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Unsupervised decomposition of natural
monkey behavior into a sequence of
motion motifs
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Nonhuman primates (NHPs) exhibit complex and diverse behavior that typifies advanced cognitive
function and social communication, but quantitative and systematical measure of this natural
nonverbal processing has been a technical challenge. Specifically, a method is required to
automatically segment time series of behavior into elemental motion motifs, much like finding
meaningful words in character strings. Here, we propose a solution called SyntacticMotionParser
(SMP), a general-purpose unsupervised behavior parsing algorithm using a nonparametric Bayesian
model. Using three-dimensional posture-tracking data from NHPs, SMP automatically outputs an
optimized sequence of latent motion motifs classified into the most likely number of states. When
applied to behavioral datasets from common marmosets and rhesus monkeys, SMP outperformed
conventional posture-clustering models and detected a set of behavioral ethograms from publicly
available data. SMP also quantified and visualized the behavioral effects of chemogenetic neural
manipulations. SMP thus has the potential to dramatically improve our understanding of natural NHP
behavior in a variety of contexts.

In humans and other primates, complex and dynamical behavioral
sequences consisting of gaze, facial expressions, postures, and body move-
ments serve as expressions of internal states such as emotion and intention
(i.e. nonverbal expression), which are fundamental for normal social life1,2.
Nonhuman primates (NHPs), such as macaque and marmoset monkeys,
have been shown to interact socially through such nonverbal expressions
while they perform higher cognitive/motor functions, thus providing
unique opportunities for modeling human brain function in healthy and
diseased contexts3,4. Several NHP models of emotional and social commu-
nication dysfunction have been studied using pharmacological interven-
tions and genetic modifications in adolescence or adulthood5–8. In addition,
recent advances in techniques for genetic manipulation, such as chemoge-
netics, have allowed reversible manipulation of activity in specific brain
circuits of freely moving monkeys, opening up valuable avenues for
understanding the neural mechanisms that govern internal states9–11.
However, previous NHP studies have focused on measuring behavioral
indicators based on the experimenters’ hypotheses, running the risk of
overlooking changes in animal behavior that are beyond the scope of the

prediction. Thus, advancing our understanding of the brain mechanisms
that underlie internal states requires a quantitative, data-driven recapture of
natural NHP behavior12,13; however, the lack of a method for doing this has
created a bottleneck in this research field.

Recent developments in video-based motion-tracking systems have
enabled the automated acquisition of large-scale behavioral data9,14–16. These
data canbeanalyzedbymachine learning toautomatically segmentandextract
recurrent behaviors (ethograms) from the data, thus replacing human obser-
vation. Programmatically, this means automatically determining the starting
and ending points of all data segments corresponding to a given ethogram,
even for non-predetermined behavior. Several studies have proposed
ethogram-detection algorithms, but each has certain limitations. Ballesta et al.
proposed a method for automatically detecting ethograms17; however, it
requires manually set ad hoc extraction parameters for the predetermined
target ethograms, making it unsuitable as an objective means of evaluating
natural NHP behavior. Other studies have automatically classified NHP
behavior by using a simple clustering method that has been successfully
applied to rodents and insects to lookatNHPbodypostures that correspond to
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different ethograms14,15. This method may be useful for studying NHPs in a
confined range of research interests, such as when all postures in the data can
be completely mapped to a set of ethograms of interest. However, compre-
hensive NHP behavioral analysis must target a broad range of ethograms that
arebeyond the scopeof theseposture-basedclassificationmethods—including
temporally dynamic changes in multiple postures (e.g., jumps, turns, and
catching prey), as well as complex and abstract changes, such as those that
occur during social play18–20.

Another framework for unsupervised behavioral data segmentation is
one that fits a generative model to time series of data. In this scenario,
observed behavioral parameters aremodeled as probabilistic implements of
a sequence of categorical and reproducible latent states (motionmotifs)21,22.
This framework has shown promise in analyzing behavioral data from
rodents, fish, and insects to identify novel ways of capturing prey23, sorting
neuropharmacological effects24, and mapping animal internal states by
simultaneously recording neural activity 25–27. This technique is also gaining
prominence in the fields of computer vision and human robotics as a way to
computationally estimate themeaning of behavior28–30. However, to the best
of our knowledge, such an algorithmhas not been verifiedas appropriate for
NHPs, likely because the current algorithms were not developed or opti-
mized to target the complexity and diversity of NHP behavioral ethograms.
In addition, even if the current algorithms were available for NHPs, they
remain somewhat subjective; in the case of unsupervised behavior seg-
mentation, determining the number of latent motif classes (class size) has a
significant impact on the results, but has usually been left to the subjective
judgment of the researchers14,31. Ideally, the optimal class size should also be
determined in an unsupervised manner32,33.

Here, we propose a new framework called SyntacticMotionParser
(SMP), which allows for quantitative and automatic parsing of NHP
behavior into a set of motion motifs. Using SMP, three-dimensional (3D)
motion-tracking data can be described as a stochastic generative process of
motion motifs, each of which is optimally segmented by unsupervised
machine learning (Fig. 1a). Specifically, the internal variability of individual
motifs is regressed by aGaussian process (GP) and simultaneously clustered
by its hyperparameters, while the class size is automatically optimized by a
Bayesian nonparametric model with hierarchical Dirichlet process (HDP)
(Fig. 1b).We demonstrate that SMP can characterize and describe different
styles of commonmarmoset (Callithrix jacchus) feeding behavior. SMPwas
also able to extract several ethograms unique to rhesus monkeys (Macaca
mulatta) from publicly available motion-tracking data and describe their
patterns and temporal sequences14. Critically, SMP was also able to auto-
matically detect and describe the changes in marmoset behavior that
resulted from chemogenetic manipulation of specific neural circuits9,
without any prior information.

