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Background: Previous studies indicated that exposure to ambient fine particulate 
matter (PM2.5) could increase the risk of metabolic syndrome (MetS). However, 
the specific impact of PM2.5 chemical components remains uncertain.

Methods: A national cross-sectional study of 12,846 Chinese middle-aged 
and older adults was conducted. Satellite-based spatiotemporal models were 
employed to determine the 3-year average PM2.5 components exposure, 
including sulfates (SO4

2−), nitrates (NO3
−), ammonia (NH4

+), black carbon (BC), 
and organic matter (OM). Generalized linear models were used to investigate the 
associations of PM2.5 components with MetS and the components of MetS, and 
restricted cubic splines curves were used to establish the exposure-response 
relationships between PM2.5 components with MetS, as well as the components 
of MetS.

Results: MetS risk increased by 35.1, 33.5, 33.6, 31.2, 32.4, and 31.4% for every 
inter-quartile range rise in PM2.5, SO4

2−, NO3
−, NH4

+, OM and BC, respectively. For 
MetS components, PM2.5 chemical components were associated with evaluated 
risks of central obesity, high blood pressure (high-BP), high fasting glucose 
(high-FBG), and low high-density lipoprotein cholesterol (low-HDL).

Conclusion: This study indicated that exposure to PM2.5 components is related 
to increased risk of MetS and its components, including central obesity, high-BP, 
high-FBG, and low-HDL. Moreover, we found that the adverse effect of PM2.5 
chemical components on MetS was more sensitive to people who were single, 
divorced, or widowed than married people.
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1 Introduction

Metabolic syndrome (MetS) is characterized by a group of 
metabolic-related disorders, which encompass central obesity, elevated 
blood pressure (high-BP), increased fasting glucose levels (high-FBG), 
elevated triglyceride levels (high-TG), and reduced high-density 
lipoprotein levels (low-HDL) (1, 2). Recent studies have shown that 
about 20 to 30% of adults worldwide have MetS and the number of 
MetS patients has continued to rise (3, 4). Compared with non-MetS 
individuals, the prevalence of cardiovascular diseases (5, 6), respiratory 
diseases (7), diabetes (8, 9), and cancers are significantly elevated 
among MetS patients (10, 11). Genetic factors, unhealthy lifestyles, 
and inadequate physical activity have been reported as potential risk 
factors for MetS (12, 13). However, these characteristics may not fully 
explain the high MetS prevalence. The negative effects of a hazardous 
environment, especially air pollution, cannot be ignored (9).

Accumulating epidemiological studies indicated that exposure to 
air pollution was linked to an increased risk of MetS (4, 5, 8, 10, 12). 
Among these studies, the impact of fine particulate matter (PM2.5) has 
garnered significant attention from epidemiologists. However, 
consistent conclusions have not been reached (9). For instance, a 
cross-sectional study revealed that PM2.5 exposure was linked to an 
increased risk of MetS (12). However, a recent meta-analysis reported 
no statistically significant relationship of PM2.5 with the risk of MetS 
(9). In addition to inconsistent results, the existing studies focused 
solely on examining the relationship between PM2.5 mass 
concentration and MetS risk, without assessing PM2.5 chemical 
components, such as sulfates (SO4

2−), nitrates (NO3
−), ammonia 

(NH4
+), organic matter (OM) and black carbon (BC). Only one cross-

sectional study has investigated the impact of PM2.5 chemical 
components on MetS risk (14). This study indicated that exposure to 
SO4

2− was linked to a higher prevalence of MetS, but no significant 
relationship was discovered between NO3

−, NH4
+, and OM (14). 

However, only a small number of participants (n = 2045) were 
included, and the study was conducted in the Beijing, Tianjin, and 
Hebei regions. Therefore, further research in larger geographical areas 
and with more participants to identify the key PM2.5 components that 
cause MetS.

