological niche overlap analyses were performed 
with the R package Ecospat following the work of 
Broennimann et al. (2012) and Di Cola et al. (2017). 
Schöener D overlap values indicate the degree of superpos-
ition of the 2 paired units compared. In addition to the 
niche D overlap, which is the same to both paired species, 
the dynamic niche evolution is presented as an indication 
of the niche differentiation levels of each species pair. The 
outcomes of these analyses are presented as niche unfilling, 
stability, and expansion and respectively indicate unfilling: 
the percentage of niche of the paired species for compari-
son that was not occupied by the target species of study; 
stability: the percentage of the niche of the studied species 
that overlapped between the species pair; and expansion: 
the percentage of the niche of the studied species that is ex-
clusive to that species relative to the other species in the 
pairwise comparison. Niche stability and expansion add 
to 1. Thus, stability and expansion are given as percentages.

To this end, mean sea surface temperature, mean sea sur-
face salinity, and mean sea surface chlorophyll ocean vari-
ables were retrieved from the BioOracle 2.0 repository 
with a spatial resolution of 10 × 10 km. Spatial occurrences 
for all 4 banded penguin species were retrieved from their 
records in the sea reported in GBIF. Spatial records were 
downloaded and filtered with the R package spocc 
(https://github.com/ropensci/spocc) to match the reso-
lution of the ocean variables considered. Isolated records 
from distant locations (>5,000 km) to known colonies 
were discarded since they are considered either errors or va-
grant (nonreproductive) individuals. In addition, for 3 of 
the 4 species, an additional contrast of niche overlap was 
calculated for the regional subpopulations that showed a 
high degree of isolation. In the case of the Galápagos pen-
guin, this was done between records of Isabella and 
Santiago islands. In the case of the Humboldt penguin, 
breeding populations of this species were broken into north 
and south subpopulations using as a natural break 

reflecting a discontinuity in the species distribution around 
the Atacama corridor. Lastly, Magellanic penguin subpopu-
lations were subdivided between the Atlantic and the 
Pacific coasts using the Magellan Strait as a discontinuity.

The multidimensional niche comprising all 3 variables inte-
grated was calculated and mapped in a sPCA for all 6 paired 
combinations of the 4 banded penguin species as well within 
the 3 regional intraspecific populations of Magellanic, 
Galápagos, and Humboldt penguins (supplementary fig. 
S18, Supplementary Material online). The Schöener D overlap 
index was estimated (supplementary tables S21 to S23, 
Supplementary Material online). We then performed a 
sPCA that depicts the full niche space distribution clouds 
and the contour of the 95% centroid (discontinued lines, 
supplementary fig. S18, Supplementary Material online). In 
addition, the extent of individual variable overlap was esti-
mated and graphically mapped (supplementary figs. S18 to 
S21, Supplementary Material online). The shared niche space 
(typically named stability) together with the unique niche of 
the 2 paired species (typically referred to as niche unfilling and 
niche expansion) for each individual variable was summarized 
in supplementary tables S25 to S30, Supplementary Material
online. The figures show stability in gray and the unique niche 
space of each species in its respective guiding color. In the case 
of intraspecific regional subpopulation comparisons, these are 
represented with contrasting shades of the same color (dark 
and light, supplementary figs. S22 to S24, Supplementary 
Material online).

Genomic Environmental Association
We utilized RDA, a canonical ordination method devel-
oped by van den Wollenberg (1977) and Legendre and 
Legendre (2012), to investigate the variance in response 
variables. We used only autosomal scaffolds. For interspe-
cific analysis, we use data set 1B, and for intraspecific ana-
lysis, we use data set 2A. The resulting vcf file for each set of 
SNPs files was converted into a lfmm file for input into the 
population RDA approach. RDA was conducted using a 
systematic workflow in R, employing various packages 
such as vegan (Dixon 2003), LEA (Frichot and François 
2015), permute (https://github.com/gavinsimpson/ 
permute), and corrplot (Wei et al. 2017).

The climatic characteristics of each of each site were 
compared across 19 bioclimatic variables extracted with 
R software packages: terra (Hijmans et al. 2022), raster 
(https://github.com/rspatial/raster), and rgdal (Bivand 
et al. 2015) at 30 arc-second resolutions from the 
CHELSA database (Karger et al. 2017) covering the period 
1980 to 2010. The median elevation was obtained from 
the SRTM4.1 global topography data set (Amatulli et al. 
2018). To choose the environmental variables for the ana-
lysis, the correlation between variables was examined 
with matrices and plots. Variables with R-square values 
under 0.77 were considered as variables with low correl-
ation and were kept for further analysis (supplementary 
table S32, Supplementary Material online). Genetic and 
environmental data were inspected for data structure 
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and filtered for missing values. The best subsetting of 
variables explored in the RDA analysis (i.e. those maximiz-
ing the R-square value while being highly significant) 
comprised present surface chlorophyll mean (Chlo), pre-
sent surface current velocity mean (Velo), annual mean 
temperature (BIO1), and annual precipitation (BIO12) 
(supplementary table S32 and figs. S25 and S26, 
Supplementary Material online). The RDA was executed 
with genetic data regressed on the selected environmen-
tal variables that were previously standardized.

We examine the relationship between geographical dis-
tances, spatial autocorrelation, and environmental vari-
ables within a designated study area. By incorporating 
Moran’s I statistic, we identify spatial patterns to assess 
the environmental drivers influencing spatial distributions. 
Subsequently, we derived the dbMEM and integrated it as 
a covariate in the RDA analysis to evaluate the relationship 
among environmental variables while accounting for geo-
graphical distance.

We conducted RDAs among banded penguin species 
and within species. The results were examined using sev-
eral analytical approaches including assessments of eigen-
values and adjusted R-squared values, and significance 
tests were performed with 999 permutations for (i) the 
RDA model, (ii) the terms of the model (added sequential-
ly), and (iii) the axes of the model (supplementary table 
S33, Supplementary Material online). Visualization of the 
RDA outputs was achieved through scatter plots.

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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