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Abstract
This study introduces two models, ConvLSTM2D-liquid time-constant network (CLTC) and ConvLSTM2D-closed-form 
continuous-time neural network (CCfC), designed for abnormality identification using electrocardiogram (ECG) data. Trained 
on the Telehealth Network of Minas Gerais (TNMG) subset dataset, both models were evaluated for their performance, 
generalizability capacity, and resilience. They demonstrated comparable results in terms of F1 scores and AUROC values. 
The CCfC model achieved slightly higher accuracy, while the CLTC model showed better handling of empty channels. 
Remarkably, the models were successfully deployed on a resource-constrained microcontroller, proving their suitability 
for edge device applications. Generalization capabilities were confirmed through the evaluation on the China Physiological 
Signal Challenge 2018 (CPSC) dataset. The models’ efficient resource utilization, occupying 70.6% of memory and 9.4% 
of flash memory, makes them promising candidates for real-world healthcare applications. Overall, this research advances 
abnormality identification in ECG data, contributing to the progress of AI in healthcare.

Keywords  Abnormality identification · Simple network · ECG data · Performance evaluation · Generalization · 
Robustness · Edge devices

Introduction

Various technologies have been developed to monitor heart 
activities, and among them, the electrocardiogram (ECG) has 
gained widespread use due to its non-invasiveness and cost-
effectiveness. In clinical settings, the 12-lead ECG is currently 
considered the standard for measuring cardiac electrical activ-
ity. This technique entails positioning 12 leads, consisting of 
six limb leads and six chest leads, to capture heart activities 
from both the vertical and horizontal planes [1].

This study presents novel neural circuit policies (NCP) 
empowered models aimed at assisting clinicians in detect-
ing the specific location where abnormality occurs. The 
models, as opposed to traditional recurrent neural networks 
such as long short-term memory (LSTM), offer the advan-
tage of mitigating the negative effects of learning long-term 
dependencies on specific tasks [2]. According to the study 
by Mathias, the NCP model demonstrates superior compu-
tational capabilities for neurons compared to contemporary 
deep models [2]. Unlike common deep neural network mod-
els, which rely heavily on unpolluted input data, the NCP 
model exhibits higher tolerance to transient disturbances 
that are common in real-world conditions [2]. Addition-
ally, the NCP model’s compact and sparse network archi-
tecture eases the interpretation process [2]. Furthermore, 
the model requires low memory usage, making it suitable 
for deployment on microcontrollers. Another advantage is 
that the NCP model requires only a small number of neu-
rons. However, it has been observed that this enhancement 
comes at the cost of reduced accuracy performance. The 
current model achieved an F1 accuracy of 0.82. The vision 
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of the work, depicted in Fig. 1, can be extended to micro-
controllers, allowing its integration into wearable devices.

Indeed, the efficient resource utilization of the models is 
a noteworthy aspect, as they occupy a mere 240 KB, which 
is approximately 70.6% of the total RAM available on the 
STM32F746G microcontroller (equipped with 340 KB of 
RAM). Moreover, their utilization of approximately 96 KB of 
flash memory storage accounts for about 9.4% of the total flash 
memory available on the board, which boasts 1 MB of flash 
memory. This optimized use of resources renders the models 
highly promising candidates for real-world healthcare appli-
cations, where limitations in storage and memory capacity 
are critical considerations. Furthermore, the current on-chip 
model demonstrates reasonable power consumption, measuring 
at 137.4 mW. This level of power consumption is particularly 
crucial for ensuring that the models can operate efficiently in 
battery-powered devices without rapidly draining the power 
source. The power efficiency of these models enhances their 
suitability for various healthcare applications, enabling continu-
ous and reliable operation while conserving energy resources.

Background

In the field of abnormality detection, several notable 
models have been developed. Georgios proposed a hybrid 
CNN-LSTM network, achieving a sensitivity of 97.87% 
and specificity of 99.29% for classifying a specific heart-
beat type using ECG data [3]. Varun Gupta introduced 
a model that utilized fractional wavelet transform for 
preprocessing, Yule-Walker Autoregressive Analysis for 
feature extraction, and principal component analysis for 
detection. This model achieved remarkable results, includ-
ing a mean square error of 0.1656%, detection accuracy of 
99.89%, and an output signal-to-noise ratio of 25.25 dB 
[4]. Tsai-Min Chen developed a model consisting of five 

CNN blocks, a bidirectional RNN layer, attention layer, 
and dense layer. This model achieved an F1 score of 0.84 
in the detection of different types of ECG [5]. Jing-Shan 
Huang proposed a fast compression residual convolutional 
neural network-based model for ECG classification, which 
achieved an average accuracy of 98.79% [6]. [7] developed 
a shallow S4D model, which demonstrated a robust F1 
score of 0.81 and high robustness for the input data.