In addition to the limited studies of PM2.5 components and MetS, 
it is important to investigate the connections between various MetS 
components and PM2.5 components to clarify the adverse impacts of 
PM2.5 on the metabolic system. To our knowledge, only 3 previous 
studies investigated the relationships between PM2.5 components and 
different components of MetS, however, a consistent conclusion has 
still not been obtained (5, 12, 15). For instance, a cross-sectional study 
involving 6,628 Chinese adults, found positive correlations between 
PM2.5 exposure and increased risks of high TG and high FBG. However, 
no significant results were observed for central obesity, low HDL, and 
high BP (12). A cross-sectional investigation of adolescents and 
children observed positive links between PM2.5 and elevated risks of 
central obesity. However, they found no significant results for high-
FBG, high-BP, low-HDL, and high-TG (15). Based on the limited 
studies and inconsistent results, further studies are warranted to 
explore which components of MetS are linked to long-term PM2.5 
components exposure.

In this nationwide study in China, our objective was to examine 
the relationships of exposure to PM2.5 components (SO4

2−, NO3
−, 

NH4
+, BC, and OM) with MetS and the components of MetS.

2 Methods

2.1 Study population

The participants of this study were from a national cohort study 
of middle-aged and older Chinese individuals called the China 
Health and Retirement Longitudinal Study (CHARLS) (16). In brief, 
approximately 21,000 adults who were at least 45 years old were 
chosen from 150 cities, in 28 provinces in China. Five waves of the 
CHARLS were completed in 2011, 2013, 2015, 2018, and 2020. 
Diagnostic indicators of MetS were only measured in the first wave 
(2011) and third wave (2015), including waist circumference (WC), 
BP (systolic BP, SBP; and diastolic BP, DBP), blood lipid (TG, HDL) 
and FBG. Similar to a previous study of CHARLS (17), we found 
that only one-fourth of participants could be  included in a 
longitudinal study after matching the data of those two surveys. 
Therefore, we  included participants from CHARLS 2015  in the 
study. A total of 16,406 adults had a physical examination, 3,560 
adults were excluded for the reasons of missing WC, BP, TG, HDL, 
and FBG data. Finally, 12,846 participants were included 
(Supplementary Figure S1).

2.2 Diagnosis of MetS

WC, BP, FBG, TG, and HDL of individuals were examined in 
physical examination. Specifically, a soft measuring tape was wrapped 
around each participant’s waist while they were standing to determine 
their WC. An electronic blood pressure monitor was worn on the left 
arm to measure SBP and DBP. The average of the three readings was 
computed. Fasting venous blood samples were obtained from every 
individual to determine FBG, TG, and HDL levels.

The Joint Interim Societies’ criteria were used in this study’s 
diagnosis of MetS (2). In brief, patients with MetS were defined as 
those who met two or more of the following criteria in addition to 
having central obesity (WC ≥ 90 cm for men and 80 cm for women): 
(1) high BP (SBP ≥ 130 mmHg, DBP ≥ 85 mmHg, clinically 
confirmed hypertension or taking anti-hypertension medicine); (2) 
high FBG (FBG ≥ 100 mg/dL, clinically confirmed diabetes history, 
taking anti-diabetes medicine or insulin injections); (3) elevated TG 
(>150 mg/dL); (4) low-HDL (< 40 mg/dL for men; <50 mg/dL 
for women).

2.3 Assessments of PM2.5 chemical 
components

Full-coverage near-real-time PM2.5 and its 5 major chemical 
components (SO4

2−, NO3
−, NH4

+, OM, and BC) were assessed at 10 km 
spatial resolution. Briefly, multi-source fusion PM2.5 data, ground 
observations, and machine learning algorithms were used to predict 
daily PM2.5 concentrations and components. Previous research 
provided a more complete description of the PM2.5 measurement 
methodologies and their chemical components (18–20). The three-
year average concentration of PM2.5 concentrations and components 
for individuals was used to determine long-term exposure, which was 
in line with most research on the l long-term effects of air pollutants 
on health (5, 21, 22).
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2.4 Covariates

Directed acyclic graph analysis and literature review were 
conducted to identify the potential confounders 
(Supplementary Figure S2). These covariates included: (1) 
meteorological factors: relative humidity, and air temperature; (2) 
demographic characteristics: age, and sex; (3) socioeconomic 
characteristics: residence, marital status, and educational attainment; 
(4) healthy lifestyles and behaviors: smoking, drinking, physical 
activity, and cooking fuel use. Detailed description of covariates was 
clarified in our previous studies (4, 21, 23, 24).