Results
Unsuperviseddetectionof latentmotionmotifs fromfree-feeding
marmoset behavior
We first assessed the ability of SMP’s computational segmentation to
identify changes in internal states. Internal states were inferred from simple
goal-directed behaviors, which included stereotyped and reproducible
motion series such as searching, discovering, approaching, and eating. We
recorded free-feeding behavior of four adult marmosets, during which they
fed wherever, whenever, and however they wanted (Fig. 2a, b,

Fig. 1 | Dynamic temporal segmentation of NHP motion time series using a
generative model. a Illustration of the generative description workflow of NHP
behavior. The input behavior series is segmented into a set of latent motion motifs,
which are partially reproducible trends of multivariate motion parameters. The
properties of motion motifs and their probabilistic interconnectedness, i.e., “the
grammar of behavior,” are optimized by data-driven machine learning and gen-
eratively describe behavior as a stochastic process model. b A graphical model of
dynamical decomposition of monkey behavior using the nonparametric Bayesian

model, SMP. The two major principal component scores (PC1 and PC2) extracted
from the multivariate time series of monkey behavior were optimally segmented by
this model into a time series of discretely labeled hidden state c, using GP as the
nonlinear regression link function, a hidden semi-Markov model for estimating the
temporal breakpoints, and HDP including the stick-breaking process for estimating
state class size. NHP nonhuman primate, SMP SyntacticMotionParser, GPGaussian
process, HDP hierarchical Dirichlet process.
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Supplementary Fig. 1). Using an original marker-less motion-tracking
system9,34,35, themarmoset behavior was semi-automatically captured as 3D
trajectories of the four bodyparts (Face,Head,Trunk, andHip; Fig. 2c, d and
Supplementary Movie 1). For the SMP analysis, we manually extracted
trajectory data (approx. 20 s) centered on the timing of feeding based on
video clips (N = 51, total duration = 993 s; Supplementary Table 1, Sup-
plementary Fig. 2). We assumed that these 20-s instances of feeding beha-
vior would consist of a fewmotion motifs, each lasting several seconds. We
applied SMP to the 1st and 2nd principal component (PC) scores for all of
the free-feeding data, including 3D trajectories of body parts (13 para-
meters) (Fig. 2e, Supplementary Table 2). SMP successfully segmented the
data into about 430 motion motifs (433.8 ± 5.2, mean ± sd) across simula-
tions with various initial simulation class sizes (random seed, n = 23). The
resulting number of motif classes converged to a unimodal posterior dis-
tribution with a median value of 18, which indicates the optimal class size

(Fig. 2f, g, red). Analysis of the seven simulations that yielded 18 motif
classes revealed that the 1st and 2nd PC scores of the motifs were similar
regardless of the initial class size (Supplementary Fig. 3). Figure 2h shows 18
motion motifs that were characterized by a distinct set of PC-score
dynamics, andwhichwere segmented by SMPwith an initial class size of 22
(which was used in the subsequent analyses). These motion motifs were
commonly observed in the four marmosets without significant individual
unique distribution bias (X-sq = 62.99, df = 51, p value = 0.121, Pearson’s
Chi-squared test, Supplementary Table 3). Successful convergence of
dynamic motion segmentation appeared to result from the combination of
GP and HDP inherent in SMP; the GP works as a link function that
represents dynamic postural changes, while the HDP optimizes the class
size36–38. To benchmark SMP performance, we compared it with the per-
formance of other statistical models. When using GP as a link function, but
not usingHDP, the resulting class size depended on the initial value, and the
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Fig. 2 | Motion tracking and computational segmentation in freely moving
common marmosets. a Experimental setup for marmoset free-feeding behavior.
Yellow arrowheads indicate the location of the food reward. b Illustrations showing
the subtypes of feeding behavior: using hands to take food from thefloor (floor-hand,
left), using head and mouth directly (floor-head, middle), and taking food from the
wall (wall, right). c Data-flow diagram of the marker-less motion-tracking system.
The positions of marmoset body parts, Head, Neck, Trunk, and Hip were estimated
by a skeletonmodel fitting. The Face position was also estimated by the projection of
the face rectangle on RGB images to the point cloud. See also Supplementary
Movie 1.dThe posture parameters were transformed fromdistance-from-the center

coordinates (left) toTrunk-centered coordinates (right). eTime series of thefirst and
second principal component scores (PC1 and PC2) with 10 Hz resolution for a total
of 1020 s of data comprising 51 sets of 20-s data. f Using between 5 and 35 for the
initial class size for the simulation, the class size of the inherentmotionmotifs during
the free-feeding behaviorwas estimated by four statisticalmodels: the proposed SMP
method (HDP+GP, red), Model1 (GP, blue), Model2 (HDP + linear regression,
square), and Model3 (HDP, cross). g Using SMP, the number of motif classes
converged to a unimodal posterior distribution with amedian of 18. h Examples of a
set of 18 motion motifs estimated by SMP simulation with 22 initial classes. SMP
SyntacticMotionParser, HDP hierarchical Dirichlet process, GP Gaussian process.
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optimal class size was not determined (Fig. 2f, Model1). Although simula-
tions with an excessive number of initial class sizes—18 or more in this case
—did result in final class sizes that converged to a valuewhichwas similar to
that obtained by SMP using HDP (Fig. 2f), these results indicate that this
model (Model1) required repetitive simulations with different initial values
to reach the final converged values, which increased the computational cost.
When using HDPwith a different link function (autocorrelation and static;
Fig. 2f, Models 2 and 3, respectively), the class size again depended on the
initial value andno informationaboutoptimal class sizewasprovided.Thus,
SMP that incorporates both HDP and GP demonstrated a significant
advantage in simultaneously providing flexible regression to explain free-
feeding behavior and guaranteeing unsupervised convergence of an optimal
class size of motion motifs inherent in the data.