For the NCP model, several notable models have also 
been developed. Mathias Lechner’s NCP model, origi-
nally developed for car driving applications using input 
from cameras, exhibits a distinct focus on the road’s hori-
zon compared to conventional CNN models. While CNN 
models often prioritize roadside features and overlook 
the road itself, the NCP model demonstrates a different 
approach, placing greater emphasis on the road’s hori-
zon [2]. This unique characteristic allows the NCP model 
to capture and learn global driving features effectively. 
This is reflected in the high variance explained by the first 
principal component (PC1), which reaches 92% [2]. The 
ability of the NCP model to concisely learn global driv-
ing features can contribute to improved understanding and 
decision-making in car driving applications. Ramin Hasani 
made advancements in liquid time-constant networks by 
developing closed-form continuous-time neural networks, 
which exhibit improved computational speed [8].

Prerequisite

Liquid Time‑Constant (LTC) Networks

The equation 1 characterizes LTC neurons, where �i denotes 
the time constant of neuron i, determined by the ratio of its 
membrane capacitance Cmi

 to leakage conductance gli [2]. 
The activation function �i(xj(t)) captures the behavior of 
neuron i, utilizing the input xj from neuron j and parameters 
�ij and �ij to shape a sigmoid curve output between 0 and 1 
[2]. The synaptic weight wij reflects the strength of the con-
nection from neuron i to j, while xleaki represents the resting 
potential of neuron i [2]. Additionally, Eij defines the polar-
ity of the synapse, determining its excitatory or inhibitory 
nature [2]. It is the building block of NCP.

(1)

ẋi = −

(

1

𝜏i
+

𝜔ij

Cmi

𝜎i(xj)

)

xi

+

(

xleaki

𝜏i
+

𝜔ij

Cmi

𝜎i(xj)Eij

)

where 𝜎i(xj(t)) =
1

1 + e−𝛾ij(xj−𝜇ij)
Fig. 1   The model’s vision revolves around its application in wearable 
devices, where it plays a crucial role in detecting abnormalities and 
aiding in their identification
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Neural Circuit Policies (NCP)

The NCP model is an end-to-end learning system with several 
convolution layers [2]. In the NCP model, four neural layers are 
incorporated: sensory neurons (Ns), interneurons (Ni), com-
mand neurons (Nc), and motor neurons (Nm). Between each 
consecutive layer, a specific number of synapses are inserted 
to facilitate the flow of information [2]. Three mechanisms 
govern the synapse distribution: (1) synapses from source to 
target neurons (nso-t) following a Bernoulli distribution with 
probability p2, (2) additional synapses (mso-t) from source to 
target neurons without any synapses, determined by a Bino-
mial distribution with probability p3, and (3) recurrent connec-
tions (lso-t) from source neurons to target command neurons, 
selected from a Binomial distribution with probability p4 [2]. 
The NCP model has been demonstrated to create sparse net-
works, enhancing interpretability compared to traditional mod-
els. Sparse networks, with fewer connections, offer a clearer 
and more understandable representation, facilitating improved 
model comprehension in various applications.

The presented equation  2 delineates the utilization of 
the semi-implicit Euler technique in the context of the NCP 
model. In this formulation, various parameters are employed to 
describe the dynamics of the neuronal system. Specifically, gli 
denotes the leakage conductance associated with neuron i, �ij 
signifies the synaptic weight from neuron i to j, Cmi

 represents 
the membrane capacitance of neuron i, xleaki characterizes the 
resting potential of neuron i, Eij denotes the reversal synaptic 
potential governing the polarity of the synapse from neuron 
i to j, and Δ symbolizes the fixed step size employed in the 
numerical integration process.