2.5 Statistical analysis

A four-stage investigation was utilized to investigate the 
relationships between PM2.5 chemical components and MetS. First, 
generalized linear models (GLMs) were used to investigate the links 
between PM2.5 components and the risk of MetS. Second, we applied 
a restricted cubic spline to investigate the E-R relationships of PM2.5 
components with MetS risk. Third, we used GLMs and RCS analysis 
to investigate the association of PM2.5 components with the 
components of MetS and establish the E-R relationships. Finally, 
subgroup analysis was carried out to determine whether the impact of 

air pollution on MetS would be modified by participant characteristics. 
In this stage, we  categorized participants into two categories 
(“<65 years,” and “≥65 years”) using the cut-off of older adult adults. 
Physical activity was divided into two categories: “sufficient physical 
activity” and “insufficient physical activity,” according to the World 
Health Organization’s recommendations (8).

Variety sensitivity assessments were also performed. Firstly, 
we used two-year mean levels of PM2.5 components to re-examine the 
relationships of PM2.5 components with MetS and its components (5). 
Secondly, log-binomial Poisson regressions were conducted to assess 
the robustness of the positive links of PM2.5 components with MetS and 
its components (4, 25). Thirdly, individuals who had changed their 
residential address after the CHARLS 2013 and determine whether 
those results were altered by address change (21). Finally, taking 
medications for hypertension, and diabetes could potentially introduce 
confounding effects on the study results, we excluded those taking 
medication for hypertension to re-examine the association between 
PM2.5 components and MetS and high BP. Similarly, individuals taking 
antidiabetic medication were excluded to re-evaluate the association 
between PM2.5 components and MetS and high FBG.

Statistical analyses were carried out using R 4.3.1. The “mice” R 
package was used to impute the missing covariate data (4), and a 
two-tailed p-value of less than 0.05 was utilized to determine 
statistical significance.

FIGURE 1

The geographical distribution of the participants in the 28 Chinese provinces.
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3 Results

3.1 Descriptive statistics

The study included 12,846 adult participants who were selected 
from 125 cities located in 28 different Chinese provinces. Figure 1 
shows the geographical distribution of participants in 28 provinces 
and Table  1 presents the basic characteristics. There were 4,357 
individuals (33.9%) were diagnosed with MetS. For the indicators of 
MetS, the mean WC, SBP, DBP, FBG, TG, and HDL were 
85.34 ± 13.11 cm, 128.31 ± 19.69 mmHg, 75.46 ± 11.20 mmHg, 
103.36 ± 35.19 mg/dL, 142.59 ± 90.92 mg/dL, and 51.16 ± 11.46 mg/dL, 
respectively.

The descriptive characteristics of PM2.5 chemical components, 
temperature, and relative humidity are shown in 

Supplementary Table S1. The three-year mean levels of PM2.5, SO4
2−, 

NO3
−, NH4

+, OM and BC exposure were 52.84 ± 22.70 μg/m3, 
10.01 ± 3.94 μg/m3, 11.49 ± 5.85 μg/m3, 8.01 ± 3.59 μg/m3, 
12.78 ± 4.85 μg/m3, 2.55 ± 0.82 μg/m3, respectively. Pearson correlation 
analysis showed high collinearity of PM2.5 chemical components, with 
the coefficients of correlation varying from 0.901 to 0.995 
(Supplementary Table S2).

3.2 Associations between PM2.5 
components with MetS risk

In the crude and adjusted models, positive relationships between 
MetS risk and PM2.5, SO4

2−, NO3
−, NH4

+, OM, and BC were observed 
(Figure 2). In the adjusted model 3, the OR values of MetS were 1.351 

TABLE 1 Basic characteristics of participants.

