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Real-time fMRI neurofeedback (rtfMRI-NF) has emerged as a promising intervention for psychiatric disorders, yet its clinical efficacy
remains underexplored due to an incomplete mechanistic understanding. This study aimed to delineate the whole-brain
mechanisms underpinning the effects of rtfMRI-NF on repetitive negative thinking in depression. In a double-blind randomized
controlled trial, forty-three depressed individuals underwent NF training targeting the functional connectivity (FC) between the
posterior cingulate cortex and the right temporoparietal junction, linked to rumination severity. Participants were randomly
assigned to active or sham groups, with the sham group receiving synthesized feedback mimicking real NF signal patterns. The
active group demonstrated a significant reduction in brooding rumination scores (d=−1.52, p < 0.001), whereas the sham group
did not (d=−0.23, p= 0.503). While the target FC did not show discernible training effects or group differences, connectome-
based predictive modeling (CPM) analysis revealed that the interaction between brain activity during regulation and brain response
to the feedback signal was the critical factor in explaining treatment outcomes. The model incorporating this interaction
successfully predicted rumination changes across both groups. The FCs significantly contributing to the prediction were distributed
across brain regions, notably the frontal control, salience network, and subcortical reward processing areas. These results
underscore the importance of considering the interplay between brain regulation activities and brain response to the feedback
signal in understanding the therapeutic mechanisms of rtfMRI-NF. The study affirms rtfMRI-NF’s potential as a therapeutic
intervention for repetitive negative thinking and highlights the need for a nuanced understanding of the whole-brain mechanisms
contributing to its efficacy.
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INTRODUCTION
Real-time fMRI neurofeedback (rtfMRI-NF)—a technique that
enables participants to self-regulate functional brain activation—
is considered a potential intervention for psychiatric disorders.
Applied across various psychiatric conditions, this method’s
feasibility for self-regulation of brain activation and its promising
impact on symptom management are supported by numerous
meta-analyses [1–9]. Nevertheless, the clinical efficacy of rtfMRI-NF
remains to be confirmed, as the majority of studies are
preliminary, characterized by small sample sizes, the absence of
stringent control conditions, and a partial understanding of the
mechanisms of action. Overcoming these research gaps to
ascertain the specific efficacy of NF treatments is an area of
significant interest.
One strength of rtfMRI-NF is its ability to provide deep insights

into whole-brain functional processes during self-regulation,
extending beyond the targeted brain signal [10]. Crucially,
whole-brain analysis of rtfMRI-NF data is instrumental in decoding
the mechanisms of action that underpin NF training. Emerging
research has revealed diverse brain activities implicated in NF-
mediated self-regulation, indicating that NF training encompasses

a whole-brain process involving prefrontal control regions, the
salience network, and reward processing areas [11–14]. Given that
NF training might entail a reinforcement learning process [15, 16],
examining brain activation in response to feedback signals is a
valuable method for shedding light on the learning mechanisms
driving self-regulation through NF. Investigations into brain
responses to feedback signals have highlighted the pivotal roles
of both prefrontal control regions and reward-responsive areas in
NF-mediated self-regulation training [14, 17, 18]. Significantly, the
regions engaged during NF training and in response to feedback
signals coincide with those involved in general skill acquisition
[19] and emotion regulation tasks [20, 21]. Moreover, these areas
continue to be active even when a sham NF signal is administered,
with participants unknowingly trying to control the feedback
signal [20, 21]. Consequently, these activations appear to
represent attempts to modulate the feedback, irrespective of the
training outcome. Therefore, pinpointing brain activations or
connectivity patterns that foretell the success of training is still
challenging.
The current study explores the whole-brain mechanisms

underlying NF treatment, utilizing data from a prior double-blind,
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randomized controlled trial (RCT) [22]. This earlier study demon-
strated a significant decrease in symptoms of repetitive negative
thinking exclusively in the active group following connectivity NF
training, but not in the sham control group. Specifically, our study
concentrated on the reduction of symptoms as the primary
outcome of NF training, rather than on the self-regulation of the
targeted brain signal. This approach contrasts with many studies
that aim to elucidate the mechanisms of NF training, which have
focused on identifying the neural substrates underpinning the
acquisition of self-regulation of the target brain signal.
The investigation into neural substrates of self-regulation may

