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Mounting evidence indicates that antibodies can contribute towards
control of tuberculosis (TB). However, the underlying mechanisms of
humoralimmune protection and whether antibodies can be exploitedin
therapeutic strategies to combat TB are relatively understudied. Here we
engineered the receptor-binding Fc (fragment crystallizable) region of an
antibody recognizing the Mycobacterium tuberculosis (Mtb) capsule, to
define antibody Fc-mediated mechanism(s) of Mtb restriction. We generated
52 Fcvariants that either promote or inhibit specific antibody effector
functions, rationally building antibodies with enhanced capacity to promote
Mtb restriction ina human whole-blood model of infection. While there

is likely no singular Fc profile that universally drives control of Mtb, here

we found that several Fc-engineered antibodies drove Mtb restrictionina
neutrophil-dependent manner. Single-cell RNA sequencing analysis showed
that arestrictive Fc-engineered antibody promoted neutrophil survival and
expression of cell-intrinsic antimicrobial programs. These data show the
potential of Fc-engineered antibodies as therapeutics able to harness the
protective functions of neutrophils to promote control of TB.

Mycobacterium tuberculosis (Mtb), the causative agent of tuber-
culosis (TB), remains the leading cause of death from a single bacte-
rial infection globally, causing an estimated 1.3 million deaths in
2022 (ref.1). As aresult, novel therapeutic and vaccination strategies
are urgently needed to slow the TB epidemic. To date, the majority
of efforts to manipulate the immune response to drive control of
TB have focused on potentiating cell-mediated immunity, as CD4
T cells play acritical role in controlling TB*™“. Little work has focused

on harnessing the diverse effector mechanisms of humoral immunity
to combat TB.

A growing body of evidence supports a functional role for anti-
bodies in TB control. Importantly, mice lacking B cells, the cellular
source of antibodies, exhibit enhanced susceptibility to Mtb
disease’. Moreover, monoclonal and polyclonal antibody passive trans-
fer studies have shown that antibodies alone can limit TB disease and
spread® ™. It is noteworthy that antibodies binding surface-exposed
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Fig.1|Wild-type IgGl a-glucan antibody does not drive Mtb restrictionin
vitro. a, Glucan (bovine liver glycogen) antigen-binding ELISA of the a-glucan-
specific antibody clone, 24¢5. ELISA was runin technical duplicate. OD ;54 .
optical density at 450 nm. b, Macrophage Mtb restriction assay. The y axis shows
live (GFP)/total (mCherry) Mtb burden in human MDMs normalized by the no-
antibody condition for the respective donor. Each pointis the triplicate average
from one human macrophage donor. ¢, Whole-blood Mtb restriction assay.

@ N

Theyaxisis the area under the Mtbh-276 growth curve value normalized by the
no-antibody condition from the respective donor. Each point represents a
triplicate average from one donor. One-way ANOVA with Dunnett’s correction
comparing each antibody or antibiotic with the isotype IgG1 control antibody.
Adjusted P < 0.05indicated. Error bar shows mean with standard deviation.
Horizontal dashed lines indicate the no-antibody condition.

Mtb antigens have shown particular promise, displaying both an
ability toreduce Mtbbacterial burden and to prolong survival in treated
animals®”'>*5_ More specifically, several studies have found that anti-
bodies specific to capsular polysaccharides, the outermost portion of
the bacteria, promote Mtb uptake and significant M¢tb control in vitro
and in vivo®”'>"*, These data highlight the potential for exploiting
antibodies that recognize abundant surface-exposed Mtb glycans to
prevent TB disease.

While it is plausible that simple antibody blockade of surface-
exposed antigens represents a mechanism of antibody action
against Mtb, antibodies may also prompt bacterial clearance follow-
ing surface opsonization via Fc (fragment crystallizable) receptor
engagementon localimmune cells, allowing the activation of a diverse
array of antimicrobial functions. Consistent with this model, antibody
signalling via Fcy receptors is required for optimal Mtb controlinvivo'®,
strongly implicating the immunoglobulin G (IgG) Fc in protective
immunity against TB. Moreover, antibody Fc functional profiles differ
across individuals who control Mtb infection and those with active,
uncontrolled infection”. However, the primary mechanism(s) exploited
by the antibody Fc to promote Mtb control have not been thoroughly
assessed.

Inthis Article, we sought to develop amore detailed understand-
ing of the effector mechanism(s) capsule-binding antibodies leverage
torestrict Mtb. Thus, werationally engineered alibrary of antibody Fc
variants specific to a-glucan, an abundant, surface-exposed polysac-
charide presentin the Mtb capsule™. Each Fcvariant was designed to
augmentor dampen select antibody effector functions based on data
from the monoclonal therapeutics field (Supplementary Table 1).
We demonstrate that IgG Fc engineering can significantly enhance
the ability of a-glucan-specific antibodies to drive Mtb restriction
in vitro. Fc-engineered a-glucan antibodies promoted Mtb restric-
tion in a neutrophil-dependent manner, raising the possibility of
exploiting Fc-engineered antibodies as a class of therapeutics able
to use the antimicrobial activity of the innate immune system to
drive TB control.

Results

Wild-type IgGl a-glucan antibody does not restrict Mtb

The capsule, the outermost layer of Mtb, primarily comprises glucan
and arabinomannan, which represent approximately 80% and 20% of

the capsular polysaccharides, respectively’®*°. While previous studies
have shown that glucan elicits detectable antibody responses in mice
and in humans®, it remains unclear whether antibodies to this
highly abundant antigen possess antimicrobial activity. Thus, tobegin
to probe the antimicrobial function of a-glucan-specific humoral
immunity, we exploited a monoclonal antibody, clone 24cS5, previ-
ously shown to bind Mtb?..

Initially, the a-glucan-specific monoclonal antibody, 24c5, was
generated as a human IgGl monoclonal. Antigen binding to a-glucan
was confirmed by enzyme-linked immunosorbent assay (ELISA) and
compared to that of an isotype control antibody (Fig. 1a). Next, we
sought to determine whether the a-glucan-specific IgG1 antibody
was able to drive Mtb restriction in vitro. Human monocyte-derived
macrophages (MDMs) were infected with a live/dead reporter strain
of Mtb (Mtb-live/dead)*, followed by the addition of antibody to the
Mtb-infected cells. After 96 h, equivalent levels of intracellular Mtb
restriction was observed in wells containing the a-glucan-specific IgGl
antibody and the isotype control (Fig. 1b). This assay interrogates the
ability of antibodies torestrict bacterial growth solely in the presence
ofapreviously infected macrophage, so we next queried whether the
antibody could restrict infection in human whole blood—a system
that captures the impact of multiple immune cell types and antibody
functions at the time of bacterial exposure. Antibodies were added to
fresh whole blood from healthy human donors at the same time as an
auto-luminescent Mtb reporter strain (Mtb-276)*. Luminescence read-
ings were then taken every 24 h over the course of 5 days to examine
differences in Mtb growth curves across the a-glucan-specific and
isotype control antibody conditions. Again, the a-glucan-specific
IgG1 antibody did not show any evidence of Mtb restriction (Fig. 1c).
Together, these datasuggest that the a-glucan-specific IgGl antibody
did not mediate Mtb control in vitro.

Fc-engineered antibodies show diverse functional activity

Point mutations introduced into the antibody Fc domain at hotspots
of Fc receptor and complement protein binding enable detailed
analysis of the relationship between specific Fc-mediated functions
and microbial control. Thus, to investigate the impact of antibody
Fc profile on the restrictive capacity of Mtb-specific antibodies, we
developedalibrary of 52 Fc-engineered IgG antibody variants with iden-
tical antigen-binding fragments (Fabs) as the original 24c5 antibody

Nature Microbiology | Volume 9 | September 2024 | 2369-2382

2370


http://www.nature.com/naturemicrobiology

Article

https://doi.org/10.1038/s41564-024-01777-9

clone using a high-throughput golden gate cloning approach (Sup-
plementary Table 1)*. Fc variants included Fc modifications known
to modulate specific antibody functions such as antibody-dependent
cellular cytotoxicity (ADCC), antibody-dependent cellular phagocyto-
sis (ADCP), antibody-dependent complement deposition (ADCD), and
serum half-life extension (Supplementary Table1)**. The 52 Fc variants
of 24c5 were produced and tested for their ability to bind to a-glucan
by ELISA. Each Fc-engineered antibody maintained binding compa-
rable with that of the wild-type IgGl antibody (Extended DataFig. 1a),
indicating that antibody Fc modifications did not impede a-glucan
binding activity. Furthermore, glycosylation analysis revealed that
Fc glycans were largely dominated by structures lacking galactose
(Extended DataFig. 1b).