Characteristicsa Total (n =  12,846) Non-MetS 
(n =  8,489)

MetS (n =  4,357) P-valuec

Age, years 58.73 ± 13.09 58.65 ± 13.06 58.90 ± 13.14 0.289

Sex <0.001***

  Male 5,907 (46.0) 4,537 (52.4) 1,370 (31.4)

  Female 6,939 (54.0) 3,952 (47.6) 2,987 (68.6)

Residence <0.001***

  Rural 7,984 (62.2) 5,615 (66.1) 2,369 (54.4)

  Urban 4,862 (37.8) 2,874 (33.9) 1988 (45.6)

Marital status <0.001***

  Married 11,183 (87.1) 7,340 (87.5) 3,753 (86.2)

  Single, divorced, and widowed 1,663 (12.9) 1,059 (12.5) 604 (13.9)

Education statusb

  Elementary school or blow 7,244 (56.4) 4,757 (56.0) 2,487 (57.1) 0.672

  Middle school or above 3,203 (24.9) 2,117 (24.9) 1,086 (24.9)

Smoking status <0.001***

  Non-smoker 7,408 (57.7) 4,416 (52.0) 2,992 (68.7)

  Smoker 5,438 (42.3) 4,073 (48.0) 1,365 (31.3)

Drinking statusb

  Non-drinker 3,330 (25.9) 2,471 (29.1) 859 (19.7) <0.001***

  Drinker 9,506 (74.9) 6,011 (70.8) 3,495 (80.2)

Cooking fuel useb <0.001***

  Clean fuel 4,549 (35.4) 2,876 (33.9) 1,673 (38.4)

  Non-clean fuel 3,296 (25.7) 2,331 (27.5) 965 (22.1)

Physical activityb 125.77 ± 108.88 8,117 ± 6,665 6,434 ± 6,028 <0.001***

Waist circumference (WC), cm 85.34 ± 13.11 80.75 ± 12.88 94.22 ± 7.99

Triglycerides (TG), mg/dL 142.59 ± 90.92 113.25 ± 65.24 199.75 ± 105.52 <0.001***

High-density lipoprotein (HDL), mg/dL 51.16 ± 11.46 53.82 ± 11.65 45.96 ± 9.07 <0.001***

Fasting blood glucose (FBG), mg/dL 103.36 ± 35.19 96.60 ± 26.67 116.52 ± 44.76 <0.001***

Systolic blood pressure (SBP), mmHg 128.31 ± 19.69 124.82 ± 19.12 135.12 ± 18.99 <0.001***

Diastolic blood pressure (DBP), mmHg 75.46 ± 11.20 73.72 ± 10.85 78.84 ± 11.11 <0.001***

aData was shown as mean ± standard deviation (SD) for continuous variables, and count (percentage, %) for categorical variables. bMissing values existed. Specifically, education status had 
18.7% (2399) missing values, drinking status had 0.08% (10) missing values, cooking fuel use had 38.9% (5001) missing values and physical activity had 36.1% (4645) missing values. cP-value 
for significance test between MetS and non-MetS groups. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001.

https://doi.org/10.3389/fpubh.2024.1462548
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2024.1462548

Frontiers in Public Health 05 frontiersin.org

(95%CI, 1.261, 1.445), 1.335 (95%CI, 1.242, 1.434), 1.336 (95%CI, 
1.245, 1.434), 1.312 (95%CI,1.222, 1.409), 1.324 (95%CI,1.238, 1.415), 
and 1.314 (95%CI, 1.229, 1.406) for every IQR increase in PM2.5 
(33.35 μg/m3), SO4

2− (6.30 μg/m3), NO3
− (9.01 μg/m3), NH4

+ (5.60 μg/
m3), OM (7.21 μg/m3), and BC (1.25 μg/m3), respectively. Figure 3 
presents the E-R relationships of PM2.5 components with MetS risk. 
We discovered that, with increases in PM2.5, SO4

2−, NO3
−, NH4

+, OM, 
and BC, the OR of MetS increased progressively.

3.3 Associations between PM2.5 
components with the components of MetS

Figure 4 and Supplementary Table S3 present the GLM analysis of 
the relationships of PM2.5 components with the risks of MetS 
components. We  discovered that exposure to the chemical 
components of PM2.5 was linked to a higher risk of central adiposity, 

high blood pressure, elevated FBG, and low HDL. As for high TG risk, 
NO3

− and NH4
+ showed negative relationships, whereas PM2.5, SO4

2−, 
OM, and BC showed no significant associations.