be justified if we assume that regulating the targeted brain signal
facilitates changes in cognitive function or the symptoms of a
disorder, thus rendering successful regulation essential for an
effective intervention. However, this assumption is susceptible to
the counterargument that other brain activities concurrently
altered by training could be the drivers of behavioral changes,
as posited by Kvamme, Ros [23]. Because rtfMRI-NF training relies
on the endogenous effort to self-regulate the signal and because
participants cannot perceive the specific brain activation the
feedback signal represents, the specificity of the NF intervention
cannot be guaranteed. Kvamme, Ros [23] argue that we should
not automatically assume a causal relationship between self-
regulation of the target brain signal and the resultant behavioral
outcomes. Corroboratively, research examining brain activations
responsible for PTSD symptom amelioration post left amygdala
upregulation training via rtfMRI-NF [24] revealed that activity in
the dorsomedial prefrontal cortex (dmPFC) and middle cingulate
cortex—not the amygdala—mediated symptom reduction. This
indicates that the therapeutic effects may be attributed to brain
activations beyond the intended target area.
Furthermore, symptomatic or behavioral improvements can

occur independently of detectable changes in the targeted brain
signal during training. Although the feedback signal is designed to
reflect successful self-regulation, the desired training effect may
not always be apparent in the targeted region, as evidenced by
several neurofeedback studies. For example, Sukhodolsky, Walsh
[25] utilized rtfMRI-NF to target the supplementary motor area
(SMA) in adolescents with Tourette syndrome and noted
significant symptom improvement in the active neurofeedback
group, absent in the sham control group, despite a lack of
significant SMA activation changes. Similarly, our earlier research
[22] showed that neurofeedback aimed at enhancing the
functional connectivity between the posterior cingulate cortex
(PCC) and the right temporoparietal junction (rTPJ) markedly
decreased rumination in depressed participants of the active
group, with no corresponding change in the sham group, and
without a notable difference in the targeted connectivity.
Crucially, both studies implemented a stringent RCT methodology
to ensure the effects were attributable to the neurofeedback.
These results collectively imply that a comprehensive, whole-brain
perspective may be essential to fully grasp the therapeutic
mechanisms of rtfMRI-NF.
Consequently, the current study investigates the whole-brain

mechanism of NF treatment by using data from our previous study
[22]. Our approach employs machine learning predictive modeling
focusing on two distinct functional connectivity patterns: one
during the self-regulation task and the other in response to
neurofeedback signals. We use connectome-based predictive
modeling (CPM) [26] to establish the relationship between these
patterns and treatment outcomes. By aggregating univariate
features, multivariate predictive modeling techniques such as
CPM can enhance both the sensitivity and robustness of predictions
[27–29]. We also examined the interplay between connectivity
patterns during the task and in response to neurofeedback as a
potential predictor of treatment success. Given that the magnitude
of the feedback signal is carefully controlled to be the same
between the active and sham groups, an important difference

between the groups may lie in the fidelity of the feedback to the
participants’ actual brain activity. Thus, the interaction between
brain activation and feedback signals could be critical in explaining
the variance in symptom reduction observed between the groups.

PARTICIPANTS AND METHODS
Participants
We analyzed the data of the previous NF study for a treatment of repetitive
negative thinking in depressed participants [22]. The original study was
registered on ClinicalTrials.gov (NCT04941066). In the study, forty-three
individuals with Major Depressive Disorder (MDD) between 18 and 65
years of age were enrolled. The participants met the fifth edition of the
Diagnostic and Statistical Manual of Mental Disorders (DMS-5) criteria for
unipolar MDD. Further details of the inclusion and exclusion criteria,
sample size validation, and a method of randomization for group
assignment are shown in Tsuchiyagaito, Misaki [22], and the CONSORT
diagram is in the Supplementary Information (SI). Medication status and
comorbidities of the participants selected for this study are detailed in
Table 1. All participants provided written informed consent. The study
protocol was reviewed and approved by the WCG IRB (https://
www.wcgirb.com) (IRB Tracking Number 20210286).