We next characterized the differentialimpact of each 24c5 variant
on Fc-effector functions. We used a-glucan or a-glucan-containing
Mtb whole-cell lysate rather than live bacteria to enable the high-
throughput functional profiling of each Fc variant. Specifically, we
probedtheability of each Fc-engineered antibody to drive natural killer
(NK) cell activation (antibody-dependent NK cell activation (ADNKA)),
complement deposition (ADCD), monocyte phagocytosis (ADCP) and
neutrophil phagocytosis (antibody-dependent neutrophil phagocyto-
sis (ADNP)) (Fig.2and Extended DataFig.1c). Asexpected,inthe ADNKA
assay, a surrogate for ADCC, Fc variants engineered to have potent
ADCC activity, such as SDIEALGA”, SAEAKA* and 1332E (Supplemen-
tary Table 1), elicited increased NK cell degranulation (CD107a) and
NK cell activation (interferon-y (IFNy) and MIP-1p secretion) compared
withthewild-type IgGlantibody (Fig. 2 and Extended Data Fig. 1c). 24¢5
Fc variants, such as KWES*, K326 W*° and HFST®, designed to have
increased complement activity (Supplementary Table 1), mediated
increased complement component 3b (C3b) deposition compared with
the wild-typelgGlantibody (Fig. 2 and Extended Data Fig. 1c). Similarly,
24c5Fcvariants engineered to facilitate enhanced monocyte phagocy-
tosis, such as SDIEGA*, SDIEAL?’ and SDIE* (Supplementary Table 1),
mediated increased monocytic uptake of Mtb whole-cell lysate-coated
beads compared with the wild-type IgGl antibody (Fig. 2 and Extended
Data Fig. 1c). Further, while the ability of these Fc variants to medi-
ate neutrophil phagocytosis has not been as thoroughly assessed,
several Fc-engineered a-glucan antibodies, such as SEHFST LS?**,
SDIESA LS**** and 1gG3 RH**, drove robust neutrophil phagocytosis
of Mtb whole-cell lysate-coated beads compared with the wild-type
IgGlantibody (Fig. 2 and Extended DataFig. 1c). Froma combinatorial
perspective, Fc variants emerged with different combinations of anti-
body effector profiles (Fig. 2 and Extended Data Fig. 1c). Yet, the N297Q
variant, a non-glycosylated Fc variant designed to have minimal
affinity for Fcy receptors®¢, showed limited activity across the func-
tional profiling assays as expected (Fig. 2 and Extended Data Fig. 1c).

Half-life extending mutations (M428L/N434S; LS) were added to
numerous Fc variants in the panel”. Comparing the ‘normal’ and ‘LS’
half-life extended versions showed significant correlations across the
ADNKA (MIP-1f3) and ADNKA (IFNy) assays (Extended DataFig.1d) and
moderate, yet insignificant, correlations across the ADCD and ADCP
assays (Extended Data Fig. 1d). This indicates that the functional pro-
files of the paired variants was similar but notidentical. Furthermore, a
similar Fc-variant panel was profiled in a previous study using the Ebola
glycoprotein-specific monoclonal antibody, VIC16 (ref.26). Correlating
functional results across the 24c5and VIC16 panels revealed significant
positive correlationsinthe ADNKA (CD107a), ADNKA (MIP-133), ADNKA
(IFNy) and ADCD assays but notin the phagocytosis assays (ADCP and
ADNP) (Extended DataFig. 1e). Theinconsistency of antibody-mediated
monocyte and neutrophil phagocytic responses may be explained by
pathogen-associated molecular patterns present in Mtb whole-cell
lysate that may engage pathogen recognition receptors and activate
these cells. Collectively, these dataindicate that Fc engineering shifts
the functional profile of a-glucan-specific antibodies, driving the
variable enhancement or diminution of several effector functions

and providing a wide array of combinatorial functional responses to
interrogate Fc-mediated restriction of Mtb.

Fc-engineered antibodies down-selected by functional profile
To test the antimicrobial properties of a-glucan-specific antibodies
with different Fc-effector profiles, we sought to reduce the number
of a-glucan Fc variants while maintaining the functional heterogene-
ity present in the full monoclonal library. To this end, the a-glucan Fc
variants were hierarchically clustered using all the functional profil-
ing data. At least one variant was selected from each of the 11 clusters
thatemerged (Fig. 3a), capturing the diversity in antibody functional
profilesacross the Fc-variantlibrary. The ultimate down-selected 24¢5
panel included Fc variants with several types of functional activity
(Fig.3b). Forinstance, the down-selected panelincluded M252Y/S254T/
T256E (YTE) (which solely possessed monocyte phagocytic function)*®,
IgG3 RH (which showed robust complement and phagocytic func-
tions)**, 1332F (which had potent NK activating properties)* and N297Q
(alargely non-functional and non-glycosylated Fc variant) (Fig. 3b)*>*¢,
Thus, while the down-selected a-glucan Fc-variant panel comprises
fewer variants, substantial heterogeneity was maintained, providing
arobust starting point from which to define the relationship between
antibody functional profiles and Mtb restriction.

Select Fc-engineered antibodies restrict Mth in whole blood
While the wild-type 24¢5 IgGl antibody did not significantly restrict
Mtb (Fig. 1), we next aimed to determine whether the addition of cer-
tain Fc functions to the 24¢5 antibody clone could augment bacterial
restriction in vitro. Fresh whole blood from healthy human donors
was simultaneously infected with Mtb-276 (ref. 25) and treated with
each24c5antibody. While the wild-type IgGl antibody did not mediate
significant Mtb restriction, 6 of the 15 down-selected Fc-engineered
antibodies tested drove significant Mtb restriction in whole blood com-
pared with the IgGlisotype control antibody (Fig. 4a). No significant
correlation was observed between restriction activity in whole blood
and a-glucan antigen binding, indicating that the restrictive effect was
not simply due to subtle differences in antigen binding between the
variants (Fig. 4b). Conversely, none of the Fc variants tested drove intra-
cellular Mtb killing in macrophages alone (Extended Data Fig. 2), sug-
gesting the mechanistic involvement of additional immune effectors
presentin peripheral blood in antibody-mediated restrictionin vitro.

Toexploretheimmune milieu driven by restrictive antibody treat-
ment, we profiled cytokine levels 120 h following Mtb infection and
antibody treatment in whole blood across multiple donors (Fig. 4c,d
and Extended Data Fig. 3a-d). Restrictive Fc variants elicited a dis-
tinct cytokine profile, marked by a selective enrichment in secreted
IFNy and interleukin-10 (IL-10) compared with Fc variants that were
non-restrictive (Fig. 4c,d and Extended Data Fig. 3a-d). These cytokine
differences were significant at a univariate level (Extended Data
Fig.3a,d). While there was heterogeneity in the secretion of additional
cytokinesincludingIL-6, IL-8 and IL-1B, these cytokines did not distin-
guish restrictive versus non-restrictive a-glucan antibody Fc variants
(Fig. 4c,d and Extended Data Fig. 3a-d). To determine whether the
restrictive effect promoted by the Fc-optimized 24¢5 SEHFST LS variant
was dependent on particular cytokines, we performed cytokine block-
ade experimentsin the whole-blood assay. IFNy blockade resultedina
significantlossin Mtb controlindependent of 24c5 antibody treatment
(Extended DataFig.3e), while IL-1B blockade did not significantly alter
Mtb controlinanantibody-dependent manner (Extended Data Fig. 3e).
Together, these dataindicate that Fc variants can restrict Mtb, and they
highlight distinct cytokine/inflammatory responses associated with
restrictive antibody treatment.