The E-R relationships between PM2.5 chemical components and 
the components of MetS are displayed in Figure 5. Except for high TG, 
we found that the risks for central obesity, high BP, high FBG, and low 
HDL increased gradually with rising levels of PM2.5, SO4

2−, NO3
−, 

NH4
+, OM, and BC (p-value < 0.05).

3.4 Subgroup analysis

The findings of the subgroup analysis by participant character are 
displayed in Table 2. We discovered that older adult adults (≥65 years), 
females, participants with higher education levels, non-smokers, 
drinkers, and solid fuel users were more susceptible to PM2.5 
components, even if the P-interaction showed no statistical 

FIGURE 2

Associations of PM2.5 and its compositions with the prevalence of metabolic syndrome (MetS). Crude model, without adjustment; Adjusted model 1, 
adjusted for temperate and relative humidity; Adjusted model 2, adjusted for temperate, relative humidity, age, sex, residence, marital status, education 
status; Adjusted Model 3, adjusted for temperate, relative humidity, age, sex, residence, marital status, education status, smoking status, drinking status, 
physical activity and cooking fuel use. *p-value  <  0.05, **p-value  <  0.01, ***p-value  <  0.001.
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significance. Moreover, people who were single, divorced, or widowed 
were more vulnerable to PM2.5 components than married people, 
according to subgroup analysis by marital status (P-interaction < 0.05).

3.5 Sensitivity analysis

The sensitivity analysis results are shown in 
Supplementary Tables S4–S8. For the relationships of PM2.5 
components with MetS risk, all sensitivity analyses showed positive 
and significant results for PM2.5 concentration and components, which 
were all consistent with the main effects models. As for the 
components of MetS, consistent results and positive associations were 
also observed in all sensitivity analyses. Except for the relationships of 
SO4

2− with high TG after excluding individuals who had altered their 
residential address, insignificant associations were shown for PM2.5, 
SO4

2−, OM, BC, and negative associations were found for NO3
−, NH4

+ 
in all sensitivity analyses, which were consistent with the main effects 
models. The sensitivity analysis excluding users of anti-hypertensive 
or anti-diabetic medication yielded consistent and robust results.

4 Discussion

This nationwide cross-sectional investigation in China discovered 
that exposure to PM2.5 chemical components (SO4

2−, NO3
−, NH4

+, OM, 
and BC) was significantly linked to an elevated risk of MetS and its 
components, except for high TG. To our knowledge, the current study 
may be the first nationwide study examining the long-term impact of 
PM2.5 components on MetS and its components. Furthermore, 
we discovered that single, divorced, or widowed persons were more 
vulnerable to the harmful effects of PM2.5 components exposure on 
MetS than those married adults.

Our research revealed a positive association between PM2.5 and 
MetS risk. Previous studies also have reported similar findings (5, 12, 
14, 15, 22, 26, 27). For instance, a meta-analysis revealed that for every 
5 μg/m3 increase in PM2.5, the risk of MetS increased by 14% 
(RR = 1.14, 95%CI: 1.03, 1.25) (10). According to the KORA F4/FF4 
cohort study, there was a 14% (OR = 1.14, 95%CI: 1.02, 1.28) increase 
in MetS risk for every 1.4 μg/m3 rise in PM2.5 (27). The China Multi-
Ethnic Cohort research showed that with every 29.55 μg/m3 increase 
in PM2.5, the OR value of MetS was 1.38 (95%CI, 1.23, 1.55) (22). Our 
research’s effect estimations were comparable to those of Feng et al.’s 
(22) study but lower than those of Voss et al.’ s study and Ning et al.’s 
study, which might be  ascribed to differences in study subjects, 
chemical components of PM2.5, study areas, and sample size (5).

