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ABSTRACT: Chemical points of departure (PODs) for critical
health effects are crucial for evaluating and managing human health
risks and impacts from exposure. However, PODs are unavailable
for most chemicals in commerce due to a lack of in vivo toxicity
data. We therefore developed a two-stage machine learning (ML)
framework to predict human-equivalent PODs for oral exposure to
organic chemicals based on chemical structure. Utilizing ML-based
predictions for structural/physical/chemical/toxicological proper-
ties from OPERA 2.9 as features (Stage 1), ML models using
random forest regression were trained with human-equivalent
PODs derived from in vivo data sets for general noncancer effects
(n = 1,791) and reproductive/developmental effects (n = 2,228),
with robust cross-validation for feature selection and estimating
generalization errors (Stage 2). These two-stage models accurately predicted PODs for both effect categories with cross-validation-
based root-mean-squared errors less than an order of magnitude. We then applied one or both models to 34,046 chemicals expected
to be in the environment, revealing several thousand chemicals of moderate concern and several hundred chemicals of high concern
for health effects at estimated median population exposure levels. Further application can expand by orders of magnitude the
coverage of organic chemicals that can be evaluated for their human health risks and impacts.
KEYWORDS: QSAR model, machine learning, toxicity prediction, chemical risk assessment, high-throughput screening,
life cycle impact assessment (LCIA)

■ INTRODUCTION
Determining a chemical’s point of departure (POD) is crucial to
evaluating and managing health risks and toxicity impacts
associated with chemical exposure. The POD is the starting
point along the dose−response curve for extrapolating health
risks to relevant exposure levels that may be encountered in the
general population.1 A variety of impact and risk assessment
frameworks, such as contaminated site remediation, life cycle
impact assessment (LCIA), chemical alternatives assessment
(CAA), and health-based risk screening, heavily rely on
PODs.2,3 These PODs are primarily developed in regulatory
or other authoritative assessments by agencies, such as the
United States Environmental Protection Agency (U.S. EPA),
that synthesize available toxicity data from in vivo studies and
identify the “critical” or “most-sensitive” end point for
characterizing health effects. However, due to the resource-
intensive nature of these assessments, such authoritative PODs
are available for less than 1,000 chemicals, which is a tiny fraction
of the more than 150,000 commercial chemicals to which
humans may be exposed.4,5 Consequently, most of these

chemicals lack comprehensive human health assessments and
are not included in impact and risk assessment tools, such as
USEtox.6

To partially address the lack of authoritative assessments, a
number of open-source databases compiling publicly available
experimental in vivo toxicity data required for POD derivation
have emerged, such as the U.S. EPA’s Toxicity Value Database
(ToxValDB)7 and the European Chemicals Agency’s Interna-
tional Uniform Chemical Information Database (IUCLID;
https://iuclid6.echa.europa.eu/). These databases have enabled
researchers to derive “surrogate” PODs, through rigorous
curation and statistical approaches, as a proxy for PODs that
would be selected in an authoritative assessment.8 However,
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even though use of these databases increases the availability of
PODs by an order of magnitude to about ten thousand
chemicals, the remaining gap underscores the need for a high-
throughput approach to develop surrogate PODs in the absence
of in vivo data.
“New approach methods” (NAMs), including in vitro and

computational (in silico) approaches, have emerged as

promising, high-throughput alternatives to animal testing
while also addressing ethical concerns regarding animal use. A
prime example of in silico NAMs is QSAR (Quantitative
Structure−Activity Relationship) modeling. QSAR models
commonly use machine learning (ML) to predict biological
activity based on chemical structure information. Applications of
QSAR modeling have substantially expanded the availability of

Figure 1. Overview of the two-stage machine learning framework for predicting points of departure. (A) Conceptual framework. (B) Model
development, evaluation, and application. The surrogate points of departure were obtained from Table S5 of Aurisano et al.8 Features were extracted
from predictions by OPERA 2.9.9,10 Figures S1−S2 provide an overview of the model training and evaluation. Exposure estimates were obtained from
SEEM3 by Ring et al.19 Application chemicals were expected to occur in the environment and lacked in vivo points of departure.20,21 Note: ML,
machine learning; POD, point of departure; QSAR, quantitative structure−activity relationship; OPERA, OPEn structure−activity/property
Relationship App; ToxValDB, Toxicity Value Database; RMSE, root-mean-squared error; MedAE, median absolute error; R2, coefficient of
determination; MAD, median absolute deviation; SEEM, Systematic Empirical Evaluation of Models.
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toxicologically relevant data. For example, Mansouri et al.
developed a collection of open-source ML models known as
“OPERA” [Open (Quantitative) Structure−activity/property
Relationship App].9,10 These models predict structural and
physical−chemical properties, environmental fate metrics, acute
toxicity, and toxicokinetic end points for hundreds of thousands
of chemicals. Many of these predictions are available through
open-source web platforms such as the CompTox Chemistry
Dashboard by U.S. EPA11 and the National Toxicology Program
(NTP) Integrated Chemical Environment (ICE).12

Previous studies have also developed QSARmodels to predict
PODs. For instance, the models developed by Wignall et al.
included those that predict PODs, such as benchmark doses
(BMDs) and No Observed Adverse Effect Levels (NOAELs),
using training data from several hundred chemicals with
available authoritative human health assessments (n = 137 for
BMDs and n = 487 for NOAELs).4 For these PODs, the models
by Wignall et al.4 explained between 28% and 45% of the
variance, with mean absolute errors of 0.93−1.13 log10-units.
Pradeep et al. used a similar approach to predict effect levels for
specific species-study type combinations in ToxValDB, with
training sets ranging in size from <100 to over 3600 and a wide
range of performance depending on the study type.13