Closed‑Form Continuous‑Time (CfC) Neural 
Networks

The closed-form solution for the interaction between neu-
rons and synapses in continuous-time neural networks 
offers a substantial advantage by significantly improving 
efficiency, making training and inference between one and 
five orders of magnitude faster compared to models relying 
on numerical differential equation solvers [9]. Addition-
ally, the CfC derived from liquid time-constant dynamics 
demonstrates notable scalability and performance in time-
series modeling, showcasing their suitability for a wide 

(2)

xi(t + Δ) ∶=

(

xi(t)Cmi

Δ
+ glixleaki

+
∑

j ∈ Iin�ij�i(xj(t))Eij

)

∕

(

Cmi

Δ
+ gli +

∑

j∈Iin

�ij�i(xj(t))

)

range of applications [9]. The CfC model consists of an 
input perception module, LTC module, and outputs [9]. A 
notable characteristic of closed-form control (CfC) neural 
networks is that they do not rely on numerical ordinary 
differential equation (ODE) solvers to generate their tem-
poral rollouts [9]. This kind of network not only achieves 
the flexible, causal, and continuous-time feature of ODE-
based networks but also has better efficiency compared to 
them [9]. The CfC model can be represented by the equa-
tion 3, where �(−f (x, I;�f )t) and [1 − �(−[f (x, I;�f )]t)] are 
the time-continuous gating, and g(x, I;�g) is an independent 
network compartment [9].

Datasets

In this study, the proposed models were evaluated using two 
distinct datasets. The first dataset, referred to as the CPSC 
dataset or the 12-lead ECG dataset, was created for The China 
Physiological Signal Challenge 2018 [10]. Its purpose was to 
facilitate the automatic detection of abnormalities in rhythm 
and morphology within 12-lead ECGs. The second dataset 
employed in this research is the Telehealth Network of Minas 
Gerais (TNMG) dataset [11], primarily used for model training.

To assess the models’ performance on new and unseen 
data, the CPSC dataset was utilized as an independent test 
dataset. This evaluation aimed to measure the models’ ability 
to handle real-world data that differs from the TNMG dataset.

The study’s objective was to evaluate the models’ gen-
eralization and performance on unfamiliar data by training 
them on the TNMG dataset and evaluating their effectiveness 
on the CPSC dataset. This evaluation is crucial for determin-
ing the models’ reliability and efficacy in real-life scenarios.

TNMG

The TNMG dataset employed in this study consists of 
uniquely different 2,322,513 labeled samples, each rep-
resenting 10 seconds of 12-lead electrocardiogram (ECG) 
data. These samples represent six distinct types of abnor-
malities: atrial fibrillation (AF), first-degree atrioventricu-
lar block (1dAVb), left bundle branch block (LBBB), right 
bundle branch block (RBBB), sinus bradycardia (SB), and 
sinus tachycardia (ST) [11]. The ECG data was originally 
sampled at 400 Hz frequency.

To create a balanced dataset for model training, 3000 
data were selected for each of the six abnormalities 

(3)
X(t) =𝜎(−f (x, I;𝜃f )t)⊙ g(x, I;𝜃g)

+ [1 − 𝜎(−[f (x, I;𝜃f )]t)]⊙ h(x, I;𝜃h)
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at random, along with a further 3000 data without any 
abnormalities. This resulted in a total sampled dataset 
size of 21,000. In cases where patients exhibited multiple 
abnormalities, any remaining samples needed to achieve 
the subset size of 21,000 were chosen from the TNMG at 
random. For more detailed information about these six 
abnormalities, please refer to Table 1.

The dataset underwent a process of normalization, 
where it was adjusted to a consistent length of 4096 
readings, ensuring uniformity and facilitating analysis 
and modeling. Any readings exceeding this length were 
removed, streamlining data processing and comparison. 
Figure 2 illustrates a balanced distribution of genders in 
the resampled dataset, promoting inclusivity and valid 
analysis. The dataset also reflects the age distribution 
observed in the general population, enhancing repre-
sentativeness for age-related analysis. Additionally, the 
sampling method yielded a balanced distribution of dif-
ferent abnormalities, allowing a comprehensive evalua-
tion of their characteristics and impacts. This balanced 
dataset improves the model’s learning process and overall 
performance [18].

CPSC

The CPSC dataset comprises distinct 12-lead electrocardio-
grams (ECGs) ranging from 6 to 60 seconds, each recorded 
at a sample rate of 500 Hz. To ensure compatibility with 
the CPSC dataset, the TNMG data was resampled at a rate 
of 500 Hz specifically for training purposes. This dataset is 
notable due to its inclusion of electrocardiograms (ECGs) 
from patients who have been diagnosed with a range of car-
diovascular conditions and exhibit common rhythms. The 
ECGs in the dataset have been expertly labeled, providing 
accurate annotations for these abnormalities. Overall, the 
dataset encompasses eight distinct types of abnormalities.