As a mixture of primary and secondary pollutants, the harmful 
impacts of PM2.5 components also should be  noticed. Our study 
indicated that exposure to SO4

2−, NO3
−, NH4

+, OM, and BC were 
related to elevated MetS risk. Several investigations examined the 
relationship of PM2.5 components with MetS risk (14, 28), and most 
of the findings supported the findings of this investigation. A cross-
sectional study involving 10,066 Chinese adolescents indicated that 
the OR values of MetS were1.14 (95%CI: 1.04, 1.24), 1.09 (95%CI: 
1.04, 1.13), 1.07 (95%CI: 1.04, 1.11) and 1.24 (95%CI, 1.14, 1.35), for 
every 1 μg/m3 rise in SO4

2−, NO3
−, OM, BC, respectively. The SCOPA-

China Cohort study found that each 3.76 μg/m3 rise in SO4
2− was 

linked with a 13.3% (OR = 1.133, 95%CI: 1.053, 1.220) rise in MetS 
risk. However, no significant results were found for NO3

−, NH4
+. The 

in-significant results might be explained by the limited sample size 
(n = 2045) and region (Beijing-Tianjin-Hebei region). Compared 
with Yi et al.’s study, our study provided new evidence that exposure 
to OM and BC would increase MetS risk. In addition to the few 
investigations on PM2.5 components and MetS, several published 
research have found that exposure to PM2.5 components was related 
to an elevated risk of MetS-related disorders such as hypertension 

FIGURE 3

Exposure-response relationship between long-term exposure to PM2.5 and its chemical components with metabolic syndrome (MetS) risk.
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(29), and diabetes (30, 31), which could also support our findings. 
Overall, the positive relationships between MetS risk and PM2.5 
chemical components were validated by this nationwide cross-
sectional investigation.

This study showed positive links between the chemical 
components of PM2.5 and the risks of central obesity, high BP, high 
FBG, and low HDL. A Chinese cross-sectional study of adolescents 
found similar positive relationships (28). They found that exposure to 
SO4

2−, NO3
−, BC, and OM were related to elevated central obesity risk, 

and exposure to NO3
−, OM, and BC were linked with elevated high 

BP risk (28). Several studies focused on a specific component of MetS 
could also support our findings (32, 33). For example, a Chinese cross-
sectional study reported the positive relationships of SO4

2−, NO3
−, 

NH4
+, OM, BC with FBG levels, NO3

− and BC with SBP levels, and 
NO3

−, NH4
+, OM with DBP levels (32). However, no significant 

relationships between SO4
2−, OM, and BC and high TG risk were 

found in this investigation, which could be attributed to the various 
health of PM2.5 chemical components, sample size, and techniques of 
air pollutants measurement.

In subgroup analysis, we found that marital status could modify 
the impact of PM2.5 chemical components on MetS risk. When 

comparing the OR values of MetS in different marital status groups, 
we found that people who were single, divorced, or widowed had a 
higher risk of MetS than married individuals, with significant 
P-interaction values for PM2.5, SO4

2−, NO3
−, NH4

+, OM, and BC. The 
modification effect of marital status could be  explained by lower 
socioeconomic status among single, divorced, or divorced adults than 
that of married adults (34). Firstly, individuals who were single, 
divorced, or divorced might have a significantly increased chance of 
exposure to severe PM2.5 pollution (35). Secondly, individuals who 
were single, divorced, or divorced may tend to have less access to 
social and healthcare support, resulting in poorer health outcomes 
and less engagement in measures to reduce exposure to air pollution 
(36–39).

Although the biological mechanisms of PM2.5 components on 
MetS were still unknown (10), several possible biological mechanisms 
focusing on PM2.5 mass have been proposed. Firstly, PM2.5 can get into 
the circulatory systems through the respiratory tract, causing oxidative 
stress and systematic inflammation and, leading to body weight 
increase (40), blood pressure rises (41), glucose metabolism disorder 
(42), and lipid metabolism disorders (4, 28, 43, 44). Secondly, PM2.5 
could lead to autonomic nervous system dysfunction by activating 

FIGURE 4

Associations between PM2.5 and its chemical components with the components of MetS. Adjusted for temperate, relative humidity, age, sex, residence, 
marital status, education status, smoking status, drinking status, physical activity and cooking fuel use.
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pulmonary autonomic reflections (45, 46), causing elevated blood 
pressure (43), insulin resistance (47), and lipid metabolism disorders 
(48). Thirdly, epigenetic changes, such as aberrant methylation of 
DNA, have been recognized as critical biological mechanisms of 
exposure to PM2.5-induced metabolism (49). Additionally, PM2.5 may 
cause renin-angiotensin-aldosterone pathway dysfunction (4), leading 
to structural and functional kidney changes (50) and resulting in 
higher BP and elevated hypertension risks (51).