Fcvariants drive neutrophil-dependent Mtb restriction
To probe the mechanism(s) exploited by Fc variants to restrict Mth
growth in whole blood, we next assessed the relationship between
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lineindicates the performance of an IgGlisotype control antibody. See Methods
for the experimental details of each assay.

the whole-blood restriction assay (WBA) and each of the functional
profiling assays (Fig. 5a). ADNP showed a significant negative cor-
relation with Mtb growth in whole blood (Fig. 5a). We had anticipated
thatantibodies able to drive potent functions across multipleimmune
effectors would optimally restrict Mtb, yet, unexpectedly, antibodies
which were not broadly functional, and instead selectively induced
neutrophil phagocytosis, significantly restricted growth in whole

blood (Fig. 5b). While purified-protein-derivative-specific IgG with
increased FcyR3A binding and NK cell activating activity was previ-
ously associated with control of Mtb in macrophages”, we found that
antibody-dependent NK cell degranulation (CD107a) and activation
(IFNyand MIP-1P3 secretion) activity of monoclonal a-glucan Fc variants
positively correlated with Mtb growth in whole blood (Fig. 5a). This
divergencein protective Fc profile suggests that antibodies targeting
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different antigens may leverage distinctimmune effector mechanisms
to promote Mtb control.

To test the hypothesis that the engagement of neutrophils by
restrictive Fc-engineered a-glucan antibody variants was key to Mtb
restriction in the whole-blood model of infection, neutrophils were
depleted from blood before infection and the addition of select
Fc-engineered antibodies. The SEHFST LS and SAEAKA a-glucan Fc
variants previously found to drive Mtbrestriction no longer restricted
Mtbinthe absence of neutrophils (Fig. 5¢). These Fc variants maintained
their restrictive activity when monocytes were depleted instead of
neutrophils (Extended Data Fig. 4a) and when complement was inhib-
ited using cobra venom factor (Extended Data Fig. 4b)*, although
cobravenom factorledtoareduction of Mtb luminescence eveninthe
absence of restrictive antibody treatment (Extended Data Fig. 4b). In
addition to the synthetic SEHFST LS and SAEAKA Fc variants, the IgG2
and IgG4 naturally occurring Fc variants showed significantly less
restrictive activity in the absence of neutrophils (Fig. 5¢). As expected,
neither the wild-type IgGl nor the N297Q antibody variants drove Mtb
restrictionirrespective ofimmune cell depletion (Fig. 5c and Extended
DataFig.4a). Collectively, these data indicate that several Fc-modified
a-glucanantibodies leverage neutrophil function to drive Mtb control.

SEHFST LS variant upregulates neutrophil antimicrobial
genes

Neutrophils have beenassociated with both protection and pathology
in Mtb infection*’. Several studies have described neutrophils as an
early microbial reservoir in naive hosts, controlling intracellular Mtb
less effectively compared with macrophages*-*, and over the course
of infection, neutrophil recruitment is associated with necrosis and
caseation****, However, in other environments neutrophils have been
found to have potent ability to clear Mtb, activity that is suppressed
by granulocyte necrosis**. The observation that select Fc-engineered
antibodies promoted Mtb restrictionin aneutrophil-dependent man-
nersuggested that the presence of Fc-optimized antibodies at the time
ofbacterial exposure may trigger molecular circuitsin neutrophils that
direct neutrophil antimicrobial functions. Hence, we next performed
single-cell RNA sequencing (scRNA-seq) to characterize the effects
of Fc-optimized antibody treatment. Fresh whole blood from three
healthy human donors was infected with Mtb and treated with either
the 24c51gGl or the Fc-optimized 24¢5 SEHFST LS antibody variant.
Conditions without monoclonal antibody (no Ab) and without Mtb
(uninfected) were additionally included as controls. We performed
scRNA-seq analysis of the whole-blood cell populations under the
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Fig.4|Several Fc-engineered a-glucan antibodies drive Mtb restrictionin
wholeblood. a, Whole-blood Mtb restriction assay. The x axis shows the different
a-glucan Fevariants (25 pg ml™), an IgGlisotype control antibody as a negative
control (25 pg ml™) and the antibiotic rifampin as a positive control (0.25 ug ml™).
Theyaxisis the area under the Mtb-276 growth curve value normalized by the
no-antibody condition from the respective donor. Each point represents a
triplicate average from one donor. One-way ANOVA with Dunnett’s correction
comparing each antibody or antibiotic with the isotype IgG1 control antibody.
Adjusted P<0.05areindicated. Error bars show mean with standard deviation.
Horizontal dashed line indicates the no-antibody condition. b, Spearman

correlation between the normalized area under the curve in the whole-blood
assay and a-glucan antigen binding determined via ELISA. Spearman correlation
was two-sided. Green solid line s the linear regression line; grey shading
indicates the 95% confidence interval. ¢,d, Cytokine Luminex using the whole-
blood assay supernatant collected at 120 h. Triplicate average from donor A
shown. ¢, Clustered heat map indicating the cytokine profile elicited by each
a-glucan Fc variant. Data were z-scored before heat map visualization. d, PCA of
cytokine Luminex data. Left: score plot of the first two principal components.
Right: loading plot of the first two principal components. The x andy axes are
principal components1and 2, respectively.

various conditions at 24 h to maximize neutrophil recovery and to
capture early Fc-mediated signals within cells of whole blood.

Cells were clustered into 1 of 21 different cell subsets by their gene
expression and visualized in low dimensional space through uniform
manifold approximation and projection (UMAP) (Fig. 6a). Following
quality control, 7,334 total cellsand 906 neutrophils were recovered. The
24c¢5 SEHFST LS variant showed an increased proportional abundance
of neutrophils compared with the other treatment conditions (Fig. 6b).
These data suggest increased survival of neutrophils in the presence
of the Fc-optimized antibody compared with the control conditions.

Consistent with this, expression of PI3, which encodes trappin-2,
an inhibitor of neutrophil elastase that may be associated with pre-
vention of Netosis and alternative antimicrobial functions*>*¢, was
increased in the 24¢5 SEHFST LS condition compared with the 24c5
IgGland no Ab conditions (Fig. 6¢). Expression of FTHI, whichencodes
a subunit of ferritin, the major intracellular iron storage protein in
eukaryotes®’, was also higher in the setting of 24¢5 SEHFST LS antibody
treatment (Fig. 6¢), suggesting that the Fc-optimized antibody may
modulateintracellularironavailability for the bacterium. Conversely,
gene expression of BASPI (brain abundant signal protein 1), which is
associated with cell death and senescence**~°, was decreased following
24c¢5 SEHFST LS antibody treatment (Fig. 6¢).

Gene Ontology (GO) analysis of the differentially expressed genes
following 24¢c5 SEHFST LS antibody treatment (Fig. 6d) found key
antimicrobial circuits leveraged by neutrophils to drive control of intra-
cellular pathogens including neutrophil degranulation®*, sequestra-
tion ofiron**and the response to IFNy, to be significantly upregulated
following 24¢c5 SEHFST LS treatment (Fig. 6d). By contrast, analysis of
the differentially expressed genes in the CD14* monocytes from the
10X dataset revealed downregulation of the gene encoding toll-like
receptor 2 (TLR2) and the GO biological processes involved in the
response to cytokines following 24¢c5 SEHFST LS antibody treatment
(Extended Data Fig. 5). Taken together, these data suggest that 24c5
SEHFST LS may divert the antimicrobial recognition and response to
Mtbfromthe CD14* monocyte to the neutrophil compartment, promot-
ing neutrophil survival and the selective and sustained upregulation
of antimicrobial gene programs that may contribute to intracellular
Mtb control.

Discussion

Here we used an Fc-engineering approach to (1) determine whether
rational Fc modification could enhance antibody restrictive capacity
and (2) define the innate immune mechanism(s) that antibodies may
leverage to restrict Mtb. We demonstrated that IgG Fc engineering
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Fig. 5| Fc-engineered a-glucan antibodies drive Mtbrestrictionina
neutrophil-dependent manner. a, Spearman correlation matrix of the different
functional and antimicrobial assays. The bottom left section of the correlation
matrix indicates the Spearman correlation coefficient for each relationship.