To effectively test the model’s generalization, we con-
ducted tests using four selected abnormalities from the 
dataset: atrial fibrillation (AF), left bundle branch block 
(LBBB), right bundle branch block (RBBB), and first-
degree atrioventricular block (1dAVb). However, it is 
important to note that this study does not include four 
other types of abnormalities: premature atrial contraction 
(PAC), premature ventricular contraction (PVC), ST-seg-
ment depression (STD), and ST-segment elevated (STE).

As part of the data selection process, any entries in the 
dataset with missing readings were excluded, resulting 
in a final dataset of 6877 distinct ECG tracings. The data 
was subsequently standardized by adjusting it to a con-
sistent length of 4096 readings. Any additional readings 

Table 1   Abnormalities within the TNMG dataset are categorized into different classifications

Abnormality Description

Atrial fibrillation (AF) It is the most prevalent form of arrhythmia, displaying symptoms of a fast and irregular heart-
beat [12]

Sinus bradycardia (SB) This condition is characterized by a slower firing of electrical impulses from the heart’s sinus node, 
resulting in a heart rate that is slower than the typical resting rate [13]

Sinus tachycardia (ST) This condition is characterized by an increased resting heart rate and an exaggerated heart rate 
response to mild physical exertion or changes in body posture, indicating a tachyarrhythmia [14]

Right bundle branch block (RBBB) The condition disrupts the normal electrical activity in the heart’s ventricles, leading to a delay in 
the depolarization of the right ventricle. This delay is caused by interrupted signal transmission in 
the His-Purkinje system [15]

Left bundle branch block (LBBB) As a consequence, there is a specific order of activation in the right ventricle preceding the left 
ventricle, resulting in subsequent changes in perfusion, mechanics, and workload within the left 
ventricle [16]

First-degree atrioventricular block (1dAVb) When a surface electrocardiogram reveals a PR interval that exceeds 200 ms, it is indicative of a 
first-degree atrioventricular block [17]

Fig. 2   The presented TNMG subset represents a highly balanced 
dataset containing six types of abnormalities. Additionally, it exhib-
its a higher concentration of older patients, which is reflective of the 
general population
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beyond this length were removed from the dataset during 
the cleaning process. For more detailed information about 
the refined dataset, please refer to Fig. 3.

The analysis of the dataset uncovered a gender dis-
parity, indicating that there is a greater representation of 
male patients compared to female patients. However, the 
age distribution of the patients in the dataset aligns with 
that of the general population, with a larger proportion 
of individuals belonging to older age groups. However, 
when examining the distribution of abnormalities, a slight 
imbalance is observed. Specifically, the occurrence of 
LBBB is relatively lower compared to the prevalence of 
other abnormalities present in the dataset.

Methods

Our primary objective is to create a model that is compact, effi-
cient, and well-suited for processing electrocardiogram (ECG) 
data. We aim to optimize the model specifically for hardware 
implementation, ensuring its compatibility with resource-con-
strained devices. Furthermore, we conduct a comprehensive 
evaluation of the model’s performance in terms of both gener-
alization and robustness to incomplete data.

To achieve our goal, we developed a small-scale archi-
tecture that minimizes computational requirements without 
compromising accuracy. The ECG data is subjected to essen-
tial preprocessing steps, such as filtering and short-time Fou-
rier transform (STFT) transformation, to enhance its quality 
and extract relevant features.

Afterwards, the preprocessed data is inputted into the pro-
posed models for the purposes of training and validation. 

The performance of the model is then assessed using 
selected performance metrics in order to gain insights into 
its effectiveness.

Preprocessing of ECG Data

To reduce noise interference in the ECG signal, a Butter-
worth band-pass filter is applied. The Butterworth filter is 
selected for its uniform response to all desired frequencies 
[19]. The passband of the band-pass filter is set from 0.5 to 
40 Hz. This frequency range is chosen to retain important 
information such as the T wave, P wave, and QRS complex, 
while effectively removing powerline noise at 50 Hz [20].

After the signal is filtered, the short-time Fourier trans-
form (STFT) is applied. Unlike the fast Fourier transform 
(FFT), which operates on the entire signal at once, the STFT 
divides the signal into smaller windows and applies the FFT 
to each of these windows individually. This approach allows 
for the extraction of both frequency and time-related infor-
mation from the analysis. By analyzing the signal in smaller 
time segments, the STFT captures changes in the signal 
over time, providing a more detailed representation of the 
signal’s time-varying frequency components. This enables 
the gathering of both frequency and temporal information 
from the signal analysis. The equation for FFT is shown in 
Eq. 4 where X[k] represents complex spectrum at frequency 
index k, x[n] represents the input sequence of length N, and 
e−j2�kn∕N represents the complex exponential at frequency 
index k and time index n. The formula for STFT is shown 
in Eq. 5, where X(t,�) represents the complex value of the 
STFT at time t, frequency � , x(�) represents the input signal, 
and w(� − t) denotes the window function centered at time t.