Some limitations need to be recognized. Firstly, due to the cross-
sectional design of this study, the cause-and-effect cannot be concluded. 
Longitudinal studies should be conducted to strengthen our findings. 
Secondly, since the high co-linearity between PM2.5 chemical 
components was observed, a multi-pollutants model could not 
be performed. Thirdly, the collection of hypertension, diabetes, and 
most covariate data relied on self-report questionnaires, which 
introduces the possibility of reporting bias and recall bias. Fourthly, 
although missing values for covariates such as education status, 
cooking fuel use, and physical activity were imputed using the Monte 
Carlo method in this study, it should be acknowledged that there may 
still be some degree of error concerning the actual values. Fifthly, some 
participants are currently taking medications for hypertension, 
diabetes, and lipid-lowering, which could potentially introduce 
confounding effects on the study results. However, the sensitivity 
analysis excluding users of anti-hypertensive or anti-diabetic 
medication yielded consistent and robust results. The use of lipid-
lowering medications was not investigated in CHARLS. Confounding 
factors related to the use of these medications should be considered in 
future studies. Finally, it should be noted that due to the lack of data on 

dietary factors and other lifestyle variables in the CHARLS survey, 
potential confounders may still exist. However, meteorological factors, 
demographic characteristics, socioeconomic characteristics, health 
lifestyles, and behaviors have been adjusted in our study, and consistent 
outcomes from crude and adjusted models served as evidence of the 
robustness of our findings. Further studies incorporating control for 
the confounding effects of dietary factors are necessary to validate 
our findings.

5 Conclusion

The present research found that long-term exposure to PM2.5 
components was related to an elevated risk of MetS and its 
components, including central obesity, high FBG, high BP, and low 
HDL. The adverse effect of PM2.5 chemical components on MetS was 
more sensitive to people who were single, divorced, or widowed than 
married people. Our study provides new epidemiological insights 
into the potential adverse impacts of PM2.5 components on the 
metabolic system, and the modification effect of marital status. 
Further longitudinal studies should be  carried out to confirm 
our findings.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

FIGURE 5

Exposure-response relationship between exposure to PM2.5 chemical components with the components of metabolic syndrome (MetS).
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TABLE 2 Subgroup analysis for the associations of long-term exposure to PM2.5 chemical components with MetS.

Subgroup PM2.5 SO4
2− NO3

− NH4
+ OM BC

OR and 95%CI P-inter OR and 
95%CI

P-inter OR and 95%CI P-inter OR and 95%CI P-inter OR and 95%CI P-inter OR and 
95%CI

P-inter

Age 0.206 0.112 0.113 0.097 0.143 0.094

  ≥65 years 1.385 (1.283, 1.495) 1.381 (1.272, 1.499) 1.380 (1.273, 1.496) 1.358 (1.252, 1.473) 1.362 (1.262, 1.470) 1.360 (1.258, 1.470)

  <65 years 1.281 (1.149, 1.427) 1.241 (1.105, 1.394) 1.246 (1.112, 1.395) 1.218 (1.087, 1.365) 1.243 (1.116, 1.385) 1.221 (1.094, 1.364)

Sex 0.132 0.155 0.106 0.120 0.456 0.585

  Female 1.424 (1.294, 1.567) 1.409 (1.271, 1.563) 1.418 (1.282, 1.569) 1.390 (1.255, 1.539) 1.359 (1.235, 1.496) 1.341 (1.215, 1.479)

  Male 1.306 (1.205, 1.415) 1.289 (1.183, 1.405) 1.286 (1.181, 1.399) 1.264 (1.160, 1.376) 1.301 (1.201, 1.410) 1.298 (1.197, 1.408)