The upper right section of the correlation matrix contains ellipses that have

their eccentricity parametrically scaled to the strength of the correlation for
eachrelationship. Pairwise correlation between the normalized area under the
curve in the whole-blood assay and the phagocytic score from the neutrophil
phagocytosis assay is highlighted. Grey-shaded error band shows 95% confidence
interval. Spearman correlations were two-sided. *P< 0.05; **P< 0.01; **P< 0.001.
b, Clustered heat map indicating the performance of each a-glucan Fc variant in
the down-selected panel across different functional and antimicrobial assays.
Data were z-scored before heat map visualization. ¢, Whole-blood Mtb restriction

assay with neutrophil depletions. The x axis shows selected a-glucan Fc variants
(25 pg ml™), anIgGlisotype control antibody as a negative control (25 pg ml™)
and the antibiotic rifampin as a positive control (0.25 pg mi™). Each antibody or
antibiotic treatment was tested in whole blood (filled-in bars) and neutrophil-
depleted blood (white bars). The y axis is the area under the Mtb-276 growth
curve value normalized by the no-antibody condition from the respective donor.
Each pointrepresents a triplicate average from one donor. Two-tailed, unpaired
t-test, comparing restriction in the neutrophil-depleted blood condition with the
whole-blood condition for each treatment. Error bars show mean with standard
deviation. Unadjusted P < 0.05 areindicated, and comparisons labelled as ‘NS’
(notsignificant) have unadjusted P> 0.05. Horizontal dashed line indicates the
no-antibody condition.

cansignificantly augment the ability of a-glucan antibodies to drive Mth
restrictioninvitro, pointing to aunique strategy for the development
of therapeutics to combat TB. Unexpectedly, several Fc-engineered
a-glucan antibodies drove Mtb restriction in a neutrophil-dependent
manner. These data further suggest that antibodies can harness the
antimicrobial potential of neutrophils to promote Mtb restriction by
selectively rewiring neutrophils at the transcriptional level.

We demonstrate that a subset of Fc optimized IgG antibodies
specific to the Mtb capsule mediate improved bacterial restriction
over the wild-type IgGl antibody in a whole-blood model of infection.
This finding contributes to agrowing body of evidence pointingto the
biophysical characteristics of the antibody Fc asacritical determinant
of antibody protective activity in the context of Mtb infection'®"'"*,
Indeed, antibody signalling through Fcy receptorsisrequired for opti-
mal Mtb controlin mice'®. More recently, Fcy receptor engagement was

shown to be necessary for the protective function of several mono-
clonal antibodies specific to the Mtbh phosphate transporter subunit
PstS1(ref.10).Inaddition, isotypesincluding IgA and IgM have shown
enhanced antimicrobial function over IgG1 antibodies across vari-
ous models of Mtb infection**~*°, While the precise mechanisms of
antibody Fc-mediated Mtb control have yet to be elucidated, this col-
lection of work suggests that in many cases, simply altering the Fc
regionis sufficient to make antibodies better at the task of controlling
Mtb growth. In this study, we had the opportunity to map Fc effector
mechanisms of action for monoclonal antibody specific to a single
antigenic target—a-glucan. For this particular clone, we found that
antibodies promoted Mtb controlin aneutrophil-dependent manner.
Yet importantly, Fc effector functions which promote Mtb control
in the context of this capsule-specific antibody may not represent
a generalizable protective Fc profile in the context of Mtb-specific
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Fig. 6|24c5 SEHFST LS drives the upregulation of antimicrobial gene
programs in neutrophils. a, Uniform manifold approximation and projection
(UMAP) visualization of all cells and cell subsets recovered following scRNA-
seq. Thexandyaxes represent the first and second dimensions of the UMAP
embeddingrespectively. b, UMAP depicting fractional abundance (density)
indifferent cell types across treatment groups. ¢, Neutrophil differential
expression analysis. The x and y axes indicate log, fold change of the SEHFST LS
variant compared with the no antibody and the IgG1 conditions, respectively.
Genes consistently increased in the 24¢c5 SEHFST LS condition (red quadrant):
(1) Mann-Whitney P< 0.1and alog, fold change > 0.25 compared with either the
24c51gGlorno Ab condition, (2) detected ina minimum fraction of 0.1 cells in
either of the two conditions and (3) alog, fold change > 0 compared with both
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the 24c51gGl and no Ab conditions. Genes consistently decreased in the 24¢5
SEHFST LS condition (blue quadrant): (1) Mann-Whitney P < 0.1and alog, fold
change < -0.25 compared with either the 24c51gG1 or no Ab conditions, (2)
detected inaminimum fraction of 0.1cells in either of the two conditions and (3)
alog,fold change < 0 compared with both the 24¢51gG1 and no Ab conditions.
Mann-Whitney tests were two-sided. d, Gene list enrichment analysis using GO
Biological Process gene sets. The x axis indicates the adjusted Pvalue of each

GO term. Left: GO terms enriched in red quadrant genes from c. Right: GO terms
enriched inblue quadrant genes from c. Vertical dashed line indicates two-sided
Fisher’s exact test adjusted P value of 0.05. Numbers on each circle show the odds
ratio. Top ten GO terms by adjusted Pvalue shown.

antibodies. The 24c5antibody clone was originally generated viamouse
immunization®, and it remains unclear how the gain-of-function Fc
mutations identified would be reflected in the functionality of anti-
bodies arising from natural Mtb infection in humans. Moreover, anti-
bodies targeting different antigens, or even epitopes, may leverage
distinctimmune effector mechanisms to drive protection against the
bacteria. Forinstance, in previous work, ADCC via FcyR3A binding was
found to be associated with improved polyclonal antibody-mediated
Mtb controlinamacrophage model of infection”. In the context of mul-
tiple PstS1-specific monoclonal antibodies, a combination of FcyR2A
(CD32)and FcyR3A (CD16) binding was essential for antimicrobial func-
tion'®. Hence, itis likely that no singular Fc profile universally drives con-
trol of Mtb and that antimicrobial function may instead be antigen- and
context-dependent. Future studies aimed at mapping humoralimmune
mechanisms of actionin the context of additional targets may provide
furtherinsightsinto the unique Fc-mediated mechanisms that may be
leveraged across the landscape of Mtb antigens to control the pathogen.

The mechanism(s) of action of the Fc-optimized antibodies identi-
fied is not immediately obvious based on their previously published
functionalities. Three of the restrictive variants represent low-effector
variants (IgG2, IgG4 and L234A/1L235A)%, two were designed to have
enhanced complement activity (HFST and SEHFST LS)***, and one
was designed to drive enhanced ADCC (SAEAKA)?®. Yet our agnos-
tic approach characterized by in-depth functional profiling of each
variant suggested that antibodies able to deploy neutrophil function
significantly restricted Mtb growth in whole blood, emphasizing the
importance of characterizing antibodies across arange of functional
assays during the development process.

Activation of neutrophils represents a delicate and context-
dependent balancing act. The robust destructive and inflammatory
functions of neutrophils have been associated with the development of
more severe TB disease late in infection®®*, Given that poorly functional
antibodies are abundant during active pulmonary Mtbinfection*°, it is
plausible that these antibodies may exacerbate suboptimal neutrophil
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functions latein Mtb infection rather than ameliorate TB disease. How-
ever, uponinitial Mtb exposure, neutrophils are first recruited into the
airways and lungtissue atatime when adaptiveimmune responses are
yettodevelop and thusareinthe presence of limited antigen-specific
IgG antibodies. Conversely, in the present study, we observed that
the pre-existence of Mtb-specific neutrophil-activating antibodies at
the time of Mtb infection rewires neutrophils, promoting neutrophil
survivaland bacterial restriction. Our results show that the efficacy of
neutrophils against mycobacteriais highly dependent on whether the
interactioninvolvesimmunoglobulin opsonins and the type of engage-
ment of Fc receptors. Consequently, vaccines that elicit antibodies
that facilitate neutrophil activity against mycobacteria could protect
by enhancing the efficacy of these innate immune response cells.
In this respect, previous analysis of bronchoalveolar lavage fluid
from non-human primates immunized with protective intravenous
Bacillus Calmette-Guérin identified a significant expansion of anti-
bodies able to arm neutrophil activity in the lung>®.