Combining all study types, they achieved an R2 of 0.53 and
RMSE of 0.71 in log10-units, but their approach does not provide
surrogate PODs that reflect the “critical” or “most-sensitive” end
points for characterizing health effects. Thus, a substantial gap
remains in the availability of surrogate PODs for a wider range of
chemicals.
Conventional ML-based QSAR models often rely on

hundreds of molecular descriptors as features.4,13 While these
descriptors can enable accurate predictions and many have good
structural interpretability, it can be challenging to explain their
toxicological importance to practitioners and decision-makers.
Recognizing this challenge, the Organisation for Economic Co-
operation and Development’s (OECD) (Q)SAR Assessment
Framework14 includes a key “mechanistic interpretation”
criterion for evaluating a QSAR model, defined as “how the
rationale behind a (Q)SARmodel is consistent with or accounts
for the knowledge related to the predicted property.” This
guidance highlights the importance of QSAR models that not
only predict accurately but also provide insights into their
underlying scientific basis to enhance their utility and trust-
worthiness. Thus, in accordance with the OECD report
suggesting preference for a “physical-chemical interpretation
(if possible) that is consistent with a known mechanism of
biological action”, we posit that the structural/physical/
chemical/toxicological properties that are available in OPERA,
such as water solubility and bioconcentration factor, are more
easily understood by a typical practitioner than typical
chemoinformatic descriptors and offer a path toward more
“understandable” machine learning.
Building on prior efforts, this study aimed to expand the

coverage of chemicals with toxicity values that can be used as
surrogates for human-equivalent noncancer PODs for oral
exposure in the absence of in vivo data. Our objectives were 3-
fold:

1. Develop and evaluate a two-stage QSAR modeling
framework that incorporates an intermediate layer of
structural/physical/chemical/toxicological properties as
features.

2. Generate an extended set of oral surrogate PODs, with
quantified model prediction errors based on cross-
validation, for a wide range of chemicals.

3. Apply this framework to a large data set of chemicals
observed in the environment, assessing potential health
risks using the margin of exposure as a metric.

Following Aurisano et al.,8 we differentiated between
reproductive/developmental and nonreproductive/develop-
mental effects (“general noncancer effects”).3,15 The surrogate
PODs from this study can be integrated into various chemical
management and exposure and impact assessment frameworks
for health-based risk screening, LCIA, CAA for chemical
substitution, and exposure and risk prioritization.3,16,17

■ METHODS
To address the stated objectives, we developed a two-stage ML
framework. The first stage derives ML-based predictions for
structural, physical, chemical, and toxicological properties that
are readily interpretable. The second stage leverages these
properties as features in a separate ML model to predict
surrogate PODs. Figure 1A illustrates the conceptual framework,
while Figure 1B shows an overview of the model development,
evaluation, and application. The conceptual framework
comprises the following steps:

1. Select and identify chemicals for modeling.
2. Standardize chemical structures to make them “QSAR-

ready”.
3. Run prior QSAR models for feature extraction (Stage 1).
4. Clean and parse the QSAR predictions to obtain raw

features.
5. Apply these features in a modeling pipeline to predict

PODs (Stage 2).
All ML algorithms for predicting PODs were implemented

using Python 3.9, leveraging open-source libraries such as scikit-
learn 1.2.2.18 The source code, results, and input files associated
with this study are openly available in a GitHub repository at
https://github.com/jkvasnicka/Two-Stage-ML-Oral-PODs.
Training Data Collection and Preprocessing. Data

Collection. Predicting PODs was essentially a regression task
with a continuous target vector ÷÷ye of oral doses, in log10-
transformed units of mg·(kg-d)−1, representing a POD for a
given effect category e, and inputs represented by a matrix X,
where each row corresponds to a sample and each column
corresponds to one of n distinct features, i.e., ÷÷÷ ÷÷÷÷ ÷÷÷x x xX , , ..., n1 2= [ ]
. This task required labeled data involving mapping of chemical
identifiers to their respective in vivo PODs. Specifically, we used
the surrogate oral PODs fromTable S5 of Aurisano et al.,8 which
were derived throughmeticulous curation and statistical analysis
of in vivo experimental animal data from ToxValDB 9.1,7

adjusted to chronic human equivalent benchmark doses
(BMDh). Throughout this study, the U.S. EPA’s DSSTox
Substance Identifier (DTXSID) uniquely identifies each
chemical.