Abnorm

Norm

a) b)

Fig. 3   a The distribution of patients with studied abnormalities versus those without studied abnormalities or with normal ECG readings. b A 
detailed analysis of patients with studied abnormalities, breaking down the data into specific individual abnormalities
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Neural Circuit Policies (NCP)

Inspired by the Caenorhabditis elegans nematode, the neu-
ral circuit policies (NCPs) have been developed as brain-
inspired intelligent agents. Unlike contemporary deep 
models, each neuron within the NCP framework exhibits 
heightened computational capabilities. Through extensive 
research, it has been demonstrated that the adoption of 
NCPs leads to the creation of sparse networks, which, in 
turn, offer enhanced interpretability compared to conven-
tional models [2].

A NCP network consists of a collection of liquid time-
constant (LTC) neurons [8]. By implementing the afore-
mentioned NCP design principles, the outcome is highly 
condensed and sparsely interconnected networks of LTC 
neurons. LTC neurons in the simulation are commonly rep-
resented as leaky integrators, where they accumulate incom-
ing inputs over time and gradually release a portion of the 
accumulated charge. This leakage mechanism is vital for 
avoiding saturation of the neuron’s membrane potential and 
facilitating the processing of temporal information [2].

In addition, this study introduces an independent model 
for closed-form continuous-time neural networks (CfC) in 
the context of time-series modeling. Derived from liquid 
networks, CfC models outperform advanced recurrent neu-
ral networks. They employ closed-form ordinary differential 

(4)X[k] =

N−1
∑

n=0

x[n] ⋅ e−j2�kn∕N

(5)X(t,�) = ∫
∞

−∞

x(�) ⋅ w(� − t) ⋅ e−j�� d�

equations (ODEs) and approximate the solution for a previ-
ously unsolved integral in liquid time-constant dynamics [9].

Simple Model Architecture

The proposed model architecture, illustrated in Fig. 4, is 
designed to be simple yet effective. It consists of a single 
ConvLSTM2D layer responsible for feature extraction, con-
nected to 75 neurons serving as the input neurons for the 
NCP network. The network can be constructed using either 
the LTC or CfC arrangement, resulting in two distinct mod-
els: CLTC and CCfC models with 14 inter and command 
neurons and 6 output neurons.

The design rationale was crafted to suit the constraints 
inherent in microcontroller environments, leading to the pur-
suit of a carefully streamlined architecture featuring a single 
layer of ConvLSTM2D. Additionally, to optimize efficiency 
within the NCP framework (CLTC and CCfC), a conscious 
decision was made to limit the network to a modest configu-
ration of 20 neurons, consistent with the structure proposed 
by [2]. The determination of the most efficient hyperparam-
eters evolved through a systematic exploration, involving a 
methodical examination of diverse hyperparameter combina-
tions across a series of experiments. The outcomes of this 
empirical investigation are visually depicted in Fig. 4.

Evaluation Metrics

Precision 7 and recall 6 are metrics used to evaluate the per-
formance of a model, with precision measuring the accuracy 
of positive predictions and recall capturing the proportion 
of actual positives correctly identified. The F1 score 8, is 
the harmonic mean of precision and recall, balancing the 
precision-recall trade-off.

Fig. 4   The model architecture 
consists of a ConvLSTM2D 
layer that handles a preproc-
essed ECG data after undergo-
ing STFT transformation. The 
ConvLSTM2D layer extracts 
features, which are then densely 
connected to 75 neurons, serv-
ing as the input neurons for the 
NCP network. The input, motor, 
and output neurons are intercon-
nected using either LTC or CfC 
arrangements, with a sigmoid 
activation function applied at 
the final stage
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The area under the receiver operating characteristic curve 
(AUROC) is a performance metric employed to evaluate the 
discriminative capacity of a model in distinguishing between 
negative and positive cases at different threshold values. It 
quantifies the model’s ability to classify instances correctly 
and is commonly employed in binary classification tasks.

These metrics, such as F1 score, precision, recall, and 
AUROC, are widely used to evaluate the performance of 
machine learning models in binary classification tasks, par-
ticularly in abnormality detection.