Neurofeedback session procedures
Detailed procedures are described in the SI. Here, we provide an overview
of the procedure. The participants were divided into the active (N= 22)
and sham (N= 21) groups randomly. The active group received the NF of
functional connectivity between the PCC and the rTPJ regions. The sham
group received a feedback signal artificially synthesized to mimic the
temporal probabilistic structure of the real NF signal in the active group.
Beyond employing an RCT design, the study offered several advantages

for controlling the non-specific effects of neurofeedback training. Strict
double-blinding was achieved by having a separate researcher remotely
set up the experimental application, who did not interact with either the
participants or the experimenter who engaged with the participants
during the study. The sham neurofeedback signal was carefully designed
to mimic the genuine neurofeedback signal in terms of reinforcement
frequency and temporal pattern. The sham signal was controlled to avoid
any unintended correlation with the target brain signal monitored in real-
time. A post-session questionnaire confirmed that participants were
unaware of their group assignment [22]. Moreover, comprehensive real-
time fMRI processing for noise reduction including physiological noise [30]
ensured that the neurofeedback signal was free of confounding variables
unrelated to brain activation, a critical consideration given that con-
nectivity neurofeedback is known to be susceptible to physiological noise
[31]. The study confirmed that these confounding variables were
effectively eliminated through comprehensive real-time fMRI processing
[32, 33].
There were three consecutive NF training runs in the single session for

each subject. Each NF training run was 8m long with 90 s initial resting
block, followed by 100 s regulation block with four consecutive presenta-
tions of negative trait words (25 s each) and a 30 s rest. The participants
were engaged in the emotion regulation task (i.e., regulating negative
thoughts while viewing the negative self-referential words) while receiving
the connectivity NF. A positive feedback signal was presented when the
target PCC-rTPJ FC reduced at each TR during the regulation task with the
two-point method [33, 34]. The regulation and rest blocks were repeated
three time in a run. Each participant also performed a baseline run and a
transfer run where no feedback signal was presented; we only used the NF
training runs for the prediction analysis. Further details are presented in SI
and Tsuchiyagaito, Misaki [22]

Connectome-based predictive modeling (CPM)
The detailed offline fMRI image preprocessing is described in the SI. After
preprocessing, we calculated whole-brain functional connectivity using
beta-series correlation [35]. Specifically, we evaluated the beta values for
the regressor of the regulation task for each NF regulation block using
General Linear Model (GLM) analysis. We formed a series of beta values
from the regulation task and used this series across blocks and runs to
calculate the z-transformed Pearson correlation between each region in
the Shen 268 atlas [36]. Similarly, we estimated the beta values for the
response to the feedback signal for each block using GLM analysis (see SI)
and calculated the beta-series correlation (z-transformed) between the
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same atlas regions. We then calculated the interaction between FCs
(z-transformed correlations) for the regulation task (RegTask) and the
response to the NF signal (RespNF) by multiplying their normalized values.
It is important to note that the NF signal reflects ~6–8 s of the previous
brain state due to hemodynamic response delay and fMRI signal
acquisition time. As a result, TR-wise interaction between RegTask and
RespNF connectivity cannot indicate the contingency between these
responses. Our current approach, which decomposes the signal into block-
wise series, helps mitigate this issue at the expense of temporal resolution.
We employed Connectome-Based Predictive Modeling (CPM) analysis to

identify brain activation patterns during neurofeedback (NF) training that
could predict treatment outcomes. The target value for prediction was the
change ratio of the Ruminative Response Style Brooding Subscale (RRS-B)
score [37], measured 1 week after the NF training session, relative to the
baseline. We focused on the brooding subscale because it specifically leads
to worse prognosis [38]. We used the whole-brain FC patterns of the
regulation task (RegTask), the response to the NF signal (RespNF), and their
interaction (RegTask:RespNF) individually to construct the CPM model
using various combinations. Given the hypothesis that these factors, either
individually or in combination, could predict changes in RRS-B scores, we
comprehensively evaluated the following models: (1) RegTask alone, (2)
RespNF alone, (3) the interaction between RegTask and RespNF
(RegTask:RespNF), (4) RegTask+ RespNF, (5) RegTask+ RegTask:RespNF,
and (6) all three factors (RegTask+ RespNF+ RegTask:RespNF).
Predictive performance was assessed using 5-fold cross-validation with

covariate (age, sex, head motion) regression and hyperparameter
optimization in the nested cross-validation. The process was repeated
100 times with different random splitting of the validation set to obtain a
confidence interval and a reliable estimate of predictive performance.
Further details of the model training procedures are described in the SI.