Data Filtering. Initially, there were 5,209 unique chemicals
with surrogate PODs for general noncancer effects and 4,938
chemicals for reproductive/developmental effects. However, a
series of filtering steps removed chemicals that were unsuitable
for modeling (Figure 1B). First, chemicals with ≤3 in vivo
studies were excluded because those surrogate PODs may be
less robust (Aurisano et al.8 used the lower 25th percentile of the
distribution of available PODs for a chemical as the surrogate
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POD), leaving 2,404 and 2,999 chemicals for the respective
effect categories. Next, a general applicability domain exclusion
and standardization workflow was applied to generate “QSAR-
ready” structures compatible with a variety of modeling
approaches.22,23 Applying this workflow yielded 1,791 organic
chemicals for general noncancer effects and 2,228 organic
chemicals for reproductive/developmental effects.
Feature Extraction and Preparation. To obtain features, we

leveraged the QSAR modeling framework, OPERA 2.9, by
Mansouri et al.9,10 Specifically, we used the command-line
version, OPERA2.9_CL, and input the chemical identifiers
(DTXSID) as a text file. OPERA then retrieved the
corresponding QSAR-ready structures as simplified molecular-
input line-entry system (SMILES) strings from its internal
database. This execution yielded 39 interpretable features (e.g.,
water solubility) with feature-specific applicability domain
information. We then flagged features outside the applicability
domain as “missing” if both of the following criteria byMansouri
et al.9 were met:

1. The value was outside the global applicability domain of
the model/feature.

2. The value had a low local applicability domain index
(<0.4) with respect to its nearest neighboring values.

Figure S3 displays the distributions of raw features for all
chemicals in this study, with corresponding descriptions in
Table S3. Given the diverse nature of these features, we designed
a robust feature preprocessing pipeline for feature trans-
formation (Figure 1B), which can be generalized across a
variety of ML estimators, as detailed below.
Model Training and Evaluation. Overview of Modeling

Pipeline. The QSAR models for predicting PODs consisted of a
pipeline of feature preprocessing steps and an ML estimator
(e.g., random forest) (Figure 1B). This design ensured that
transformation parameters (e.g., median for imputation) were
derived solely from the training data, minimizing potential for
data leakage and overoptimistic performance estimates. The
feature preprocessing steps are described in the Supporting
Information (see section, Feature Preprocessing Steps) and
include imputation of missing values using the median (features
were excluded if >30% imputation would be necessary). For the
last components in the pipeline (steps 6 and 7 in Figure 1B), we
chose the Random Forest Regressor and made predictions for
the surrogate PODs. This estimator was a reasonable choice,
given its track record of robust performance without extensive
preprocessing or hyperparameter tuning24 and its successful
applications in prior studies involving POD prediction.4,13 The
algorithm constructs a collection of decorrelated decision trees
using bootstrapped sampled versions of the training data and
then averages predictions to minimize variance.25 For the
hyperparameters, we used the scikit-learn 1.2.2 defaults,18 except
for the number of features to consider when searching for the
best split, which we set to 1/3 (or at least 1) of the available
features,24 instead of considering all features.
For model training and evaluation, we implemented nested 5-

fold cross-validation, with separate “inner” and “outer” loops
(Figures 1B, S1, and S2). The “inner” loop is used for feature
selection, whereas the “outer” loop is used to evaluate
performance. Thus, for an iteration of the “outer” loop, the
data are divided into an “outer” training and testing data set. The
“outer” training set is sent to the “inner” loop where it is
repeatedly divided into “inner” training and testing data sets.
This “inner” loop trains an “inner” model in order to conduct

feature selection (described below under Model Training with
Feature Selection). The selected features are then passed back to
the “outer” loop, which trains a model using only those selected
features with the “outer” training data set and evaluates
performance using the “outer” testing data. This whole process
is then repeated multiple times with different randomizations
(described below under Model Evaluation).

Model Training with Feature Selection. Given the 39
features from OPERA 2.9 (Figure S3),9,10 we hypothesized that
a subset of 10 features would be sufficient for successful
modeling while remaining interpretable. We selected the value
of “10” a priori to avoid overfitting and verified this hypothesis in
a sensitivity analysis (described below) where all features were
used without feature selection. If the value of “10” were to
materially degrade performance, then we could have used more
complex feature selection approaches, such as recursive feature
elimination.
To select features in an objective, robust, and reproducible

manner, we implemented a feature selection scheme by nesting a
permutation feature importance algorithm within a repeated k-
fold cross-validation loop. Specifically, we repeatedly divided the
data into 5-folds, training the model on 4/5 of the data in which
the algorithm measured feature importance by assessing the
decrease in model performance upon random permutation of
feature values. In particular, we used the median value for this
importance score across random permutations as the selection
criterion. The cross-validation loop minimized biases and
overoptimistic performance scores. Further details can be
found in the Supporting Information (see section Model
Training Steps and Figure S1).

Model Evaluation. To gauge the model’s generalization to
unseen data, we nested the training process described above
within another repeated K-fold cross validation loop. For this
loop, we used 30 repetitions and 5-folds, yielding 150 (30 × 5)
replicate models that underwent the same model training steps.
To quantify performance, we used the root-mean-squared error
(RMSE), median absolute error (MedAE), and coefficient of
determination (R2). Further details regarding the model
evaluation, along with definitions of the performance metrics,
can be found in the Supporting Information (see section Model
Performance Metrics and Figure S2).