SMP can describe and reproduce sequences of motion motifs
from goal-directed marmoset behavior
Having shown that SMP performed consistently in unsupervised segmen-
tation of marmoset free-feeding behavior, we next investigated how feeding
behavior can be described with a sequence of motion motifs detected by
SMP. Figure 3a presents a 20-s data sample that included two feedings. SMP
decomposed these data into a sequence of eight motion motifs from four
classes. Because each motion motif represents typical body motion trajec-
tories that are transformed into temporal dynamics of two PCs (Fig. 2h),
corresponding body motion parameters can be retrieved by inverse calcu-
lation from the mean value of the PC scores. For example, when a series of
movements represented by motifs 2, 3, 7, and 8 were reconstructed in the
order of observation, marmoset behavior was able to be retrieved as the

dynamic relative positions of the Face, Head, Trunk, and Hip (Fig. 3d,
SupplementaryMovie 2), similar to those from the original data (Fig. 3b, c).
When we attempted a similar reproduction of movements using a standard
posture model (the 2D uniform manifold approximation and projection;
UMAP)18,19 with the k-means clustering method, the motions were unna-
tural and resembled a stop-motion animation of static postures stitched
together (Fig. 3e).With the same initial class size as that of the SMP (k = 18),
the posture model decomposed the data into significantly shorter sub-
second fragments (UMAP: n = 2076, 0.3 ± 0.53 s, median ± sd; SMP:
n = 438, 2.3 ± 0.59 s; BM statistic =−177.48, df = 2451.8, p value < 2.2e-16)
(Fig. 3f). These results demonstrate that SMP is unique in that it allows for a
simple descriptionof themulti-seconddynamical structureobservedduring
feeding behavior.

SMPmotionmotifs quantitatively characterized classification by
observation
As shown in Fig. 3a, SMP described feeding behavior as a specific sequence
of motion motifs (e.g., 8–2–7). Because feeding behaviors can be classified
manually into three subtypes according to food position and approach
strategy (floor-hand, floor-head, and wall; Fig. 2b; Supplementary Table 1),
we next asked whether SMP-derived motion motifs would correspond to
different feeding subtypes. Analysis revealed differences in motion motifs
according to where the food was located (wall vs. floor), indicating that
significantly differentmotifs were employed in the feeding segment (n = 58,
X-sq = 51.9, df = 11, p value = 2.84e-08, Fig. 3g, top). We also found sig-
nificant differences according to approach (floor-hand vs. floor-head),
indicating that different motifs were employed depending on the approach
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Fig. 3 | Example of marmoset behavior smoothly described by SMP-derived
motionmotifs. aExample of behavior segmentation. The curve trends represent the
1st and 2nd principal component scores (PC1 and PC2) of the motion parameters.
The bottom lines and background rectangles represent the resulting eight segmented
motion motifs with four types (motif 8, 2, 7, and 3). b Two sequential images of
marmoset free-feeding behaviors with three-segment arrays “8-2-7”, where the
labels (i) and (ii) correspond to those in (a). Black arrows indicate the position of the
video frame in the segment represented by the upper bar. Yellow arrowheads
indicate the location of the food reward. Orange rectangles indicate the images in
which feeding occurred. c Time series of the original body movement trajectory
during the data from (a), with the X-axis representing time and the front-back
direction, and the Y-axis representing the up-down direction. The Face-Head,

Head-Trunk, and Trunk-Hip are color-coded in blue, red, and orange, respectively.
dThe time series of the ideal bodymotion trajectory, whichwas pieced together from
the eight motion motifs provided by SMP. e Time series connecting the six repre-
sentative postures provided by the posture model, calculated by clustering the
two-dimensional UMAP scores of all data using the k-means hierarchical clustering
method (k = 18). See also Supplementary Movie 2. f Segmentation results of the
motion sequence c using the proposed SMP method and the posture models
(k = 6 and 18). gDot plots showing the distribution of motion motifs in response to
food placed on the wall and floor and in feeding approaches to food placed on
the floor (floor-hand and floor-head). Size indicates the number of observations.
*p value < 0.05 by Pearson’s Chi-squared test.
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strategy (n = 46, X-sq = 26.2, df = 8, p value = 9.85e-4, Fig. 3g, bottom). For
comparison, we assessed the distribution of posture clusters during feeding
using a conventional posture model (k-means with UMAP) with k = 18.
Although the distributions of posture clusters at feeding times differed
significantly betweenwall and floor (n = 58,X-sq = 58, df = 12, p = 5.21e-08,
Pearson’s Chi-squared test), they did not significantly differ between floor-
head and floor-hand (n = 46, X-sq = 7.58, df = 7, p = 0.371, Pearson’s Chi-
squared test; Supplementary Table 3). Compared with the posture-based
methods, when given data that was manually and roughly clipped to the
timing of specific events, SMP provided a description that better reflected
the dynamics of the actual behavior (Fig. 3c–e). We also compared SMP
performance with manual segmentation by experts. Segmentations of
feeding behavior varied more among the experts and tended to be larger
grained than those derived by SMP (Supplementary Fig. 4). Thus, SMP
consistently detected smaller, fine-grained differences in behavioral features
than the conventional posture model or human annotation could, meaning
it has a higher behavioral resolution.