Experiment

Training

In the experimental phase, the preprocessed TNMG sub-
set data is employed as the training dataset, where training 
and validation procedures are carried out on both the CLTC 
and CCfC models. To address the class imbalance issue 
in multi-labeled datasets, a strategy was employed where 
data instances with positive labels were duplicated twice. 
This replication technique was implemented to ensure an 
adequate number of positive-labeled data points within the 
training dataset, helping to balance the distribution between 
positive and negative labels. The replication process was 
exclusively applied to the training data, with no application 
to the validation and test datasets. Furthermore, the trained 
models are deployed onto a microcontroller to showcase 
their feasibility for chip deployment.

The models were trained on Intel(R) Xeon(R) CPU 
E5-2630 v3 @ 2.40GHz. During the training process, a 
batch size of 128 was used, and the models underwent 300 
epochs of training. The learning rate was set to 0.01, and 
the Adam optimizer was employed with the binary cross-
entropy loss function.

The preprocessed CPSC dataset is utilized to assess the 
generalization capabilities of the models. Additionally, the 
robustness of the models is evaluated by testing their perfor-
mance when exposed to corrupted data inputs.

(6)Recall =
TP

FN + TP

(7)Precision =
TP

FP + TP

(8)F
1
= 2 ×

Recall × Precision

Recall + Precision

In‑sample Training and Validation

To evaluate the performance of the models, a dedicated sub-
set comprising 20% of the TNMG data was set aside for 
validation purposes. The specific data points used for evalu-
ation were deliberately withheld from the model’s training 
process and reserved specifically for assessing the model’s 
performance. This validation process was conducted inde-
pendently for each model, enabling a direct comparison of 
their respective performances.

Model Deployment

After training, the models are deployed onto a microcon-
troller, and the validation data is utilized to perform infer-
ence on the microcontroller. This enables the observation of 
the deployed models’ performance in a real-world setting, 
specifically on the microcontroller platform.

Test on Unseen Data

The performance of the models will be thoroughly assessed 
on the CPSC dataset, which is carefully selected to reflect 
real-world scenarios. By comparing the models’ predic-
tions with known values using performance metrics, their 
strengths and limitations will be evaluated. The findings will 
guide decisions regarding the effectiveness of the models 
and suggest potential enhancements for better ECG analysis.

Model Robustness

The models are subjected to rigorous robustness testing, 
involving the introduction of white noise and the systematic 
removal of individual channels from the 12-lead ECG data. 
This comprehensive evaluation aims to gain insights into the 
models’ performance under varying conditions. Addition-
ally, channels are deliberately and randomly omitted from 
the 12-lead ECG data to further challenge the models in 
handling missing inputs.

The removal of channels occurs in a progressive manner, 
ranging from 1 to 6 leads, allowing for a nuanced exami-
nation of the models’ accuracy across different scenarios. 
Performance metrics will be meticulously applied to gauge 
and compare the models’ effectiveness in each test. These 
metrics serve as crucial benchmarks, highlighting areas 
where the models excel and pinpointing potential areas for 
improvement. The findings from these assessments will offer 
valuable insights, guiding potential enhancements to opti-
mize the models’ robustness.
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Result

This section will provide a comprehensive analysis of the 
models’ performance. Moreover, the discussion will also 
include an in-depth exploration of their generalizability and 
robustness.

Performance of the Models

This research study primarily revolves around training the 
proposed models using the TNMG subset dataset, as previ-
ously mentioned in the paper. The TNMG subset dataset 
serves as the main training data for developing and eval-
uating the models in this study. The training process was 
conducted over 300 epochs, with careful monitoring and 
recording of metrics such as accuracy and loss for both the 
validation and training sets at each epoch. The figures pre-
sented in the paper visually illustrate the recorded metrics, 
providing a comprehensive overview of the entire training 
procedure. Notably, the performances of both the CLTC and 
CCfC models were assessed using identical settings, and 
their individual performances are plotted in Fig 5.

Figure 5a demonstrates a consistent decrease in training 
loss as the training progresses, indicating that the model’s 
performance improves over time. Simultaneously, the train-
ing accuracy steadily increases and eventually reaches a 
stable level, indicating that the model successfully learns 
from the training data. Although both models have achieved 
similar results, the CCfC model has slightly higher accuracy 
than the CLTC model.