The combination of Fc engineering with single-cell transcriptom-
ics pointed to unexpected Fc-mediated antibody therapeutic strategies
as alternatives in the face of expanding antibiotic resistance. Specifi-
cally, transcriptomic analysis suggested a need for neutrophil survival
and degranulation for optimal antibody-mediated Mtb restriction.
While macrophages and monocytes shunt phagosomal contents into
the endocytic maturation pathway, gradually converting the phago-
some into a phagolysosome, neutrophils instead possess a myriad
of preformed granules containing antimicrobial peptides and lytic
enzymesthat rapidly fuse with the phagosome following Fcy-mediated
uptake™. Thus, itis plausible that neutrophil survival, iflong enough to
permit the unique phagosome-targeted degranulation process down-
stream of Fcy-mediated phagocytosis in neutrophils, may contribute
to intracellular M¢tb control. More complex multicellular functions
may also contribute to control. Indeed, the significant increase in
IL-10release induced by restrictive Fc variants hints that Fc-optimized
antibodies may promote a phenotypic switchin neutrophilstobecome
highIL-10 producers that regulate Mtb-induced inflammation®. While
neutrophils are the most abundant leukocyte in the blood, only around
12% of the cells interrogated during scRNA-seq analysis were neutro-
phils. Thisis not unexpected as neutrophils are particularly susceptible
toapoptosis upon ex vivo manipulation. Furthermore, low RNA content
and highlevels of endonucleases in neutrophils typically resultin alow
number of quality sequencing reads even in settings of high neutro-
phil viability. Thus, while neutrophil numbers were sufficient in the
present study to nominate several processes that may contribute to
Mtb control, it is conceivable that protective neutrophil populations
and/or functions may have been missed in the analysis due to techni-
cal limitations.

Invulnerable to antibiotic resistance, antibody-based therapeutics
against TBrepresent an appealing modality. Thus, whilelittleinvestiga-
tive effort has focused on harnessing humoralimmunity to combat TB,
our work shows the value of exploiting Fc engineering and single-cell
transcriptional analysis to identify antibody-mediated mechanisms
of Mtb control and to inspire next-generation antibody-based thera-
peutic design.

Methods

Ethics statement

This study was conducted inaccordance with all relevant ethical regu-
lations and guidelines. The study was approved by the institutional
review board at Massachusetts General Hospital.

Fcengineering

A golden gate cloning strategy was used for antibody Fc engineering
following established protocols®*“* In short, restriction sites for the
typellS restriction enzyme Bsal were inserted flanking the sequences
of the different antibody domains, including variable heavy, variable

light, and constantlight domains, as well as the constant heavy domain
(whichwas distinct for each Fc variant). Additionally, afurin2A domain
was inserted. Bsal generates a set of unique overhangs, allowing the
antibody expressing plasmid to be generated in a single-step diges-
tion/ligation reaction. The furin 2A site mediates self-cleavage of the
polypeptide and thus expression of the entire antibody from a single
open reading frame®. Each plasmid was sequenced to confirm the
accuracy of golden gate assembly.

Antibody expression and purification

For antibody functional profiling and the whole-blood and macrophage
restrictionscreens, antibody expressing plasmids were co-transfected
with an additional antibody variable light plasmid at a 1:1 ratio into
CHO cells. Although not strictly necessary for antibody expression,
co-transfecting with the additional antibody variable light plasmid was
found to boost expression levels. Antibody was purified from the cell
supernatant using a Prosep-vA Ultra Protein A resin. Antibody was then
dialysed and concentrated in phosphate-buffered saline (PBS). Concen-
tration was determined by ELISA through comparison with a wild-type
IgGlantibody standard. For the blood depletion and scRNA-seq experi-
ments, antibody expressing plasmids were co-transfected with an
additional antibody variablelight plasmid atal:1ratio into 293F suspen-
sion cells following an established protocol*. Antibody was purified
from the cell supernatant using Protein G magnetic beads (Millipore,
LSKMAGG10) and concentrated in PBS. Concentration was determined
by BCA protein assay through comparison withabovine gammaglobu-
linstandard (Thermo Fisher, 23225). Biochemical quality was assessed
by non-reducing gel and A280 measurements (Supplementary Fig.1).

GlucanELISA

ELISA plates (Thermo Fisher, NUNC MaxiSorp flat bottom) were
coated with 50 pl of bovine liver glycogen (Milipore Sigma, GO885)
at100 pg ml™ overnight at 4 °C. The plates were washed with PBS and
blocked with 5% bovine serum albumin (BSA)-PBS for2 hat room tem-
perature on an orbital shaker. The plates were washed with PBS; then
80 plof antibody was added in 4-fold dilutions ranging from 16 pg ml™
to 0.0625 pg ml™, and the plate was incubated for 1.5 h at room tem-
perature on an orbital shaker. Human IgGl isotype control antibody
was used as negative control (Immune Technology, IT-001-37G12). The
plates were washed with PBS; then 80 pl of secondary anti-human Igk
light chain HRP-conjugated antibody (Thermo Fisher, A18853) diluted
t01:1,000in 0.1% BSA-PBS was added. The plates were incubated for1 h
atroomtemperature on anorbital shaker. The plates were washed with
PBS; then 80 pl per well of TMB (Thermo Fisher, 34029) was added. The
reaction was stopped using 2 NH,SO,, and absorbance was measured
at 450 nmona plate reader (Tecan Infinite M100O Pro).

Glycosylation analysis

Fc glycosylation analysis was performed following an established
protocol®. In brief, 20 pg of each 24c5 Fc variant was digested with
IdeS (Promega) at 37 °C for 1 h. Fc domains were selected using
protein G beads (Millipore) at room temperature for 1 h. Glycans were
isolated from Fc fragments and labelled using the Glycan Assure APTS
kit according to the instructions of the manufacturer (Life Technolo-
gies, A28676). Labelled samples were run on an Applied Biosystems
3500/3500xL Genetic Analyzer and analysed with GlycanAssure Data
Acquisition Software (v1.0) and Microsoft Excel (v16.43).

Human research participants

Primary cells used in select in vitro assays were from the blood of
healthy human immunodeficiency virus (HIV)-negative participants.
Participants were recruited through a voluntary donation program
conducted at Massachusetts General Hospital. Participants were
informed about the study through informational sessions and writ-
ten materials, and those interested underwent screening for eligibility.
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Eligibility criteria included the absence of clinical signs of illness and
negative test results for active HIV, hepatitis C virus and hepatitis B
virus infections. The samples were provided by individuals who did
not have any rolein the research study. The specimens were provided
anonymized or coded. Information onsex, gender, age, race, ethnicity
or other socially relevant groupings was not available to investiga-
tors. All donors provided written, informed consent. The study was
approved by the institutional review board at Massachusetts General
Hospital under protocol number 2010P002121.

ADCP

ADCP was performed following established protocols®*¢*, with
slight modifications. About 250 pg of Mtb H37Rv whole-cell lysate
(BEI, NR-14822) was first treated with sodium acetate (25 pl NaOAc
at 1M and pH 5.5) and sodium periodate (55 pl NalO, at 50 mM) and
incubated for 90 min at room temperature in the dark. Next, sodium
bisulfate (30 plNaHSO, at 0.8 Mand diluted in 0.1 MNaOAc) was added
to block the oxidation reaction for 5 min at room temperature in the
dark. The oxidized whole-cell lysate solution was transferred to anew
tube; then 55 pl of hydrazide biotin at 50 mM (Sigma, 21339), 25 ul
of 1M NaOAc and 175 pl of ddH,0 were then added to the oxidized
whole-celllysate and incubated for 2 hat room temperature. Following
the incubation, excess biotin was removed using Amicon Ultra 0.5 L
columns (3 K, Millipore Sigma). The biotinylated whole-cell lysate
was then added to FITC neutravidin beads (Thermo Fisher, F8776)
ataratio of 5 pg antigen:1 pl beads and incubated shaking overnight
at 4 °C. Whole-cell lysate-coated beads were centrifuged at 16,000 g
for 5 min, resuspended in1ml 5% BSA-PBS, and incubated shaking at
room temperature for 1 htoblock. Whole-celllysate-coated beads were
then resuspended in 5% BSA-PBS such that the starting 1 pl of beads
were in 100 pl of solution. A 10 pl volume of whole-cell lysate-coated
beads were then incubated with 40 pl of each monoclonal antibody
at 0.025 pg ml™ (1 pg antibody total) for 2 h at 37 °C to form immune
complexes. Human IgGl isotype control antibody was used as nega-
tive control (Immune Technology, IT-001-37G12). After the immune
complexes were washed with PBS, THP-1 monocytes (5.0 x 10* per
well) were added and incubated with theimmune complexes for16 hat
37 °C.Fluorescent bead uptake was measured in 4% paraformaldehyde
(PFA) fixed cells by flow cytometry on a BD LSRII (BD Biosciences) and
analysed by FlowJo 10.3 (Supplementary Fig. 2a). Phagocytic scores
were calculated as follows: ((%FITC positive cells) x (geometric mean
fluorescence intensity of the FITC positive cells))/10,000. Samples
wereruntwiceintechnical duplicate, and results were averaged across
two independent runs.