Model Benchmarking. To further evaluate our models, we
benchmarked the QSAR-derived PODs (PODQSAR) against
estimates from other studies. Specifically, we referenced the
original authoritative PODs (PODauthoritative) and the target
variable of surrogate PODs (PODsurrogate) from Aurisano et al.,8

both of which were fully adjusted to BMDh. Additionally, we
compared our PODQSAR values with oral equivalent doses
derived from combining high-throughput in vitro bioactivity
data with toxicokinetic data by using reverse dosimetry.
Specifically, we used the “PODNAM,50” values from Table S2 of
Paul Friedman et al.,26 where “50” denotes the median from a
population distribution of steady-state administered equivalent
doses. PODNAM,50 values were available for 263 chemicals for
general noncancer effects and 13 chemicals for reproductive/
developmental effects.
Sensitivity Analysis.We conducted a sensitivity analysis to

assess generalization error sensitivity to different data sets,
feature preprocessing, and ML estimators. Our baseline Final
Model was described above, involving feature selection among
all 39 OPERA 2.9 features, imputation of missing values, and the
Random Forest Regressor. We compared several additional
models for each effect category using the same evaluation
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scheme described above (Figure S2), varying one modeling
aspect at a time. These alternative models are shown in Figure 1
(see Sensitivity Analyses), and corresponding descriptions are in
Table S1. All models were applied to the same chemicals, except
the model involving no imputation, which was restricted to
those chemicals with no missing feature values (n = 184−227).
Model Application. We demonstrated application of our

final two-stage models using a large data set of organic chemicals
expected to occur in the environment and for which human oral
exposure could be estimated. Specifically, we assessed 34,809
chemicals that were on the Merged NORMAN Suspect List
(SusDat)20,21 and within the applicability domain of SEEM3
(Systematic Empirical Evaluation ofModels) by U.S. EPA.19We
excluded any chemicals outside the “general applicability
domain” due to their being unsuitable for QSAR modeling
based on the standardization workflow mentioned above22,23

and that had a PODsurrogate value used for model training
(“training chemicals”). This exclusion resulted in 33,407
chemicals predicted for general noncancer effects and 32,970
chemicals predicted for reproductive/developmental effects
(34,046 chemicals across the two sets of predictions). We also
evaluated how these chemicals fit within the “feature-specific
applicability domains” of the OPERA models and the extent to
which the distribution of features compared to that of the
training set chemicals.
The margin of exposure was used as a health risk metric to

compare SEEM3 predicted population median oral exposures
[ŷexposure,i in mg·(kg-d)−1] with the QSAR-predicted POD
[PODQSAR,i, also in mg·(kg-d)−1]. For each sample i, the margin
of exposure (MOEi) was calculated as

y
MOE

POD
i

i

i

QSAR,

exposure,

=
(1)

We screened chemicals for potential health concerns using the
following categorization scheme:27,28

1. Low concern for the median population exposure: MOEi
> 100

2. Moderate concern for the median population exposure: 1
< MOEi ≤ 100

3. High concern for the median population exposure: 0 <
MOEi ≤ 1

SEEM3 exposure predictions (ŷexposure,i) for an individual at
the population median exposure, accompanied by a model-
based Bayesian 90% credible interval representing uncertainty,19

were downloaded from ICE.12We also assessed the contribution
of PODQSAR (hazard) uncertainty to the overall uncertainty in
the margin of exposure in addition to exposure uncertainty from
SEEM3. Specifically, we derived 90% prediction intervals of the
PODQSAR uncertainty for each percentile of exposure
uncertainty for the median individual. The derivation of these
prediction intervals is shown in the Supporting Information (see
Margin of Exposure Uncertainty Analysis).

■ RESULTS
Data Set Characterization. The proportions of missing

values across all 39 features from OPERA 2.9 for the training
chemicals and for the application chemicals can be found in the
Supporting Information (Figure S4). Most features predom-
inantly had samples within their respective applicability
domains. However, three features had more than 30% missing
values and were subsequently removed in the pipeline.

Performance Evaluation and Benchmarking. The final
models accurately fitted/predicted PODsurrogate values for both
effect categories, as shown by their RMSE, MedAE, and R2. The
models demonstrated consistent performance for both effect
categories regardless of feature selection. Because of our nested
cross-validation approach, each chemical may be part of the
“training” or the “testing” data set depending on the replicate.
Figure 2 summarizes the “in-sample” model fitting, showing the

predictions of the cross-validated final models that were fitted on
the full labeled data set. The accuracy was demonstrated by the
clustering of fitted predictions and observations along the
diagonal line, the low values for the dispersionmeasures (RMSE,
MedAD), and the high R2 values. More importantly, Figure 3
summarizes the “out-of-sample” results, where the median
prediction shown is across replicates when the chemical is part of
the “testing” data set. The estimated generalization errors (with
5th to 95th percentiles) based on cross validation were also quite
good. These results imply that, for a “new” chemical, we can
expect the model to predict the POD with a GSD error of less
than 3.5- to 5.7-fold (taking the range of RMSE values from 0.54
to 0.76) or equivalently a 95% confidence interval spanning 11-
to 30-fold in each direction.
The benchmarking revealed that the PODQSAR values

correlated well with the corresponding PODauthoritative values
for general noncancer effects (n = 564) (Figure S5), with RMSE
= 0.50 and MedAE = 0.32, both in log10-units, and R2 = 0.79.
The correspondence was poorer for reproductive/developmen-
tal effects, with RMSE = 0.75, MedAE = 0.40, and R2 = 0.47. For
both effect categories, the PODQSAR values corresponded
substantially better to the PODauthoritative values than did the
PODNAM,50 values that were derived from in vitro bioactivity