Using SMP to identify ethograms in freely moving macaques
Having demonstrated the effectiveness of SMP analysis of marmoset
behavior during a goal-directed paradigm, we next applied SMP to data
from freely moving NHPs to test whether it could extract what animals are
doing (i.e., ethograms), in a data-driven manner. For this purpose, we used
OpenMonkeyStudio, an open data source of macaque monkey behaviors14,
which consists of 3D trajectories of 13 key landmarks on a macaque body
capturedbymultiple synchronized cameras (Fig. 4a, top). Similar to the data
preprocessing in the marmoset analysis, the Front-Up coordinates were
aligned to theHead-Hip axis (Hip-centered) to determinewhat each animal
was doing rather than where it was (Fig. 4a, bottom). We assumed that the
macaque behavior would comprise several kinds of motion motifs, each
lasting around 15 s. The SMP segmented the 1st and 2nd PC scores (Sup-
plementary Table 5) into about 230motion motifs (234.2 ± 6.5, mean ± sd)
in 16 random-seed simulations with various initial class sizes. The motifs

comprised10 classeswhose sizesdidnot varydependingon the initial values
of the simulation (Fig. 4b). Figure 4c shows the PC waveforms of motion
motifs that resulted from SMP extraction with an initial class size of 18,
which were replicated using different initial class sizes (Supplementary
Fig. 5). By inverse-calculating the postural parameters from the average
trendof thePCwaveforms, SMPresynthesized the idealmotion represented
by eachmotionmotif, as exemplified in Fig. 4d: walking (motif 1), climbing
up and holding on upside down (motif 2), stepping down (motif 3), and
climbing up and staying (motif 4), which are common motion ethograms
observed in macaques. Furthermore, less common ethograms were also
captured as independent classes, such as long-distance jumps along walls
and to thefloor (motif 8 andmotif 9; Fig. 4c, SupplementaryMovie 3).These
results demonstrate the versatility of SMP for detecting ethograms in freely
moving NHPs from any dataset, with only a minimum assumption of their
duration.

Using SMP to characterize behavioral change induced by circuit
manipulation
To identify how activity within a specific brain circuit can cause specific
natural behaviors, we must be able to establish a method for unsupervised
detection of behavioral changes. We therefore tested whether SMP could
detect and characterize behavioral changes in free-moving marmosets that
we induced by chemogenetic neural manipulation in our previous study9.
Marmosets that expressed the excitatory chemogenetic receptor hM3Dq in
the unilateral substantia nigra (SN) spun themselves around in the direction
contralateral to the activated SN, and this behavior began about 45min after
eating the chemogenetic activator (deschloroclozapine, DCZ) (Fig. 5a, b).
Although this behavioral change can be quantified by counting the number
of rotations, its characterization is not simple, as it is difficult to describe
rotation behavior using conventional static postures in a series of snapshot
images. We asked whether SMP could effectively capture this phenotype
without any assumptions. We analyzed two sessions of 5-min motion-
tracking data at four certain time windows (10–15, 35–40, 60–65, and
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85–90min) after DCZ or vehicle consumption. We used 3D trajectories of
the Head, Trunk, and Hip, and their velocities in the postural coordinates
where the Head was frontal and the Trunk was centered (Fig. 5c, d), and
applied PC analysis to reduce their dimensions to two (Supplementary
Table 6). With multiple initial class sizes, SMP consistently extracted seven
classes of motion motifs (approx. 30-s) from the data (Fig. 5e; Supple-
mentary Fig. 6). Temporal distribution of these motifs indicated that more
than 90% of motifs 1–4 appeared later than 60min after DCZ adminis-
tration (Fig. 5f, red). Visualization of the reconstructed body movements
through inverse PC analysis revealed that motion motifs 1–4 characterized
the nature of the contralateral rotation with dynamical postural changes,
which were clearly dissociable from normal directional changes (motifs 5
and 6 ipsilateral and contralateral, respectively) or exploratory behavior
(motif 7) (Fig. 5g, SupplementaryMovie 4). TheDCZ-induced contralateral
body rotation was consistently detected even when a longer initial value of
motif lengthwas used for the simulation (i.e., approximately 90-s ranging 75
to 150 s) (Supplementary Fig. 7a, d). These results demonstrate that without
anyprior information, SMPcould successfully capture anddescribe changes
in unconstrained behavior that were induced by circuit manipulation.
Importantly, it also indicatedwhenandhow the behavioral effects appeared,
highlighting another advantage of this method in studying the causal rela-
tionship between natural behavior and brain function in NHPs.

Discussion
Here, we describe a novel computational framework, SMP, that quantita-
tively and automatically parses natural NHP behaviors into motion motifs,
which can be used as meaningful metrics, like ethograms. As illustrated by
its application to threeNHPdatasets in twomonkey species, SMP is versatile
and effective for quantifying and characterizing behaviors by simply
adjusting the temporal window for motifs of interest, and not changing the
model or process. SMP can also automatically detect and describe

behavioral changes induced by neuronal manipulation. These results
demonstrate that data-driven SMP not only performs as well as human
observations, but can outperform them in detecting nuanced behaviors that
manual methods may overlook. Thus, SMP can be widely applied for
motion description and quantification of NHPs, offering the potential to
dramatically improve our understanding of natural NHP behavior and the
underlying brain functions in both normal and disease states.