ADNP

ADNP was performed following established protocols’*®, with minor
modifications. Mtb H37Rv whole-cell lysate was oxidized, biotinylated,
coupledto FITC neutravidin beads (Thermo Fisher, F8776), incubated
with antibody and washed as described in the previous section for
ADCP.Human IgGlisotype control antibody was used as negative con-
trol (Immune Technology, IT-001-37G12). Next, fresh blood collected
from healthy donorsinacid citrate dextrose anti-coagulant tubes was
added atal:9ratio to ACK lysis buffer (Quality Biological, 10128-802)
andincubated for 5 min at room temperature. Leukocytes were washed
with PBS and resuspended in R10 medium—RPMI (Sigma), 10% fetal
bovine serum (Sigma), 10 mM HEPES (Corning), 2 mM L-glutamine
(Corning)—ataconcentration of 2.5 x 10° cells per ml. About 5 x 10* leu-
kocytes per well were added to the immune-complexed beads and
incubated for 1 h at 37 °C. The cells were stained with anti-human
CD66b-Pacific Blue (BioLegend) diluted to 1:250, washed with PBS
and then fixed with 4% PFA. Bead uptake was measured by flow cyto-
metry on a BD LSRII (BD Biosciences) and analysed by FlowJo 10.3
(Supplementary Fig. 2b). Phagocytic scores were calculated in the
CD66b positive cell population. Samples were run twice in technical

56,65

duplicate, and results were averaged across two independent runs
using distinct blood donors.

ADCD

ADCD was performed following an established protocol®, with
minor modifications. Mtb H37Rv whole-cell lysate was oxidized,
biotinylated, coupled to red fluorescent neutravidin beads (Thermo
Fisher, F8775), incubated with antibody and washed as described in
the ‘ADCP’ section. Human IgGl isotype control antibody was used
as negative control (Immune Technology, IT-001-37G12). Next,
guinea pig complement (Cedarlane, CL4051) diluted in magnesium-
and calcium-containing veronal buffer (Boston Bioproducts) was
added to the immune-complexed beads and incubated for 20 min
at 37 °C. Beads were then washed in 15 mM EDTA-PBS and stained
with FITC-conjugated anti-guinea pig C3 antibody (MP Biomedicals,
MP0855385) diluted to 1:100. C3 deposition onto beads (FITC MFl of all
beads) was evaluated by flow cytometry on aBD LSRII (BD Biosciences)
and analysed by FlowJo 10.3 (Supplementary Fig. 2c). Samples were
runtwiceintechnical duplicate, and results were averaged across two
independentruns.

ADNKA

ADNKA was performed following an established protocol*®, with
minor modifications. ELISA plates (Thermo Fisher, NUNC MaxiSorp
flat bottom) were coated with 250 ng per well of bovine liver glycogen
(Milipore Sigma, GO885) overnight at 4 °C. The plates were washed with
PBS and blocked with 5% BSA-PBS at room temperature for 2 h. The
plates were washed with PBS, and 40 pul of each monoclonal antibody
at 0.025 pg ml™ (1 pg antibody total) was added and incubated for 2 h
at 37 °C. Human IgGl isotype control antibody was used as negative
control (Immune Technology, IT-001-37G12). One day before adding
antibody, NK cells were isolated from healthy human donors using
the RosetteSep human NK cell enrichment cocktail (Stemcell, 15065)
and incubated overnight at 1.5 x 10° cells per ml in R10 media with
1ng ml™of IL-15 (Stemcell) at 37 °C. After the 2 hincubation on the day
of'the assay, the ELISA assay plates were washed with PBS, and 50,000
NK cells, 2.5 pl PE-CyS5 anti-human CD107a (BD), 10 pl GolgiStop (BD)
and 0.4 pl Brefeldin A (5 mg ml™, Sigma) were added to each well. The
ELISA assay plates were incubated for 5 h at 37 °C. After the incuba-
tion, cells were stained for surface expression with Alexa Fluor 700
anti-human CD3 diluted to 1:40, PE-Cy7 anti-human CD56 diluted to
1:10 and APC-Cy?7 anti-human CD16 diluted to 1:10 (all from BD). The
cells were washed with PBS and then fixed using Perm A and Perm B
(Invitrogen). The Perm B solution contained PE anti-human MIP-1f3
diluted to 1:50 and FITC anti-human IFNy diluted to 1:20 (both from
BD) for intracellular cytokine staining. The cells were washed, and the
fluorescence of each marker was measured on a BD LSR Il flow cyto-
meter (BD Biosciences) and analysed by FlowJo 10.3 (Supplementary
Fig.2d).Samples were run twice in technical duplicate, and results were
averaged across two distinct NK cell donors.

Macrophage restriction assay

Invitromacrophage Mtb survival was measured following established
protocols'*, with slight modifications. CD14 positive cells were iso-
lated from healthy donors using the EasySep CD14 Selection Kit I
(Stemcell). CD14 positive cells were matured for 7 days into human
MDM s in R10 media without phenol in low adherent flasks (Corning)
andthen plated at 50,000 cells per wellinglass-bottom, 96-well plates
(Greiner) 24 hbefore infection. Mtb H37Rv with constitutive mCherry
and anhydrotetracycline inducible green fluorescent protein (GFP)
expression (Mtb-live/dead)* was cultured in log phase and filtered
through a5 pmfilter (Milliplex) before MDM infection at a multiplicity
of infection of 1 overnight at 37 °C. Infected MDMs were washed with
PBS. Then, 200 plof monoclonal antibody at 50 pg ml™in R10 without
phenolwas added, and the mixture was incubated at 37 °C. Human IgG1
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isotype control antibody was used as negative control (Immune Tech-
nology, IT-001-37G12). Three days after infection, anhydrotetracycline
(Sigma) was added to the infected MDMs at 200 ng ml™, which was
thenincubated for 16 hat 37 °C. Cells were then fixed with 4% PFA and
stained with DAPI. Data were analysed using the Columbus Image Data
Storage and Analysis System. Mtb survival was calculated as the ratio
of live to total bacteria within macrophages in each well. Mtb survival
for each condition was normalized by M¢tb survivalin the no-antibody
condition. The assay was performed in technical triplicate andin MDMs
from two donors.

WBA

Whole blood from healthy human donors was collected the day of
the experiment in acid citrate dextrose anti-coagulant tubes. An
auto-luminescent H37Rv Mtb reporter strain (Mtb-276)* was cultured in
log phase, washed and then resuspended in R10 without phenol. Whole
blood was simultaneously infected with Mtb-276 at 1.0 x 10° bacteria per
ml of blood and treated with antibody in a white, flat-bottom 96-well
plate (Greiner)inal:1ratio (150 plblood and 150 pl of diluted antibody).
Thefinal concentration of antibody treatments was 25 pg mlin 300 pl
total. Human IgGlisotype control antibody was used as negative con-
trol (BioXcell, BE0297). The final concentration of rifampin (Sigma)
positive control was 0.25 pg ml™. At each time point—immediately
after infection and every 24 h post infection until 120 h—the samples
ineach well were mixed, and aluminescence reading was taken (Tecan
Spark 10M) to generate Mtb growth curves in the presence of each
treatment. Mtb restriction in whole blood was calculated as the area
under the curve for each condition. Area-under-the-curve values were
computed in GraphPad Prism (version 8.4.0). The assay was performed
intechnical triplicate and in blood from multiple donors.