Figure 2. Model fitting. In-sample performance is assessed through
scatterplots and performance metrics comparing the fitted and
observed values for each chemical The fitted values are predictions
from the cross-validated final models that were fitted on the full labeled
data set. The figure is subdivided by target effect category and by
whether the feature selection was implemented. Note: RMSE, root-
mean-squared error; MedAE, median absolute error; R2, coefficient of
determination; n, sample size.
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data.26 The PODNAM,50 values yielded negative R2 values,
indicating worse performance than that of a naiv̈e constant
model. However, the performance of PODQSAR values in this
comparison may be overstated because they incorporated
information about PODauthoritative indirectly through the use of
surrogate PODs derived from ToxValDB, while the PODNAM,50
consisted of a completely independent data set.
Feature Importance. Results from the feature selection can

be found in the Supporting Information (Figures S6−S10).
Notably, the most important feature was consistently theQSAR-
predicted LD50 derived from in vivo rat acute oral toxicity
studies.29 Four important features were common to both effect
categories:

• QSAR-predicted LD50 derived from in vivo rat acute oral
toxicity studies (CATMoS_LD50_pred)

• Combined dipolarity/polarizability (CombDipolPolariz)
• Ready biodegradability, a binary variable (ReadyBio-

deg_pred_discrete)
• Water solubility at 25 °C (WS_pred)
For these features, no more than 11% of the training data sets

were imputed, with less than 1% imputed for the predicted LD50
(Figure S4). The remaining important features depended on the
effect category (Figures S6−S10) and involved the imputation
of no more than 25% of the training set. Some additional
important features were identified by the replicate models but
were excluded from the final models to prevent overfitting
(Figure S6).
Sensitivity Analysis. Table 1 compares the estimated

generalization errors of the models from the sensitivity analysis.

The best overall performance was exhibited by the baseline
model (all 39 OPERA 2.9 features, imputation of missing values,
Random Forest Regressor). However, as mentioned, this
model’s performance was indistinguishable from the final
model that involved a subset of 10 important features (Figure
3B). Interestingly, when the baseline model was applied to
samples without the need for imputation, the model continued
to exhibit favorable performance in terms of RMSE and MedAE
but with substantially higher variances and with R2 values that
were much lower (Table 1), likely due to the muchmore limited
training sample sizes. Additionally, when using the more
“traditional” descriptors from RDKit (2022.09.5),30 the
performance was similar to, but slightly poorer than, our
baseline model, suggesting that the 10 selected OPERA features
encapsulate the essential information for POD prediction.
Overall, our final model (Random Forest Regressor with feature
selection and OPERA 2.9 features) was among the highest
performing models in terms of its combination of a low
prediction error (RMSE and MedAE) and higher R2.
Model Application. The top panels of Figure 4 display

cumulative counts of the application chemicals in relation to the
corresponding PODQSAR values, along with uncertainty
estimates in the form of a 90% prediction interval representing
PODQSAR (hazard) uncertainty (Supporting Information eq S8).
For general noncancer effects, the median PODQSAR (with 5th to
95th percentiles) was 11 mg·(kg-d)−1 (0.82−150). This
distribution is somewhat higher (less potent) than that of the
available regulatory/authoritative PODs (see Figure S11), as it is
expected that higher potency (lower POD) chemicals would be

Figure 3.Model evaluation. (A) Out-of-sample performance is assessed through scatterplots comparing the mean predicted values for each chemical
when it is part of the “testing” data set across 30 cross-validation repeats (y-axis) against the corresponding surrogate values (x-axis). The dashed red
line indicates perfect correspondence. (B) The distribution of performance metrics from 150 cross-validation scores (30 repeats × 5-fold), where each
boxplot shows the median and interquartile range with whiskers representing the 95% confidence interval. The figure is subdivided by the performance
metric, target effect category, and by whether feature selection was implemented. Note: RMSE, root-mean-squared error; MedAE, median absolute
error; R2, coefficient of determination; n, sample size. The scale for R2 is reversed to be consistent with values to the “left” corresponding to better
performance.
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more likely to have such regulatory or authoritative assessments.
Additionally, as a sensitivity analysis, we also applied the model
without feature selection to these chemicals and obtained
consistent results [high correspondence between with and
without feature selection: R2 ∼ 0.9 and RMSE < 0.2 log-10 units
(Figure S12)].
The lower panels of Figure 4 show the margins of exposure for

an individual at the population median exposure, incorporating
the 90% confidence interval for the population median exposure
from SEEM3.19 About ∼2,400 chemicals emerged as moderate
concerns for population median exposures (MOE < 100) for
general noncancer effects based on the upper 95th percentile of
exposure uncertainty estimates and the lower boundary of the
90% prediction interval of PODQSAR uncertainty. In a similar
manner, ∼500 chemicals emerged as high concerns (MOE < 1)
for general noncancer effects. For reproductive/developmental
effects, the median PODQSAR was 31 mg·(kg-d)−1 (3.4−280),
with ∼1,500 chemicals emerging as moderate concerns and
∼190 chemicals emerging as high concerns. In both cases, most
chemicals appear to have low concern MOE values of >100 at
the level of the median population exposures. It is however
important to note that this level of concern could be

substantially higher for subpopulations that regularly use
products containing the considered chemicals.31 A graphical
user interface will be made available for accessing these
predictions and identifying chemicals of concern.
Exposure uncertainty was the primary driver of overall

uncertainty in the margin of exposure (Figure 4). The typical
exposure uncertainty spanned 4 orders of magnitude, evidenced
by the median difference in log10-transformed exposure
estimates between the 95th and 5th percentiles. In contrast,
when focusing on PODQSAR, the typical error was constrained to
less than a factor of 5 according to the median RMSE of≤0.69 in
log10-units (Figure 3B). This error corresponds to a squared
geometric standard deviation (GSD2) ≤ 23, which, as expected,
is larger than the error reported by Aurisano et al.8 (GSD2 ≤ 17
for all chemicals, GSD2 ≤ 14 for chemicals with at least 4 data
points) that was based directly on in vivo PODs.