Recent advances in machine learning allow for the collection of large-
scale posture data, measured and estimated automatically from videos of
freely moving NHPs9,14–16. At the same time, frame-by-frame classification
of posture information can be used to detect ethograms from streaming
behavior data14. Although this type of classification has been shown to be
effective in rodents39, it may not be sufficient in NHPs because their natural
ethograms are typically longer and more complex, which makes it more
likely that the same postures occur in different contexts, as happens when
climbing up and down. Indeed, in our demonstration, the conventional
posture-classification method could not capture and reproduce NHP
motion motifs because these methods transform inherently smooth and
dynamic postural changes in a given ethogram into a constrained combi-
nation of static states, i.e., specific postures represented by k-means clusters
inUMAP scores (Fig. 3e, f). In the case of rodents and insects, attempts have
beenmade to address this issue by refining the conventional posture model
to account for the semantic context33,40. The results are like stop-motion
animations, forcing complex and computationally expensive modifications
to reproduce natural actions. Unlike these static posture models, our pro-
posed SMP can provide dynamic and reproducible motion motifs—which
are inherent in the behavior—as basic units.Using a probabilistic estimation
of the type and occurrence of motifs through data-driven learning, SMP
automatically parses streaming behavioral data into a series of motion
motifs (or ethograms). This is similar to theway inwhich sentence structure
analysis in natural written language processing directly searches for
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Fig. 5 | SMP characterized contralateral rotation behavior induced by chemo-
genetic manipulation. a Illustration of viral vector injection locations adapted from
Mimura et al.9. AAV vectors expressing excitatory DREADD hM3Dq were injected
into the unilateral substantia nigra (SN, red arrow). As a control, an AAV vector
expressing a fluorescent marker (mKO) was injected into the contralateral SN (blue
arrow). b Example of the top view of the Head trajectory of the marmoset after
deschloroclozapine (DCZ; 10 μg/kg, per os (p.o.)) and vehicle administration.
c Illustration of the posture coordinate. The horizontalmapping of theHead through
the center of the Trunk was defined as the front-back (F-B) axis, and the axes
orthogonal to the F-B axis horizontally and vertically were defined as the ipsilateral-
contralateral (I-C) and vertical up-down (U-D) axes, respectively. d Body coordi-
nates were used to determine relative positions every 3 s. e Estimation result of

motion-motif class size. SMPwas applied to four 5-min timewindows each from two
90-min sessions after DCZ and vehicle p.o. The result was 7 kinds of motion motifs.
f Example of a motion-motif sequence detected by SMP with initial class size = 5
(arrowhead in (e)). The time at which themotif was observed is indicated by tiles and
color-coded by the percentage of occurrences in theDCZ data. The days since vector
injection are shown below the dosing conditions. g The top view illustration of the
body trajectories is represented by themotionmotifs in (f). Observed numbers in the
DCZ and vehicle groups are under the motif numbers. The red and white arrow-
heads indicate the starting and ending points of the Head track, respectively. The
Head, Trunk, and Hip positions are color-corded as (c), with white at the ending
points. The body positions are drawn at 0.5-s intervals with a gradation from blue to
black from start to end (see also Supplementary Movie 4).
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meaningful morphemes like words, omitting detailed consideration of the
smallest static unit, the character. SMP clearly distinguished climbing up
from climbing down as different behavioral “words”, even though these two
actions are indistinguishable in principle by posture alone (Fig. 4, Supple-
mentary Movie 3). Thus, by estimating the grammar and syntax of NHP
behavior,motionparsingmight allowresearchers tounderstand the internal
state of animals or the functional significance of the behavior in terms of
social communication and the underlying brain mechanisms, similar to
what has already been shown to be effective for time-series correlation
analysis with neural activity in rodents24,26.

Our results also demonstrate that SMP represents a major advance in
how the behavioral effects of neural manipulation can be evaluated. While
conventionalmethods have long relied on subjectivelydefined ethogramsor
task-controlled behavior, SMP employs automatic detection and descrip-
tion of changes in natural behavior, such as the frequency and type of
motion motifs. Our demonstration showed that SMP can isolate and
resynthesize abnormal contralateral turning that was triggered by chemo-
genetic neuronal manipulation, even under severe constraints such as
limited tracking points that lacked facial coordinates (Fig. 5, Supplementary
Movie 4).When chemogenetics is applied toNHPbrain circuits that govern
complex behaviors (e.g., the dorsolateral prefrontal cortex and caudate
nucleus)41, SMPmay be able to detect resulting behavioral changes not only
as abnormal motifs, but also as abnormalities in motion-motif sequences
(e.g., “8-2-7” in feeding behavior in Fig. 3) or their transition structures. In
addition, by building a large dataset of natural NHP behavior, we can
address behavioral variations across individuals. Our results suggest that
SMP holds enormous potential for quantifying and describing behavioral
changes far beyondwhat can bemeasured by conventional observational or
task-based methods.

SMP implements two extensions to its generativemodel,HPDandGP,
which address the following twomajor issues related to statistical estimation
of latent states. The first issue is determining howmany latent states exist in
the behavioral data, which is always a problem when labeling discrete data
elements as “characters” or “words”. Because the class size (the number of
latent motion motif classes) is usually given as an ad hoc fixed parameter42,
researchers have struggled to determinewhich is themost likely result when
running simulations under a variety of conditions, each returning a plau-
sible result14. TheHDP is theoretically guaranteed to yield a single estimated
class size for any initial value in an ideal situation with infinite iterations,
which eliminates the need to select an optimal result36–38.Our comparison of
multiple initial valueswas not for a posteriori sorting as in previous studies33,
but rather it was to confirm that sufficient iterations were performed for
convergence. In fact, all of our simulations returned a simple unimodal
posterior distribution of the class sizes after 50 iterations (Figs. 2f, g, 4b, and
5e), from which the most likely class size was uniquely and automatically
determined. The second issue is related to the link function of the latent state
model. In a typical latent statemodel, each state is assumed to be static, as is
the posture, which is why a link function is needed to regress and represent
complex internal variability such as motion.We chose GP as the regression
link function because it has beenused in humanbehavior analyses29,30,43, and
because it allows for more flexible regression than conventional auto-
regressive filtering or Bernoulli generalized linear models25,26.