Blood immune cell depletions

StraightFrom Whole Blood CD66b (Miltenyi, 130-104-913), CD14
(Miltenyi, 130-090-879) or Basic unconjugated (Miltenyi, 130-048-001)
microbeads were first buffer exchanged into2 mM EDTA-PBS. Specifi-
cally, a Whole Blood Column (Miltenyi, 130-093-545) was attached to
the MidiMacs (Miltenyi) and primed with 3 ml of separation buffer
(PBS with 0.5% BSA and 2 mM EDTA). About 2 ml of microbeads was
added to the primed Whole Blood Column, and the flow-through
was discarded. After washing the column three times with 500 pl of
PBS, the microbeads were eluted with a final volume of 1 mlin 2 mM
EDTA-PBS. On the day of the assay, whole blood from healthy human
donors was collected in acid citrate dextrose anti-coagulant tubes.
About 100 pl of microspheres was added per millilitre of blood, and
the solution was incubated for 20 min at 4 °C. During the incubation,
Whole Blood Columns were attached to the MidiMacs and primed with
3 mlof separation buffer followed by 3 ml of R10 media. Following the
incubation, the microsphere-treated blood was added to the column,
and the flow-through was collected and used in the WBA described in
the previous section.

Blood cytokine blockade and complement inhibition

To conduct cytokine blockade experiments, whole blood was col-
lected from healthy human donors on the day of the experiment in
acid citrate dextrose anti-coagulant tubes. Anti-IL-1B (Invivogen, clone
4HS5) or anti-IFNy (BioLegend, clone B27) was then added to the blood
at1pg ml™. Theblood treated with blocking antibodies was thenused
in the WBA as described above. For complement inhibition experi-
ments, whole blood was collected from healthy human donors on the
day of the experiment in acid citrate dextrose anti-coagulant tubes.
Cobra venom factor (Sigma, 233552-M) was added to the blood at a
concentration of 50 pg ml™, and the mixture was incubated at 37 °C
for 1 h to inactivate complement®’. Following complement inhibi-
tion, the cobra venom factor-treated blood was used in the WBA as
described above.

Cytokine Luminex

At the final time point of the WBA (120 h), the assay plates were centri-
fuged at800 gfor5 min; then110 pl of the supernatant was collected from
each well and transferred into a separate 96-well plate which was stored
at-20 °Cuntil further use. Supernatants were thawed and twice filtered
using 0.2 um 96-well filter plates (Millipore Sigma, CLS3508) for removal
from the biosafety level 3 laboratory space. The abundance of select
cytokines was then measured in 50 pl of the supernatants withaHuman
Cytokine Magnetic10-Plex Panel (Thermo Fisher, LHCO001M) according
totheinstructions of the manufacturer. The median fluorescence inten-
sity (MFI) for each analyte was measured using a FlexMap 3D (Luminex).
Samples were measured intechnical triplicateinblood fromtwo donors.

scCRNA-seq

Whole-blood Mtbinfection and the addition of antibody was performed
as described above for the WBA. Blood from three healthy donors
was used. Twenty-four hours following infection and the addition
of antibody, blood from each donor was added at a 1:9 ratio to ACK
lysis buffer (Quality Biological, 10128-802) and incubated for 10 min
at room temperature. Cells were centrifuged at 400 g for 5 min, and
the supernatant was discarded. About 10 ml of ACK lysis buffer was
addedtothecell pellet to repeat the lysis procedure. Cells were centri-
fuged at400 gfor 5 min, and the supernatant was discarded. Samples
were washed twice with PBS buffer and counted before multiplexing
using lipid-tagged indices (MULTI)-seq barcoding following an estab-
lished protocol®. In brief, samples were barcoded with 2.5 uM of the
lipid-modified oligonucleotide (LMO) anchor and barcode for 5 min
onice in PBS before adding 2.5 pM of the LMO co-anchor and incu-
bating for an additional 5 min. Samples were quenched with 1% BSA
in PBS and washed once. Samples were pooled, and 0.5 U pl”! RNase
inhibitor (Roche) was added. Pooled samples were thenloaded into two
lanes using the 10X Genomics NextGEM Single Cell 3’ kit v3.1 per the
manufacturer’s protocol. Complementary DNA wasinactivated at 95 °C
for 15 min before biosafety level 3 removal for library construction.
Libraries were sequenced onaNextSeq500 (Illumina). FASTQfiles were
processed using CellRanger v6.1.2 to generate gene expression count
matricesand deMULTIplex to generate LMO barcode count matrices.

scRNA-seq data analysis

LMO barcode and gene expression count matrices were analysed
using R (v4.0.3) and Seurat (v4.0.0). Cells were identified using emp-
tyDrops (DropletUtils) and were demuxed using HTODemux (Seurat)
and hashedDrops (DropletUtils). Each lane was subject to demulti-
plexing and quality control separately and then merged for down-
stream analyses. Cells withless than 300 unique genes detected were
excluded. Additional cells were excluded based on the assessment of
cluster-specific technical metrics (percentage of mitochondrial reads
per cell and number of unique molecular identifiers per cell). Counts
were normalized using the default parameters from NormalizeData
(Seurat), forexample, scaling by 10,000 and log normalization. Three
thousand variable features were used for principal component analysis
(PCA). Smart local moving clustering was performed using FindClus-
ters (Seurat) on the shared nearest neighbour graph generated from
FindNeighbors (Seurat) using 30 principal components and k = 20.
Cell-type annotation was based on expert annotation and predicted
cell type labels from the peripheral blood mononuclear cell dataset
in Azimuth using FindTransferAnchors and TransferData (Seurat).
Marker gene statistics were calculated using wilcoxauc (presto). Genes
consistently increased following 24¢c5 SEHFST LS antibody treatment
were defined as those: (1) with aMann-Whitney P< 0.1 and a log, fold
changegreater than 0.25 compared with either the 24c51gGlorno Ab
condition, (2) detected in a minimum fraction of 0.1 cells in either of
the two conditions and (3) with alog, fold change greater than 0 com-
pared withboth the 24c51gGland no Ab conditions. Genes consistently
decreased following 24¢5 SEHFST LS antibody treatment were defined
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as those: (1) with a Mann-Whitney P < 0.1 and a log, fold change less
than -0.25 compared with either the 24c5 IgGl1 or no Ab conditions,
(2) detected in a minimum fraction of 0.1 cells in either of the two
conditions and (3) alog, fold change less than O compared with both
the24c5IgGland no Ab conditions.

GO analysis

GO analysis was performed using the Enrichr web-based platform®.
Input genes for the 24c5 SEHFST LS positive enrichment analysis
included genes consistently increased following 24¢5 SEHFST LS
antibody treatment compared with both the 24¢c5IgGl1 and the no Ab
conditions (Fig. 6¢, red quadrant). Input genes for the 24¢5SEHFST LS
negative enrichment analysis included genes consistently decreased
following 24¢c5 SEHFST LS antibody treatment compared with both
the 24c51gGland the no Ab conditions (Fig. 6¢, blue quadrant). Gene
Ontology Biological Process was the gene set source. Top 10 gene sets
ranked by Benjamini-Hochberg adjusted Pvalue are shown’®. Gene sets
with anadjusted P < 0.05 were considered significant.

Multivariate analyses

Complete-linkage hierarchical clustering was performed on the z-scored
antibody functional data using the SciPy library in Python (version
3.8.8). Polar plots were generated on the max-normalized antibody
functional data using the ggplot2 (version 3.3.5) package in R (version
4.1.1). Clustered heat maps of the z-scored antibody functional datawere
generated using the gplots (version 3.1.1) package in R (version 4.1.1).
PCAonthez-scored cytokine datawas performed using the factoextra
(version1.0.7) and ggplot2 (version 3.3.5) packages in R (version 4.1.1).
Spearman correlations analyses were performed using the corrplot (ver-
sion 0.92) packagein R (version 4.1.1) and visualized using the corrplot
(version 0.92) and ggpubr (version 0.4.0) packages in R (version 4.1.1).