Statistical analyses
The statistical significance of CPM performance was evaluated using a
permutation test. The output values (ratio of change in RRS-B relative to
baseline: dRRS-B) were randomly permuted 1000 times, and in each
permutation iteration, 5-fold cross-validation was repeated 100 times with
different random splits. The same covariate regression and hyperpara-
meter optimization procedure including the nested cross-validation was
also applied during the permutation test. Note that the covariate
regression for the dRRS-B was performed for the non-permutated data
since the test needs to evaluate the null distribution of the model
performance apart from the covariate effects (see Winkler, Ridgway [39] for
further discussion). The median of 100 cross-validation replicates was
taken in each iteration. The p value for model performance was
determined by calculating the proportion of permuted samples that
exhibited a median prediction performance superior to that of the actual
dataset, divided by the total number of permutations. We used a one-

tailed test because the prediction model was optimized to identify the best
possible positive correlation between the true and predicted values. Refer
also to the SI section “Permutation test for prediction performance” for
details on this procedure.
Symptom change in RRS-B was tested using linear mixed effect (LME)

model analysis with the fixed effects of session (pre/post), group (active/
sham), age, and sex, and the random effect of participant to the intercept.
The lme4 package [40] with the lmerTest package [41] was used, and each
contrast was calculated using the emmeans package [42] in the R language
and statistical computing [43]. All the p values reported in the post-hoc
contrast analysis were corrected using multivariate t distribution [42]. In
these analyses, p < 0.05 (corrected as necessary) was considered
significant.

RESULTS
Data selection
The participants with more than 30% censored TRs due to head
motion (frame-wise displacement [FD] > 0.3 mm) were excluded
from the analysis. We further excluded the blocks with more than
30% censored TRs within the task block and the participants with
less than five remaining blocks were also excluded from the
analysis. There was no significant difference in the number of
dropped blocks between groups (t(34)= 1.500, p= 0.143). The
demographic characteristics of the selected participants and the
statistical analysis of the differences between the groups are
presented in Table 1.

Significant treatment effect on RRS-B for the active group
alone without changes in the NF target FC
Significant reduction in RRS-B score was observed for the active
group but not for the sham group. Figure 1 shows the mean and
each participant’s RRS-B scores at the pre and post-training
sessions for each group. While the main effect of group was not
significant (F[1,30]= 0.062, p= 0.805), the main effect of session
(F[1,32]= 12.944, p= 0.001) and the interaction between the
session and group (F[1,32]= 7.125, p= 0.012) were significant
with LME analysis. The post-hoc analysis indicated that the post-
pre difference was significant for the active group (t[32]=−4.31,
p < 0.001, d=−1.52) but not for the sham group (t[32]=−0.67,
p= 0.503, d=−0.23).
In contrast to the significant treatment effect on the target

symptom score, there was no significant effect on the NF target,
PCC-rTPJ FC. Figure 2 shows the psychophysiological interaction

Table 1. Demographic characteristics and statistical comparisons of participant groups.

Active Sham Statistics p

(n= 16) (n= 18)

Age (mean, (SD)) 33.6 (10.6) 33.4 (11.5) t(32)= 0.02 0.99

Female (%) 11 (68.8) 13 (72.2) χ2(1)= 0.05 0.83

Diagnosis (%)

Major depressive disorder (MDD) without comorbidity 10 (62.5) 5 (27.8) χ2(1)= 2.85 0.09

MDD and anxiety disorder 6 (37.5) 13 (72.2)

Generalized anxiety disorder 1 (6.3) 10 (55.6)

Social anxiety disorder 4 (25.0) 4 (22.2)

Panic disorder 4 (25.0) 5 (27.8)

Medicated (%) 10 (62.5) 7 (38.9) χ2(1)= 1.06 0.30

Antidepressants 9 (56.3) 5 (27.8)

Stimulants 2 (12.5) 0 (0.00)

Benzodiazepines 2 (12.5) 2 (11.1)

Substance use in the past 12 month (%) 2 (12.5) 3 (16.7) χ2(1)= 0.12 0.73

Cannabis 2 (12.5) 3 (16.7)

Current psychotherapy (%) 5 (31.3) 4 (22.2) χ2(1)= 0.04 0.84

M. Misaki et al.

3

Translational Psychiatry          (2024) 14:354 



(PPI) beta values for the PCC seed region (x, y, z=−6, −58,
48mm) to the rTPJ (51, −49, 23mm) region across training
sessions (seed and the target regions were defined by 6mm-radius
sphere). An LME analysis with the fixed effects of run, group, age,
sex, head motion (mean FD), and the random effect of participant
for the intercept showed no significant main effect of the run (F[4,
478]= 0.917, p= 0.454), group (F[1, 37]= 0.104, p= 0.748), and
run by group interaction (F[4, 478]= 0.633, p= 0.639) on the NF
target connectivity.
Additionally, Tsuchiyagaito, Misaki [22] identified the other brain

region in the retrosplenial cortex (RSC, [−7, −53, 11mm]) that
showed a different training effect between the active and the sham
group. For the presently selected data, the PPI analysis between the
RSC-rTPJ revealed no significant main effects of the run (F[4,
478]= 2.178, p= 0.070) and group (F[1, 29]= 0.216, p= 0.645), but
significant run by group interaction (F[4, 477]= 3.885, p= 0.004).