■ DISCUSSION
This study successfully extended the work of Aurisano et al.,8

yielding a two-stage ML framework capable of generating
human-equivalent noncancer PODs for oral exposure in the
absence of in vivo data. This framework was applied to derive

Table 1. Comparison of Performance Metrics for QSAR Models Predicting Points of Departurea

QSAR model (n) RMSE MedAE R2

Current Work: General Noncancer Effects
RandomForestRegressor with feature selection (1,791) 0.69 [0.64−0.76] 0.40 [0.37−0.44] 0.48 [0.41−0.53]
bRandomForestRegressor (1,791) 0.68 [0.62−0.74] 0.39 [0.35−0.43] 0.50 [0.44−0.56]
bGradientBoostingRegressor (1,791) 0.69 [0.64−0.75] 0.41 [0.37−0.46] 0.48 [0.42−0.55]
bRidge (1,791) 0.73 [0.68−0.79] 0.44 [0.40−0.48] 0.42 [0.36−0.48]
bLinearRegression (1,791) 0.73 [0.68−0.79] 0.44 [0.40−0.48] 0.42 [0.36−0.48]
bXGBRegressor (1,791) 0.72 [0.66−0.78] 0.42 [0.38−0.46] 0.43 [0.36−0.51]
bSVR (1,791) 0.96 [0.89−1.04] 0.64 [0.57−0.69] −0.01 [−0.03 to 0.01]
bMLPRegressor (1,791) 2.75 [1.56−5.53] 0.67 [0.58−0.84] −7.50 [−36.72 to −1.72]
cOPERA w/Exp. LD50s (1,791) 0.69 [0.63−0.75] 0.40 [0.37−0.43] 0.48 [0.42−0.55]
cCompTox Features (1,791) 0.75 [0.69−0.82] 0.44 [0.39−0.49] 0.39 [0.31−0.46]
cRDKit Features (1,789) 0.71 [0.65−0.78] 0.40 [0.36−0.44] 0.45 [0.38−0.51]
cNo Imputation (184) 0.58 [0.46−1.17] 0.37 [0.28−0.49] 0.22 [0.02−0.44]

Current Work: Reproductive/Developmental Effects
RandomForestRegressor with feature selection (2,228) 0.58 [0.54−0.72] 0.31 [0.28−0.34] 0.49 [0.38−0.56]
bRandomForestRegressor (2,228) 0.57 [0.53−0.72] 0.31 [0.29−0.35] 0.51 [0.40−0.58]
bGradientBoostingRegressor (2,228) 0.59 [0.54−0.73] 0.32 [0.30−0.35] 0.49 [0.37−0.55]
bRidge (2,228) 0.63 [0.58−0.76] 0.37 [0.34−0.40] 0.42 [0.32−0.48]
bLinearRegression (2,228) 0.63 [0.58−0.76] 0.37 [0.34−0.40] 0.42 [0.32−0.48]
bXGBRegressor (2,228) 0.62 [0.56−0.74] 0.33 [0.30−0.36] 0.43 [0.34−0.52]
bSVR (2,228) 0.85 [0.77−0.96] 0.54 [0.51−0.58] −0.03 [−0.06 to −0.01]
bMLPRegressor (2,228) 1.75 [1.18−2.71] 0.56 [0.48−0.68] −3.43 [−10.68 to −0.92]
cOPERA w/Exp. LD50s (2,228) 0.57 [0.53−0.71] 0.32 [0.29−0.34] 0.52 [0.42−0.58]
cCompTox Features (2,228) 0.67 [0.60−0.81] 0.38 [0.34−0.41] 0.34 [0.26−0.44]
cRDKit Features (2,224) 0.62 [0.55−0.73] 0.32 [0.29−0.35] 0.45 [0.37−0.52]
cNo Imputation (227) 0.45 [0.35−0.55] 0.28 [0.20−0.35] 0.40 [0.21−0.53]

Previous Work
Wignall et al.4 NOAEL (487) N.R. 0.70 [0.06−1.82] 0.45
Pradeep et al.13 CHR R,M (11201) 0.92−0.94 N.R. 0.39−0.40
Pradeep et al.13 REP R,M (5951) 0.79−0.91 N.R. 0.26−0.31
Pradeep et al.13 DEV R,M, Rb (9945) 0.76−0.80 N.R. 0.26−0.29
Pradeep et al.13 ALL (71,020) 0.67−0.70 N.R. 0.54−0.57

aBold represents the “final” model used for predictions. Abbreviations: RMSE, root-mean-squared error; MedAE, median absolute error; R2,
coefficient of determination; N.R., not reported; CHR, chronic; REP, reproductive; DEV, developmental; R, rat; M, mouse; Rb, Rabbit. Values for
current work are median and 90% CI based on “outer” cross-validation replicates (see Methods). Range for Pradeep et al.13 based on internal cross-
validation and external test set. bSensitivity analyses using different machine learning algorithms. cSensitivity analyses using different descriptor sets
(all using Random Forest Regressor without feature selection).
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surrogate PODs and correspondingmargins of exposure for over
30,000 chemicals expected to occur in the environment based on
monitoring and which lacked in vivo toxicity data.20,21 This
represents a greater than 3-fold increase in the coverage of
organic chemicals with surrogate PODs compared to previous
work.8 Moreover, a graphical user interface will be made
available for accessing predictions for organic chemicals
available on the U.S. EPA’s CompTox Chemistry Dashboard
that pass the QSAR standardization workflow,22,23 which will
further increase the coverage of chemicals by over an order of