Statistics

For the macrophage restriction assay, WBA and cytokine Luminex assay,
one-way analysis of variance (ANOVA) tests were implemented with
Dunnett’s correction comparing each antibody with the isotype IgG1
controlantibody. For the blood immune cell depletion assays and com-
plementinhibition assay, two-tailed, unpaired t-tests were performed,
comparingrestrictionin theimmune cell depleted blood condition with
the whole-blood condition for each treatment. These statistics were
performed in GraphPad Prism (version 8.4.0). Spearman correlations
between antibody functional assays were computedinR (version4.1.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

RNA-seq data have been deposited in the Gene Expression Omnibus
under accession number GSE271079. Source data are provided with
this paper. All other data and metadata associated with this study
are available in the main text, Supplementary Information and/or at
https://fairdomhub.org/studies/1089.

Code availability

Scripts to perform the computational analyses presented in the
paper are available via GitHub at https://github.com/eirvine94/
tb_fc_engineering_manuscript. The code is also available via Zenodo
at https://doi.org/10.5281/zen0do.11282075 (ref. 71).
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Functional profiling of Fc-engineered a-glucan
antibodies. a, Glucan (bovine liver glycogen) antigen-binding ELISA of the
a-glucan-specific Fc-variant panel. Area under the 5-point dilution curve is
plotted. ELISA was run in technical duplicate. b, Heatmap of individual Fc
glycanstructures for each 24¢5 Fc variant. ¢, Clustered heatmap indicating

the performance of each a-glucan Fc-variant in the functional profiling assays.
Datawere z-scored prior to heatmap visualization. d, Spearman correlations of

paired normal and half-life extended (LS) variantsin the 24c5 Fc-variant panel.
Spearman correlations were two-sided. Unadjusted p-values are indicated.

e, Spearman correlation of functional profiling between an Fc-variant panel
previously published Ebola-specific monoclonal antibody (VIC16) and the 24¢5
a-glucan-specific Fc-variant panel. Spearman correlations were two-sided.
Unadjusted p-values are indicated.
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Extended Data Fig. 2| Macrophage Mtb restriction assay of Fc-engineered a-glucan antibodies. Y-axis shows live (GFP) / total (mCherry) Mtb burden in human
monocyte-derived macrophages normalized by the no antibody condition for the respective donor. Each point is the triplicate average from 1 human macrophage
donor.
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Extended Data Fig. 3| Cytokine Luminex of whole-blood restriction assay.
Cytokine Luminex using the whole-blood assay supernatant collected at
120 hours. a,d, Luminex MFl across selected cytokinesina, Donor A,andd,
Donor B. One-way ANOVA with Dunnett’s correction comparing each antibody

withtheisotype IgGl control antibody. Green (Restrictive); grey (Non-restrictive).

Adjusted p-values < 0.05 are shown. Error bars indicate mean with standard
deviation. Runin technical triplicate. b, Clustered heatmap indicating the
cytokine profile elicited by each a-glucan Fc-variant in Donor B. Data were
z-scored prior to heatmap visualization. ¢, Principal component analysis of
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cytokine Luminex data from Donor B. Left, score plot of the first two principal
components. Right, loading plot of the first two principal components.

e, Cytokine blockade experiments. 24c5 variants were tested for their ability
promote Mtb restriction in whole-blood (grey), whole-blood with an IL-13
blocking antibody (pink), or whole-blood with an IFNy blocking antibody (blue).
One-way ANOVA with Dunnett’s correction comparing restrictionin the IL-1p and
IFNy blockade conditions, with the whole-blood condition for each treatment.
Error bars indicate mean with standard deviation of 3 biological replicates from
distinct donors.
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Extended Data Fig. 4 | Whole-blood M¢b restriction assay with monocyte

depletions and complementinhibition. a, Monocyte depletions. Each

antibody or antibiotic treatment was tested in whole-blood (filled in bars)

and monocyte depleted blood (white bars). Grey dotted line indicates the no

antibody condition. b, Complement inhibition using cobra venom factor (CVF).
Each antibody or antibiotic treatment was tested in whole-blood (filled in bars)

and CVF-treated blood (white bars). Grey dotted line indicates the no antibody
condition. Black dotted line indicates the CVF-treated no antibody condition.

a,b, X-axis shows selected a-glucan Fc-variants (25 pg/mL), anIgGlisotype
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control antibody as a negative control (25 pg/mL), and the antibiotic rifampin as
apositive control (0.25 pg/mL). Y-axis is the area under the Mtb-276 growth curve
value normalized by the no antibody condition from the respective donor. Each
point represents a triplicate average from one donor. Two-tailed, unpaired t test,
comparingrestriction in the monocyte depleted or CVF-treated blood condition
with the whole-blood condition. Unadjusted p-values < 0.05 are indicated are
comparisons labeled as “ns” (not significant) have unadjusted p-values > 0.05.
Error bars show mean with standard deviation.
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Extended Data Fig. 5| CD14 monocyte differential expression analysis.
scRNAseq analysis of CD14 monocytes. a, Genes consistently increased in the
24c5SEHFSTLS condition (red quadrant): (i) Mann-Whitney p-value < 0.1and a
log2 fold change > 0.25 compared to either the 24c51gGl1 or no Ab condition,
(ii) detected in aminimum fraction of 0.1 cells in either of the two conditions, and
(i) alog2 fold change > 0 compared to both the 24¢c51gGland no Ab conditions.
Genes consistently decreased in the 24¢5 SEHFST LS condition (blue quadrant):
(i) Mann-Whitney p-value < 0.1and alog2 fold change < -0.25 compared to either
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the 24c51gGl or no Ab conditions, (ii) detected in a minimum fraction of 0.1 cells
ineither of the two conditions, and (iii) alog2 fold change < O compared to both
the 24c51gGl and no Ab conditions. Mann-Whitney tests were two-sided. b, Gene
list enrichment analysis using GO Biological Process gene sets. Left, GO terms
enriched in red quadrant genes from panel C. Right, GO terms enriched in blue
quadrant genes from panel C. Vertical dashed line indicates two-sided Fisher’s
exact test adjusted p-value of 0.05. Numbers on each circle show the odds ratio.
Top ten GO terms by Benjamini-Hochberg adjusted p-value shown.
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Replication replicates were minimally different. Mtb infection assays were performed in triplicate using cells from at least 2 healthy human donors. Single
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Methodology
Sample preparation Fresh peripheral blood was collected from healthy donors in acid citrate dextrose (ACD) anti-coagulant tubes.
Instrument BD LSRII
Software FACSDiva (version 9.0) and FlowJo (version 10.3)
Cell population abundance Cell sorting not performed.
Gating strategy The flow cytometry gating strategy employed in this study began with initial gating on forward scatter (FSC) and side scatter

(SSC) to identify single cells and exclude doublets. Specifically, an FSC-A versus FSC-H gate was used to select single cells,
followed by an FSC-A versus SSC-A gate to exclude debris and dead cells, thereby focusing on the main population of viable
cells. Negative controls were used to establish baseline autofluorescence and non-specific binding, setting thresholds for
positive staining. Experimental samples were then gated using these thresholds to accurately define positive and negative
populations. Marker-specific gating was applied to identify relevant cell populations. For instance, neutrophils were identified
by gating on CD66b (PacBlue-A) following the selection of single, viable cells. Similarly, NK cells were gated using CD56 (PE-
Cy7-A) and CD16 (APC-Cy7-A). Fluorescence Minus One (FMO) controls were utilized to set precise gates for positive and
negative populations, accounting for background fluorescence. Sequential gating was then performed to further refine
specific populations, such as CD107a, IFNy, and MIP1b for functional assays. All gates were consistently applied across
samples using FlowJo software to ensure reproducibility and accuracy. This comprehensive gating strategy enabled precise
identification and quantification of cell populations, minimizing background noise and non-specific signals. See Extended Data
Figure 7 for exact gating strategy.

|Z| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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