By incorporating both GP and HDP, SMP is able to automatically
estimate all parameters, except for the three hyperparameters (ω, γ, and η)
and themotif length for initial value of the simulation (min,max, andmean
of initialmotif duration). The parameterω controls error coefficients within
a motif, where a smaller ω would result in greater variance, permitting a
broader range ofmovements to be classified under a singlemotif. The other
hyperparameters γ and η are related to HDP; γ is the sparsity of the
underlying state transitionmatrix and η is the expected number of different
hidden states (Fig. 1b). Throughout this study, we showed that the basic
parameter settings are efficient for NHP behavior quantification, and that
the values were similar to those that we observed in our human motion
analysis29. The hyperparameters might need to be tuned for data with dif-
ferent variance assumptions. In particular, the state interval parameters are

the major adjustment factors that directly reflect the temporal extent of the
motion motifs of interest. As we have shown (Supplementary Fig. 7a, d),
increasing the interval reduces the redundancy of the classifiedmotifs, while
maintaining the detectability of specific behaviors. Although there are no
theoretical limitations on the intervals, longer intervals increase computa-
tional cost anddecrease the frequency of reproducibleGP regression curves.
Therefore, when trying different intervals, we recommend that the para-
meterized frame length first be fixed and the time resolution of the data be
adjusted, as we demonstrated. While a similar latent model with HDP and
GPwas able to identifyhumanmotion as accurately asmanual annotation29,
the current study is the first application of this type of model extension for
exploratory behavior quantification in NHPs, for which the GP kernel
function was optimized. Although SMP with the parameter set used in this
study is expected to work for analyzing freely-moving primate behavior for
over several tens of minutes, further parameter optimization might be
necessary to handle longer duration data, such as daily natural behavior logs
within home cages lasting several days to months.

SMP will open the door to quantitative, rigorous, and comprehensive
research of natural monkey behavior, which is needed in a wide range of
scientific disciplines, including neuroscience, ethology, and developmental
and evolutionary biology. Application of SMP also has a potential use in
drug development and engineering brain-machine interfaces and other
clinical devices. Neural recording and circuitmanipulation ofNHPs in free-
moving conditions9,44 would bear real fruit when combined with compu-
tational behavioral description. SMP overcomes the motion annotation
bottleneck of NHP experiments and automatically describes the diversity
and complexity of dynamic natural behavior and the behavioral changes
associated with brain circuit manipulation, thereby increasing the value of
NHPs in the fields of neuroscience and psychology by opening a new
behavioral research field—natural nonverbal processing.

Materials and methods
Animals
Four laboratory-bred adult common marmosets were used (2 males, 2
females; 1.4–6.4 years old; 290–400 g, Supplementary Table 1). Each cage
was exposed to a 12/12-h light-dark cycle. Room temperature and humidity
were maintained at 27–30 °C and 40%–50%, respectively. All experimental
procedures were performed in accordance with the Guide for the Care and
Use ofNonhumanPrimates inNeuroscienceResearch (JapanNeuroscience
Society; https://www.jnss.org/en/animal_primates) and were approved by
the Animal Ethics Committee of the National Institutes for Quantum Sci-
ence and Technology (#11-1038).

Behavior testing
Behavior experiments were conducted in a sound-attenuated room (O’hara
& Co., Ltd., Tokyo, Japan; 2.4 m (h) × 1.2m (w) × 1.6 m (d)), which was
apart from the colony room. Vocalizations from the colony room could not
be detected in the experimental room. The temperature was maintained at
27–30 °C and relative humidity was 30%–40%. The internal space of the
sound-attenuated room was ventilated and illuminated with fluorescent
lighting. The experiments were performed between 11:00 and 16:00.

Before the experimental sessions, each subject was transferred indivi-
dually from the colony room to the experimental room in a small transport
chamber (O’hara & Co., Ltd., Tokyo, Japan; 300mm (h) × 100mm (w) ×
100mm (d)). Once in the experimental room the transport chamber was
placed under a table with a green top (O’hara & Co., Ltd., Tokyo, Japan;
0.5m × 0.5m × 0.5m), upon which rested a cylindrical test chamber made
from transparent acrylic (0.4 m (r) × 0.5m (h)). The bottom of the test
chamber had a door that when opened allowed themarmoset to enter from
the transport chamber (Supplementary Fig. 1a). The test chamber had 16
feedingports (30mm×15mm) locatedat 45-degree intervals on thefloor (8
ports) and on thewall at heights of 150mmand200mm(4 each, alternately
arranged). Platforms (30mm × 15mm) were set up on the outside of the
wall ports where food rewards could be placed (Supplementary Fig. 1b). For
3Ddata acquisition, 4 depth cameras (RealSenseDepthCamera R200, Intel,
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Santa Clara, USA) were placed around the chamber at 90-degree intervals
(Supplementary Fig. 1b), and were connected in parallel to a PC (Windows
10, 64-bit) using USB-C cables (U3S1A01C12-050, Newnex Technology,
Santa Clara, USA; the distance was 1-5m). The subjects were allowed to
adapt to the transport procedure and experimental environment for two
consecutive days before behavioral testing.