Post-hoc analysis indicated that the group difference was
significant at NF2 (active < sham, t[334] = 2.354, p= 0.019,
d= 0.475) and NF3 (acitve > sham, t[352]=−2.958, p= 0.003,
d=−0.637). However, when we calculated the Spearman correla-
tion between the mean RSC-rTPJ beta values in the NF1, NF2, NF3
runs and the RRS-B change, no significant correlation was observed
(rho=−0.035, p= 0.843), indicating that the RSC-rTPJ connectivity
during the NF training was not predictive of symptom change.

CPM analysis
Figure 3 shows distributions of CPM analysis results for each model
specification. Null distributions for each model in the permutation test
are presented in SI, Fig. S4. The median predictive performance was
not significant for the CPM models with RegTask (median= 0.194,
p= 0.119), RespNF (median= 0.012, p= 0.478), and RegTask:RespNF
(median= 0.192, p= 0.088). Similarly, the combined models of
RegTask+RespNF (median= 0.135, p= 0.177) and RegTask+RespNF
+RegTask:RespNF (median= 0.190, p= 0.086) did not show signifi-
cant predictive performance. Only the model combining RegTask
with RegTask:RespNF (median= 0.272, p= 0.031) showed significant
predictive performance.
We further examined the connectivity that contributed to the

prediction for the best performing model. Figure 4 shows the
connectivity that were selected 76% times across 100 bootstrap
model trainings (p < 5e−8 using a binominal test), which
corresponds to p < 0.001 with Bonferroni correction across all
the 27028 FCs. The plots indicate that many connections
remained in spite of this stringent threshold, indicating that
the model consistently employed broadly distributed connec-
tivity for the prediction. While connections that informed
prediction distributed across the brain, several dense connec-
tivity regions were also observed in the circle plot. Supplemen-
tary Tables S1 and S2 show the top 10 nodes with the highest
sum of absolute correlation with RRS-B reduction across their
significant FCs. For the RegTask, predictive connectivity was
dense in the cingulo-opercular task control regions, salience
network regions, and the subcortical thalamus and basal ganglia
regions. Similarly, for the RegTask:RespNF interaction, predictive
connectivity was dense in the fronto-parietal task Control
regions, salience network regions, and the subcortical hippo-
campus, thalamus, basal ganglia regions.
Figure 5 illustrates the relationship between the mean

connectivity (z) for the informative FCs in the prediction model
and the changes in RRS-B. These plots are intended to investigate
the potential confounding effect of group differences on the
predictions, rather than to present statistical analysis of these
relationships, which could constitute double-dipping since the FCs
correlating with RRS-B changes were selected for the CPM. The
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plots show that group differences did not affect the prediction,
confirming that the selected FCs effectively predict changes in
RRS-B scores in both active and sham groups.

Association of other factors with RRS-B changes
We also examined other possibly predictive factors of RRS-B
change, including age, sex, head motion, self-rating of the
regulation success, the duration of the positive feedback
presentation, the interaction between the self-rating of the
regulation success and the group, and the interaction between
the positive feedback duration and the group. However, linear
model analysis with these factors on the RRS-B change (ratio

relative to the baseline) indicated no significant effects in any of
these (refer to SI for details).

Voxel-wise activation analysis for the association with RRS-
B change
Additionally, we conducted a voxel-wise mass univariate analysis
on both the RegTask and RespNF beta maps, as well as on their
interaction map, to determine if voxel-wise activation linked with
treatment effects was reflected in region-wise responses. Detailed
results of this analysis are provided in the SI. We observed a
significant association between symptom change and RegTask
activation only. The regions involved were different from the NF

RegTask RegTask:RespNF

Fig. 5 Association between RRS-B change and mean informative FC values in the prediction model. Both positively and negatively related
FCs during the regulation task (RegTask) and its interaction with the response to the neurofeedback signal (RespNF) are presented. The line
represents the fitted trend, with the shaded area indicating the 95% confidence interval.
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target areas but were seen in the lateral occipital, superior frontal,
precentral gyrus, and thalamus regions. These regions consistently
show a decrease in their activation associated with RRS-B
reduction, suggesting that the effects in these regions may be
due to a reduction in task load over successive runs (detailed
results are available in the SI).