magnitude to ∼800,000.11 Moreover, as shown in Figure S4, the
rates of imputation for the >30,000 application chemicals were
similar to the training set, with the most influential feature
(CATMoS_LD50_pred) being imputed for only∼1% of values.
Additionally, our training set of several thousand chemicals from
ToxValDB appears to be diverse and representative based on
similar coverage of features compared to application chemicals
(Figure S13).7

Applying our two-stage models revealed several thousand
chemicals ofmoderate concern and several hundred chemicals of

Figure 4.Cumulative counts of the application chemicals in relation to the predicted points of departure and margins of exposure. Data are shown for
chemicals that were on theMergedNORMANSuspect List (SusDat)20,21 and within the applicability domain of SEEM3 (n = 32,524),19 excluding any
training chemicals. The margins of exposure correspond to an individual at the population median exposure. Uncertainty is represented in two ways:
(1) Exposure uncertainty, reflected by examining margins of exposure at different exposure percentiles; (2) Point of departure (hazard) uncertainty,
represented by a 90% prediction interval derived from the median RMSE based on cross validation. Vertical spans highlight different risk categories, as
described in the Methods. The x-axis is truncated at log10MOE = 10. Note: POD, point of departure; MOE, margin of exposure.
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high concern for health effects at estimated median population
exposure levels (Figure 4). Notably, the exposure uncertainty
was the primary driver of the overall uncertainty in the margin of
exposure. Exposure uncertainty was larger than PODQSAR
(hazard) uncertainty, despite our QSAR-based approach
inherently introducing a larger uncertainty than the surrogate
PODs from Aurisano et al. that were based directly on in vivo
data.8 Moreover, we assessed risk only at estimated median
exposure levels, and for most chemicals, only a small fraction of
the population is likely exposed. Thus, the actual uncertainty in
exposure is even greater when recognizing the need to address
highly exposed subpopulations. These findings underscore the
need for refined exposure estimates to better characterize
chemical use patterns, product compositions, and human
behaviors that influence exposure.32−34

In Table 2, we illustrate another case study example,
demonstrating how these models could be used in the context
of deriving a reference dose (RfD) for a “new” chemical. In
particular, we use the example of 4-methylcyclohexanemethanol
(MCHM), a chemical used in the processing of coal that spilled
from a storage tank into the Elk River in West Virginia, US, in
January 2014. At the time, there were no regulatory toxicity
values for MCHM. After several days, CDC (2014) developed
guidance levels based on a 4-week rat study (Eastman, 1990),
and several months later, an expert panel (TERA 2014)
proposed refined analyses using the same study.35−37 Over six
years later, NTP completed a developmental and reproductive
toxicity study in rats (NTP 2020).38 However, as illustrated in
Table 2, utilizing our QSAR models for predicting PODs and
deriving RfDs for MCHM would yield very similar results in a
much more rapid time frame of minutes, rather than days,
months, or years. Additionally, because our predictions include
confidence bounds for model uncertainty, they can also be
incorporated into probabilistic derivations of toxicity values or
health impacts.39−41

A primary strength of our framework lies in its two-stage
approach described in the Methods. Our final models accurately
predicted PODs using a subset of 10 interpretable features from
OPERA 2.9 (Figure S6).9,10 A unique aspect of this approach is
the incorporation of predicted biological features. Notably, the
QSAR-predicted LD50, derived from in vivo rat acute oral
toxicity studies,29 consistently emerged as the most important
feature in our models. For this feature, >99% of the chemicals in
the training set was within the applicability domain (Figure S4).
This feature indicates the acute mammalian potency of a
chemical and was previously predicted with an RMSE of around
0.50 (in log-10 units).29 As expected, our POD predictions had
RMSE values that were (slightly) greater because they relied on

the QSAR-predicted LD50 as a “feature”. Importantly, using
experimental LD50 values as features in our sensitivity analysis
did not materially improve model performance while substan-
tially reducing the applicability domain of the model because
only chemicals with experimental LD50s were predicted. Other
important features were easily interpretable physical/chemical/
biological properties, such as water solubility or fish bioconcen-
tration factor. Moreover, certain structural properties, such as
combined dipolarity/polarizability, also emerged as important
features independently of the predicted physical/chemical/
biological properties. In essence, our two-stage framework is
akin to a traditional deep learning model, but providing a
supervised intermediate layer that transforms raw chemical
descriptors into readily interpretable physical/chemical/toxico-
logical properties. However, a limitation of this approach is that
the applicability domain of the overall model is constrained by
those of the individual first stage models.
Comparatively, our final models outperformed many