Eachbehavioral test startedwhen amarmoset entered the test chamber
from the transport chamber through the floor entrance, and movements
were recorded until they finished eating all the food placed in the feeding
ports, or until 30min has passed. Subjects freely moved around the test
chamber and, whenever they wanted, ate 7–9 pieces of sponge cake
(approximately 2 g each); one cake was located on the near side of the
entrance to entice them to enter the chamber, two on the wall ports, two on
the near side of the floor ports, and the others 3 cm from the floor ports
(Fig. 2a, Supplementary Fig. 1b).Observed feeding behaviorsweremanually
classified into three subtypes: using hands to take food from thefloor (floor-
hand), usingheadandmouthdirectly (floor-head), and taking food from the
wall (wall) (Fig. 2b, Supplementary Table 1). Fifty-one sets of 20-s data (10 s
before and after eating) were used for analysis (Supplementary Table 1).
Subjects were returned to the colony room after the end of the recording
session. The experiments were performed once a day for each subject.

Marmoset marker-less 3Dmotion-tracking system
Ourmotion-tracking systemsoftware package for depth camera calibration,
3D data acquisition, and fundamental setup for physical simulation is
available online (3DTracker-FAB, https://www.3dtrack.org). This motion-
tracking system allowed us to robustly estimate the 3D trajectory of mar-
moset body parts as the positions of skeleton model parts (Head, Neck,
Trunk, Hip) fitted by the physical simulation to the 3D point data of mar-
moset body shape (3D point cloud)9,34. The Face position was estimated by
projecting the rectangle of the marmoset face area onto the 3D point cloud.
This face areawas detected frame-by-frameon2D-RGB images by anobject
recognition algorithmYOLO335. To achieve sufficient accuracy, theYOLO3
detector was trained to detect marmoset face regions using 2,000 manually
detected faces from two of the fourmarmosets (Marmo1 andMarmo2). 3D
points inside the projected face rectangle were filtered to be less than 2.5 cm
from the center of theHead, and the average position of these 3Dpointswas
defined as the Face position (Fig. 2c). Estimated error of Face position is
reported in Supplementary Fig. 8.

Behavioral data under chemogenetic neuronal manipulation
We used behavioral data obtained from an adult male marmoset that
received a viral vector injection in the unilateral SN for expressing an
excitatory Designer Receptor Exclusively Activated by a Designer Drug
(DREADD) (AAV2.1-hSyn1-hM3Dq-IRES-AcGFP)9. Using this
DREADD setup, SN neurons are excited when the receptor is activated by
administration of the agonist DCZ (HY-42110, MedChemExpress, NJ,
USA; 3 μg/kg, orally). Two sets of free-moving behavior data ( ~ 60min)
following either DCZ or vehicle alone (saline with 2.5% dimethyl sulfoxide
FUJIFILMWako Pure Chemical., Osaka, Japan) were used.

Data preprocessing
All data preprocessingwas performed using R version 4.0.3 (www.r-project.
org) and the R packages tidyverse (version 1.3.0)45, data.table (version
1.13.2), patchwork (version 1.1.1), and magick (version 2.7.0).

Marmoset behavioral analysis
For free-feeding behavior analysis, the trajectory of body parts (Face,Head,
Trunk, andHip) was filtered with a locally estimated scatterplot smoothing
filter using the stats::loess() function with span = 1/30 and downsampled to
10Hz. Then, the spatial movement speed of each body part was calculated
and the data coordinates were transformed frame-by-frame to make them
posture-centered. Specifically, distance-from-center coordinates were
transformed into posture coordinateswith theTrunk’s center and the vector

fromTrunk toHead contained in the front-upquadrant.As a result,weused
a set of 13 posture parameters (Face [x, y, z, v],Head [x≡ 0, y, z, v], Trunk
[x≡ 0, y≡ 0, z, v], andHip [x, y, z, v], Fig. 2d). For SMP analysis, PC1 and
PC2, which retained 69% of the data’s variance (Supplementary Table 2),
were calculated using the stats::prcomp() function in R with scale = TRUE
(Fig. 2e), and then scaled to a maximum absolute value of 1.

The same procedures were used for the data obtained after chemoge-
netic neuronal manipulation, except that instead of the Face position, we
included the relative velocity of body parts into the SMP analysis, whichwas
calculated from the postures at t+ 3 s (Fig. 5d) and normalized by the
coordinates of the body at time t and the distances between these parts.
Thus, the analysis of the neuronal manipulation data used a set of 26
parameters (Head [x, y, z≡ 0],Trunk [x≡ 0, y≡ 0, z≡ 0],Hip [x, y, z], their
positions at t+ 3 s [x, y, z], their velocities [x, y, z, and absolute value]).

We used PC1 and PC2, which retained 48% of the data’s variance
(Supplementary Table 6). To validate that these two PCs were the optimal
choice, we also compared the results of the SMP analysis when using dif-
ferent numbers of PCs (Supplementary Fig. 7b, c, e, f).

Macaque behavioral analysis
For this analysis, we used published 3Dmacaque tracking data captured by
OpenMonkeyStudio14. From the publisheddata,we extracted 3,534 s of data
that was divided into 29 subsets with few missing frames (frame gap ≤ 20
frames) and sufficient duration (d ≥ 100 s). Then, the extracted data were
transformed frame-by-frame from distance-from-center coordinates to
posture coordinates with the Hip’s center and the vector from Hip to Neck
contained in the front-up quadrant. These posture-coordinated parameters
were interpolated in 2/3 Hzusing the stats::loess() functionwith a span set to
one-fifth of the data fragment length. As a result, we use 5,452 video frames
with 36 posture parameters ([x, y, z] coordinates of 13 body keypoints with
Hip_x,Hip_z,Neck_z scaled to zero, Fig. 4a). For SMP analysis, the PC1 and
PC2 extracted from the 36-parameter data, which retained 46%of the data’s
variance (SupplementaryTable 5), were calculated using the stats::prcomp()
function with scale = TRUE.