DISCUSSION
The primary objective of this study was to investigate the whole-
brain mechanisms underlying the effects of rtfMRI-NF on repetitive
negative thinking, specifically brooding rumination (RRS-B), in
depressed individuals. Our results demonstrated a significant
reduction in RRS-B scores in the active neurofeedback group but
not in the sham group, although no significant changes were
observed in the targeted FC between the PCC and the rTPJ.
Interestingly, CPM analysis revealed that the most effective models
for predicting RRS-B reduction incorporated both the FC patterns
during the regulation task (RegTask) and their interaction with the
FC patterns in response to the feedback signal (RespNF). These
models employed broadly distributed connectivity across multiple
brain regions, including the cingulo-opercular task control and
salience network regions. Other potentially predictive factors such as
self-rating of regulatory success and the duration of the positive
feedback signal showed no significant effects on RRS-B changes. In
summary, our findings suggest that the efficacy of rtfMRI-NF in
reducing brooding rumination is not solely dependent on the
modulation of targeted FC but involves a complex interplay of
whole-brain connectivity patterns, thereby challenging the tradi-
tional focus on targeted brain regions in neurofeedback research.
In agreement with our hypothesis, connectivity associated with

the reduction in rumination was not localized to a specific region
but was widely distributed across the brain, primarily in the frontal
control, salience network, and subcortical reward processing areas.
This finding is consistent with a meta-analysis of rtfMRI-NF training
studies across different target regions [11]. The meta-analysis found
involvement of a broad array of brain regions during NF training,
including executive control regions (i.e., ventrolateral prefrontal
cortex [vlPFC], dorsolateral prefrontal cortex [DLPFC], premotor
cortex), salience network regions (i.e., anterior insula, anterior
cingulate cortex [ACC]), reward processing area (i.e., striatum),
temporo-parietal areas, lateral occipital regions, and the temporo-
occipital junction bilaterally. Investigations into functional connec-
tivity with target brain regions like the amygdala have also reported
increased connectivity with prefrontal areas, including the DLPFC,
dorsomedial and ventromedial PFC, as well as the ACC [12–14].
Studies examining responses to feedback signals during rtfMRI-NF

training have also demonstrated the involvement of these regions.
Lawrence, Su [17] examined brain activation correlated with the
amplitude of the feedback signal during rtfMRI-NF training aimed at
increasing right anterior insula activation. They observed a positive
correlation with the feedback signal in the dorsal ACC and left
supramarginal gyrus, and a negative correlation in the inferior and
rostral regions of the ACC and primary visual cortex. Similarly, Paret,
Zahringer [14] analyzed brain activation in response to the NF signal
during up- and down-regulation training of the right amygdala.
They found that the medial thalamus was active in monitoring
feedback signals broadly, while the ventral striatum (VS) responded
specifically to the reinforcement signal, with VS activation showing a
positive correlation with amygdala activation. Skottnik, Sorger [18]
also showed that self-regulatory performance was correlated with
striatal activity. The involvement of these regions is consistent with
previous research highlighting their role in emotion regulation
[20, 21] and skill learning [19]. Taken together, these findings
suggest that both prefrontal control regions and reward-responsive
areas play an important role in NF-mediated self-regulatory training.
However, a previous study also suggested that these regions

were activated during sham NF and were not necessarily

indicative of training success [44]. Our results suggest that
effective treatment occurs when participants not only activate
these emotion regulation and skill learning networks, but also
receive consistent feedback that can guide them toward a desired
neural state. Given that the interaction between RegTask and
RespNF was critical in predicting treatment effect, participants
who activate these networks in response to the feedback signal in
a manner consistent with regulatory activation are more likely to
experience a successful treatment outcome. Thus, effective
treatment outcomes may depend on how individuals adapt and
regulate their brain activation in response to neurofeedback,
rather than simply trying to regulate it.
The whole-brain distributed associations also imply that the