Throughout the training process, a general upward trend is 
observed in the validation accuracy, indicating an improve-
ment in the model’s performance on unseen data. Addition-
ally, the validation loss consistently decreases over time, sug-
gesting that the model’s predictions align more closely with 
the ground truth labels during validation. Additionally, Fig. 5b 
illustrates that the two models behave similarly, but the CCfC 
model continues to outperform the CLTC model slightly.

The performance of the CLTC and CCfC models is sum-
marized in Tables 2 and 3, respectively. Both models have 
achieved comparable performance, with an F1 score of 0.827 
for CLTC and 0.828 for CCfC and AUROC values of 0.961 
for CLTC and 0.963 for CCfC. These performance metrics 
align with the trends observed in Fig. 5.

In addition to differences in performance and accuracy, 
another notable observation between the two models is their 
contrasting training speeds. The CCfC model exhibits faster 
training times (approximately 88 s/epoch) in contrast to the 
CLTC model (approximately 92 s/epoch). This discrepancy 
is attributed to the CfC being an approximation of LTC, 
designed to streamline computational efficiency for faster 
processing. It is worth noting that both models were trained 

on CPUs instead of GPUs. This observation suggests that 
the simple model architecture requires fewer calculations 
and less computational power during training.

Model Deployments on Micro‑controller

This experiment successfully deployed CLTC and 
CCfC models on an STM32F746G Discovery board, 

a)

b)

Fig. 5   a The performance of the two models during the training pro-
cess. b The performance of loss and accuracy metrics in validation

Table 2   CLTC model validation results (P precision, R recall)

Class P R F1 AUROC

1dAVb 71.2% 52.7% 60.6% 88.1%
RBBB 92.5% 84.0% 88.1% 97.2%
LBBB 91.2% 93.6% 92.4% 99.1%
SB 89.3% 92.6% 90.9% 99.0%
AF 77.5% 70.5% 73.8% 94.1%
ST 92.5% 88.7% 90.6% 99.3%
Average 85.7% 80.3% 82.7% 96.1%
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a resource-constrained edge device featuring an STM-
32F746NGH6 Arm Cortex core-based microcontroller. 
With its 1 Mb of flash memory and 340 Kbytes of RAM, 
this board proved capable of managing the complex com-
putational tasks required for neural network inference. The 
software solution STM32Cube.AI, developed by STMicro-
electronics, was instrumental in optimizing the conversion 
and deployment of the pretrained models for the STM32 
microcontrollers. The preprocessed data was saved on the 
microcontroller, ready to be input into the pretrained model.

Both models were compared to the previous batch of 30 
inferences executed on the STM32F746G Discovery board. 
It reported a precision of 0.88, and the recall was approxi-
mately 0.72 for CLTC. The F1 score, a measure that bal-
ances precision and recall, was approximately 0.79, indicat-
ing well-rounded model performance.

Similarly, the CCfC model also displayed notable per-
formance. The model reported a commendable precision of 
0.97. However, the recall was about 0.66, slightly lower than 
the CLTC model. The F1 score was approximately 0.76, 
illustrating a fairly balanced model performance regarding 
precision and recall.

The measurement of power consumption was conducted 
using the STM32 Power Shield, a Nucleo expansion board. 
When the interface runs at a clock frequency of 200 MHz, 
the power consumption is measured at 668.7 mW. On the 
other hand, when the interface is not running, the power 
consumption is observed to be 531.3 mW. As a result, the 
model itself consumes approximately 137.4 mW.

The inference time for 10 seconds of preprocessed ECG 
data on the STM32F746G Discovery board was measured at 
approximately 1 second. The utilization of a dedicated digi-
tal signal processing unit for preprocessing the signal during 
the inference process enhances the feasibility of achieving 
real-time processing in scenarios that demand immediate 
model outputs.

These results represent a significant milestone for 
machine learning in edge devices, showcasing the viabil-
ity of deploying sophisticated deep learning models on 
resource-constrained hardware. However, there remains 

ample room for improvement. Future work will explore 
the potential of deploying the models using TinyEngine, 
a compact inference library developed by MIT research-
ers [21, 22]. This platform may enhance the accuracy of 
the neural network model when inference is performed on 
edge devices, further advancing AI on edge devices [21, 22]. 
The findings of this experiment highlight the feasibility and 
potential of deploying deep learning models in such environ-
ments, opening a new frontier for AI applications.