Computational segmentation
The joint probability distribution of motion-motif length and class can be
estimated by a blocked Gibbs sampler in which all motion motifs and their
classes in the observed data (PC scores) are sampled. First, all data are
randomly divided into motion motifs and classified. Next, motion motifs
obtained by a part of the data are excluded from the dataset, and the model
parameters are updated. By iterating this procedure, the parameters can be
optimized. Parameter estimation in each iteration is described as forward
filtering-backward sampling, which can be considered a maximum like-
lihood estimation process.

In the forward filtering step, the probability α that a data point given
time step t is the endingpoint of amotionmotif of lengthk classified asmotif
class c was calculated as follows:

α t½ � k½ � c½ � ¼ GP st�k:kjXc

� �
×
XK

k0¼1

XC
c0¼1

ptrans cjc0ð Þα t � k½ � k0� �
c0½ �

( )
ð1Þ

where si denotes time series PC score at time step i,C denotes themaximum
number ofmotion-motif classes,K denotes themaximum length ofmotion
motifs, and ptrans (c|c’) denotes posterior transition probability frommotif c’
to c.

The GPðst�k:kjXcÞ is a predictive distribution of a Gaussian process of
class c fitted to PC score s at the time step from t-k to k, and is computed as
follows:

GP st�k:kjXc

� � ¼
Yk

i¼t�k

p sijXc;i

� �
; ð2Þ
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where Xc denotes a set of segments that are classified into class c. The
variation within a segment is regressed on data fragments belonging to the
same class c as follows:

C ip; iq
� �

¼ k ip; iq
� �

þ ω�1σpq: ð3Þ

The class ciof the ithmotionmotif is determinedby the (i-1)th segment
and transition probability πc, which is generated from a Dirichlet process
(DP) using β and parameterized by η as follows:

πc ∼DP η; β
� �

: ð4Þ

This β is an infinite-dimensional multinomial distribution, and its
parameters were constructed by repeatedly breaking a stick, the length of
which is one, with a ratio vk sampled from a beta distribution, as follows:

vk ∼Beta 1; γ
� �

k ¼ 1; 2; . . . ;1ð Þ; ð5Þ

βk ∼ vk
Yk�1

i¼1

1� vi
� �

k ¼ 1; 2; . . . ;1ð Þ: ð6Þ

This stick-breaking process is also the DP, so the two-phase DP to
generate c is called an HDP. In both the macaque and marmoset behavior
analyses, the parameters were set to ω = 10.0, η = 10.0, and γ = 1.0, and the
length of the motion motifs for the initial value of the simulation was set to
be around 30 frames (min = 10, max = 70). This model was reported as
HDP-GP-HSMM for human motion analysis29. To evaluate the impact of
motif length variationon the results, themotif lengthwas set to an average of
90 frames, ranging from 75 to 150, for the marmoset neural manipulation
data (Supplementary Fig. 7a, d). For exploratory behavior analysis inNHPs,
we optimized the kernel function kð�; �Þ with comparison as follows:

SMP and Model1; kðip; iqÞ ¼ expð�jjip � iqjj2Þ;

Model2; kðip; iqÞ ¼ 1þ ip � iq;

and Model3; kðip; iqÞ ¼ 1:

In addition, after learning the parameters for the data by iterating the
model 100 times, theViterbi algorithm estimated themost likely path of the
latent state in the data. That is, all possible α in the data were obtained, and
themost probable of all possible state sequences, combinedwith the learned
transition probabilities, was adopted as the posterior state sequence.

Posture model
For comparisons, the conventional posture model was estimated as
described below. PC1 and PC2 scores, which were scaled to have a max-
imum absolute value of 1 to match the input of SMP, were mapped to two
dimensions using the umap.UMAP() function in Python 3.746. Posture
clusters were detected on the UMAP scores using the stats::kmeans()
function in R. The representative posture for each cluster was the average of
the data contained in each class.

Manual motion segmentation
Five trained observers manually segmented four sets of 20-s (approxi-
mately) RGB video data clips captured from four separate angles simulta-
neously. The clips showed marmoset free-feeding behavior, was part of the
data used for SMP analysis. Observers were instructed to segment the clips
into motifs lasting 2–10 seconds.

Synthesis of typical body motion sequences
The inverse operation of PCanalysiswas used to synthesize a typical posture
series from the estimated PC coordinates. In eachmotif class, the typical PC
waveforms (Fig. 2h, andFig. 4c)were calculatedwithin 10Hzbymoving the
average for all PCs. These typical PCsweremultiplied by the pseudo-inverse
matrix of the eigenvector for the PC analysis of the test data that was
calculated using MASS::ginv() function in R. Finally, the resulting values
were inversely standardized using the mean and variance values of the data
to synthesize the posture parameters. In the cases of marmoset free-feeding
behavior and macaque ethogram detection, the postural information is
displayed side-by-side along the time axis (Fig. 3c–e, Fig. 4d). The results of
neural manipulation analysis visualized the motif’s internal variability by
integrating the velocity relative to the initial position (Fig. 5g).

Statistical analysis
Pearson’s Chi-square test, implemented with the rstatix::chisq_test() func-
tion in R, was used to compare intervals containing constant-specific timing
among feeding subtypes and to test for differences in motion motif dis-
tributions among individuals. TheBrunner–Munzel test, implementedwith
the lawstats::brunner.munzel.test() function in R, was used to compare the
median value of motif length.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the Open Science
Framework database (https://doi.org/10.5281/zenodo.13337942). All other
data are available from the corresponding authors on reasonable request.

Code availability
Custom code generated in this study is available at GitHub repository
(https://doi.org/10.5281/zenodo.13337942).
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