alternative models in our sensitivity analyses as well as those
published previously. Specifically, our in-sample predictions
aligned more closely with authoritative PODs than the
combination of high-throughput in vitro bioactivity data with
toxicokinetic data (Figure S5).26 Moreover, even our accuracy
for “out-of-sample” predictions was higher than those based on
extrapolation from in vitro-based PODs. Additionally, as shown
in Table 1, our QSAR models had similar or better performance
compared to previous models developed by Wignall et al. or
Pradeep et al.4,13 Although the final “ALL” model by Pradeep et
al.13 that uses study type and species as additional descriptors
had an R2 value slightly higher than ours, this model includes
subchronic and subacute studies and also does not identify a
“critical effect” POD. On the other hand, our “surrogate” PODs
can be directly used in deriving toxicity values for application in
various risk and impact assessment and characterization
approaches. Nonetheless, despite differences in target variables
making direct comparisons challenging, these studies suggest an
upper limit in the performance of QSAR models trained with in
vivo data from ToxValDB.7 Moreover, the performance
achievable through QSAR modeling is constrained by the
intrinsic variability in the derived toxicity values and PODs
across different organizations for identical chemicals.4

For regulatory use, it is also important to consider our model
and framework in light of internationally recognized evaluation
criteria for QSAR models. According to the (Q)SAR Assessment
Framework by OECD,14 a QSAR model under consideration
should be associated with (1) a defined end point; (2) an
unambiguous algorithm; (3) a defined domain of applicability;
(4) appropriate measures of goodness-of-fit, robustness, and

Table 2. Illustration of Application to Deriving a Reference Dose (RfD) for 4-Methylcyclohexanemethanol (MCHM) in the
Context of the 2014 Chemical Spill in West Virginia, US

source point of departure (mg·(kg-d)−1) UFA
a UFH

a UFD
a RfD (mg·(kg-d)−1) analysis time

CDC (2014)35 100 (Eastman 1990) 10 10 10 0.1 Days
TERA (2014)37 71 (Eastman 1990)b 10 10 10 0.07 Months
NTP (2020)38 50 (maternal) 10 10 10 0.05 Years
This work: General noncancer 1.9c 3d 10 1e 0.06 Minutes
This work: Reproductive/Developmental 3.5c 3d 10 1e 0.1 Minutes

aDefault factor unless otherwise noted. UFA = animal to human; UFH = human variability; UFD = database inadequacy. bDuration adjusted for 5
days/week exposure. cQSAR human equivalent POD prediction is 26 [90% CI: 1.9−360] mg·(kg-d)−1 for general noncancer and 32 [90% CI: 3.5−
290] for reproductive/developmental effects. Lower 95% confidence bound used as a “conservative” POD. dQSAR predictive POD is already
adjusted from animal to human equivalent dose using allometric scaling. eReduced to 1 because database uncertainty is already addressed by using
lower confidence bound of QSAR-predicted POD and separate predictions for general noncancer and reproductive/developmental effects.
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predictivity; (5) a mechanistic interpretation, if possible. Table
S2 shows the results of applying the (Q)SAR Assessment
Framework to our modeling framework, demonstrating how
our framework conforms to general principles and criteria for
use of QSAR models.14

Despite its advantages, our framework has several notable
limitations. First, it is possible that the actual generalization
errors of our models were larger than those reported (Figure
3B), particularly for features with a large proportion of missing
values. In our framework, missing values were imputed with the
median, a common practice to maintain data set integrity.
However, this approach can bias predictions toward central
estimates, effectively narrowing the observed variability. This
“mean reversion” phenomenon can result in predictions that are
less varied and more centered around the median (Figure S14),
which might not always reflect the underlying distribution. This
problem was partially mitigated by excluding features with many
missing values from our modeling pipeline (Figure 1B).
Furthermore, based on our in-sample performance and
benchmarking, there may be a small trend toward overpredicting
PODs for higher potency chemicals (Figures 2 and S5). Again,
this may be a mean reversion phenomenon because of random
forest is an ensemble-based method that averages over multiple
individual models and chemicals. This trend of a narrower range
of predicted PODs was also observed in a previous QSAR
modeling effort.4

Additionally, like most QSAR models, our models are only
applicable to single organic compounds of small to medium
sizes; mixtures, large biomolecules, polymeric chains, nanoma-
terials, and inorganic compounds are outside the applicability
domain of OPERA 2.9.9,10 Different types of prediction models
need to be developed for these chemicals. Additionally, our
models were limited by the broad categorization of health
effects.8 This categorization was necessitated by data availability;
predicting PODs at a higher resolution, such as for specific
critical effects or organ systems, would have further fragmented
an already limited data set. Our models also focused on the oral
exposure route, and future work is needed to incorporate
additional exposure routes. Finally, our model uncertainty
estimates are based on cross-validation generalization error, and
future work could more fully characterize model uncertainty, for
instance, at the level of individual prediction.
Overall, this study predicted in vivo noncancer PODs for

organic chemicals, with typical RMSEs of less than 1 order of
magnitude, based on structure alone. Our framework offers a
high-throughput alternative to augment approaches that are
based directly on in vivo data. Moreover, our model also
conforms well to OECD guidance for evaluating QSAR
models,14 increasing confidence in our model predictions.
These predictions can, in turn, be directly used for a range of
hazard, risk, and impact characterization applications, including
(but not limited to) deriving probabilistic toxicity values,39,42

emergency response, contaminated site remediation, LCIA,
CAA, and comparative risk screening. Thus, predictions from
our model can substantially expand the coverage of chemicals
that can be evaluated for their human health risks and impacts
and thereby better promote a safer and more resilient,
sustainable, and healthy environment.
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