efficacy of NF treatment does not depend solely on the regulation
of the target brain signal. Instead, this target signal may act as a
guide, directing the brain toward a desired state. If this hypothesis
proves valid, we may need to rethink our strategy for selecting the
NF target signal. Traditionally, the NF target region has been
identified based on its relationship to the target cognitive function
or symptomatic state, assuming a causal relationship between the
brain signal and the symptomatic state. However, the primary
criterion for selecting a target region for the NF signal may not be
its direct causal relationship with the symptoms. Instead, the key
factor should be its ability to accurately represent the related
cognitive and symptomatic states. In our current study, the PCC-
rTPJ FC was used as the NF target. This FC remained low
throughout the NF sessions (see Fig. 2), with no significant
variation observed across sessions. Therefore, on average,
participants successfully regulated the NF signal in the instructed
direction. As this NF signal has been associated with rumination in
depression [33], it could have served as an indicator of the brain
state associated with reduced rumination.
Although the current NF protocol targeting specific FC have

demonstrated therapeutic efficacy, approaches that target large-
scale network connectivity or activation patterns may offer further
improvements. Notable methods include connectome-based NF
[45], which targets whole-brain functional connectivity patterns;
semantic NF [46], which exploits the representational similarity
space from multivoxel patterns; and decoding NF [47], which
utilizes machine learning techniques to decode signals from
multivoxel patterns. These approaches represent promising
directions for enhancing the effectiveness of NF treatments.
Notably, the present CPM analysis predicted RRS-B reduction in

both the active and sham groups. Some participants in the sham
group who experienced a decrease in RRS-B had FC values similar
to those of active group responders, as shown in Fig. 5. These
findings suggest that responders in the sham group may be
undergoing an adaptive training process similar to that of the
active group. Pecina, Chen [48] noted that individuals could
selectively respond to positive feedback while disregarding
negative feedback, influenced by treatment expectations. Hence,
even random NF signals might be leveraged to adjust brain
activity towards a desired state. Nevertheless, our results, showing
a significant difference between active and sham groups, under-
line the necessity of an accurate NF signal for effective brain state
modulation, while also highlighting the complexity of placebo
effects in NF training [48–50].
Several limitations of the current study merit discussion. Firstly,

our results highlight the interaction between FC patterns during
the regulation and the response to the NF signal as predictive of
subsequent treatment effects on rumination. However, the NF
signal reflects brain activations from several seconds prior, due to
the inherent delay in the hemodynamic response and the time
required for fMRI imaging. This makes establishing a direct link
between regulation activity and the NF signal response challen-
ging. To address this, we analyzed prolonged block-wise
responses and calculated beta-series correlations to determine
FC, but this method sacrifices temporal resolution and inhibits the
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assessment of learning effects over multiple runs due to limited
data blocks. Future research should design experiments that
tackle these challenges while enabling temporal analysis. Further-
more, more than two-thirds of the participants were female,
reflecting the natural prevalence of MDD [51]. Given the lower
proportion of males in the study sample, caution should be
exercised when generalizing these results to male populations.
The effect of potential confounding factors, including substance
use, could not be fully assessed due to the small sample size.
Although we excluded individuals with current SUD from the
participants, even moderate substance use may impact brain
regions involved in NF training, such as the frontal control, reward
processing, and salience network regions [52]. Therefore, caution
should be exercised in drawing definitive conclusions. While our
findings are promising, they require validation through larger
cohort studies. We employed strict motion thresholds to mitigate
potential confounding effects on symptom reduction. However,
this stringent criterion led to a reduced sample size and an
attrition rate of ~20%. Future studies should anticipate and
account for such attrition rates.
In conclusion, this study sought to explore the whole-brain

mechanisms underlying the effects of rtfMRI-NF on brooding
rumination in depression. The results showed that treatment
efficacy can be predicted by broad patterns of whole-brain FC. In
particular, the interaction between regulatory activity and
response to the neurofeedback signal emerged as a pivotal
predictor of treatment outcome. This suggests that while rtfMRI-
NF may focus on a specific area, its effects are distributed,
impacting an extensive network of brain regions. Our findings
highlight a potential oversight in studies that assume direct
changes in targeted signals are necessary for behavioral improve-
ment, potentially overlooking broader effects of NF. As the field of
NF research advances, it will be critical to broaden outcome
measures to include changes in cognitive function or symptoma-
tology. Furthermore, comprehensive whole-brain analysis is
essential to fully understand the complex neurophysiological
changes induced by NF training.
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