Residence 0.975 0.943 0.923 0.714 0.714 0.759

  Rural 1.353 (1.228, 1.490) 1.331 (1.200, 1.476) 1.331 (1.203, 1.473) 1.306 (1.186, 1.439) 1.306 (1.186, 1.439) 1.299 (1.177, 1.435)

  Urban 1.350 (1.246, 1.463) 1.337 (1.226, 1.458) 1.339 (1.230, 1.458) 1.335 (1.232, 1.446) 1.335 (1.232, 1.446) 1.324 (1.221, 1.436)

Marital status 0.010** 0.015* 0.005** 0.008** 0.028* 0.034*

  Married 1.125 (0.963, 1.315) 1.108 (0.936, 1.311) 1.087 (0.923, 1.280) 1.073 (0.909, 1.266) 1.132 (0.969, 1.323) 1.127 (0.961, 1.321)

  Single, divorced, and 

widowed
1.394 (1.299, 1.496) 1.378 (1.278, 1.487) 1.383 (1.283, 1.490) 1.357 (1.258, 1.463) 1.360 (1.268, 1.460) 1.351 (1.258, 1.451)

Education status 0.490 0.658 0.449 0.567 0.473 0.628

  Elementary school or 

blow
1.316 (1.187, 1.459) 1.311 (1.172, 1.466) 1.295 (1.160, 1.445) 1.281 (1.147, 1.431) 1.289 (1.163, 1.428) 1.290 (1.162, 1.433)

  Middle school or above 1.371 (1.269, 1.482) 1.349 (1.242, 1.466) 1.358 (1.252, 1.473) 1.329 (1.224, 1.442) 1.345 (1.245, 1.454) 1.329 (1.229, 1.438)

Smoking status 0.143 0.173 0.098 0.114 0.428 0.575

  Smoking 1.310 (1.210, 1.418) 1.294 (1.189, 1.408) 1.288 (1.186, 1.400) 1.267 (1.165, 1.377) 1.301 (1.203, 1.408) 1.298 (1.199, 1.406)

  Non-smoking 1.426 (1.292, 1.574) 1.411 (1.267, 1.570) 1.426 (1.284, 1.583) 1.397 (1.257, 1.552) 1.363 (1.235, 1.505) 1.343 (1.214, 1.486)

Drinking status 0.796 0.687 0.817 0.821 0.938 0.851

  Drinker 1.371 (1.215, 1.547) 1.367 (1.199, 1.559) 1.354 (1.193, 1.538) 1.329 (1.169, 1.511) 1.331 (1.178, 1.504) 1.330 (1.174, 1.507)

  Non-drinker 1.348 (1.252, 1.451) 1.328 (1.227, 1.437) 1.332 (1.233, 1.440) 1.308 (1.210, 1.415) 1.324 (1.231, 1.424) 1.313 (1.219, 1.414)

Cooking fuel use 0.175 0.359 0.254 0.321 0.079 0.190

  Clean fuel 1.308 (1.205, 1.420) 1.302 (1.192, 1.423) 1.297 (1.189, 1.415) 1.278 (1.171, 1.395) 1.270 (1.171, 1.377) 1.273 (1.172, 1.383)

  Solid fuel 1.414 (1.287,1.553) 1.379 (1.248, 1.523) 1.389 (1.260, 1.532) 1.357 (1.230, 1.497) 1.406 (1.279, 1.546) 1.376 (1.250, 1.514)

Physical activity 0.976 0.928 0.898 0.918 0.726 0.766

  Insufficient physical 

activity

1.358 (1.253, 1.471) 1.345 (1.234, 1.466) 1.348 (1.238, 1.467) 1.322 (1.214, 1.439) 1.341 (1.238, 1.453) 1.330 (1.227, 1.443)

  Sufficient physical activity 1.360 (1.235, 1.497) 1.337 (1.206, 1.483) 1.337 (1.209, 1.479) 1.314 (1.186, 1.455) 1.314 (1.193, 1.448) 1.307 (1.183, 1.443)

*P-value < 0.05, **P-value < 0.01, ***P-value < 0.001.
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