Generalization of Models

Predictions were made on the CPSC dataset using the trained 
models on the TNMG subset, as described in the data sec-
tion, to assess the generalization ability. This evaluation 
aimed to measure how effectively the models could handle 
new and unseen data from the CPSC dataset, which differs 
from the training dataset. It is important to mention that the 
CPSC dataset contains eight different types of abnormalities, 
but only four of them are also present in the TNMG dataset. 
By evaluating the chosen model’s performance on this sub-
set, we can gather valuable information about its capacity to 
apply learned knowledge to new and unseen data.

The performance of the two models on unseen data is 
presented in Tables 4 and 5, demonstrating their ability to 
perform well. The CLTC model achieves an average F1 
score of 0.70 and an AUROC of 0.90, while the CCfC model 
achieves an F1 score of 0.72 and an AUROC of 0.91. These 
results show that both models possess strong generalization 
capabilities, with the CCfC model exhibiting slightly better 
generalization performance than the CLTC model.

While the dataset owners haven’t explicitly disclosed spe-
cific differences, the possibility of disparities affecting the 
model’s generalizability cannot be overlooked. The TNMG 
and CPSC datasets demonstrate potential variations in the 
number of bits per channel. Notably, the TNMG dataset may 
utilize a unique bit depth, distinct from the configuration 
employed in the CPSC dataset. Variations in filter settings 
may also be present within the datasets due to preprocessing 
by the dataset owners. Differences in data treatment could 
potentially influence the model’s generalizability. Despite 
incorporating filters during the training process, complete 

Table 3   CCfC model validation results (P precision, R recall)

Class P R F1 AUROC

1dAVb 75.9% 52.2% 61.8% 89.3%
RBBB 92.3% 82.9% 87.3% 97.1%
LBBB 88.9% 93.2% 91.0% 99.1%
SB 89.2% 92.9% 91.0% 99.0%
AF 78.7% 71.3% 74.8% 93.7%
ST 90.4% 91.5% 90.9% 99.3%
Average 85.9% 80.6% 82.8% 96.3%

Table 4   CLTC model generalization results (P precision, R recall)

Class P R F1 AUROC

1dAVb 47.8% 65.2% 55.2% 86.7%
RBBB 91.5% 60.8% 73.0% 83.8%
LBBB 89.0% 82.6% 85.7% 96.6%
AF 50.8% 92.9% 65.7% 93.4%
Average 69.8% 75.4% 69.9% 90.1%
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elimination of all disparities between the two datasets may 
not be guaranteed. Additionally, disparities in the sampling 
rates of the two datasets were identified. To address this 
dissimilarity, data resampling techniques were strategically 
employed to align sampling rates across both datasets. This 
precautionary step was taken to proactively mitigate poten-
tial impacts on the model’s generalizability, ensuring a more 
consistent and effective learning experience.

Model Robustness

In our pursuit of assessing the models’ robustness, compre-
hensive tests were conducted to evaluate their performance 
under diverse conditions. Firstly, white noise was deliber-
ately introduced to each of the 12 channels of the CPSC 
dataset, enabling us to gauge the models’ resilience and 
efficacy in the presence of such disturbances. Additionally, 
a separate evaluation involved the intentional removal of 
information from each of the 12 lead ECG channels, allow-
ing us to meticulously analyze the models’ performance 
when confronted with data deficiencies. These tests collec-
tively contribute to a thorough understanding of the models’ 
robustness across varying scenarios. The outcomes of these 
rigorous tests are succinctly encapsulated in Fig. 6.

It is evident that white noise exerts a more pronounced 
impact on the models’ performance, particularly concern-
ing the F1 score, as compared to the effects induced by 
blanked-out channels. Additionally, variations in the impact 
are discernible across different channels. Furthermore, it is 
noteworthy that the CCfC model exhibits greater robust-
ness compared to the CLTC model in navigating both the 
challenges posed by noise and the blanked-out channel 
tests. This observation underscores the superior resilience 
of the CCfC model across various stressors, contributing 
to its commendable performance under adverse conditions. 
Despite the models demonstrating enhanced robustness in 
handling empty channels, a more comprehensive examina-
tion was conducted by subjecting the model to multi-channel 
blanking to assess the extent of its limitations.

To further assess the model’s performance, we conducted 
additional evaluations on the CPSC dataset by randomly 

removing multiple channels from the 12-lead ECG data. This 
allowed us to investigate the model’s robustness and capabil-
ity to handle incomplete or missing input information.

In Fig. 7, it can be observed that as the number of emptied 
leads increases, the F1 performance metric of the models 
declines. Initially, the CCfC model demonstrates superior 
performance compared to the CLTC model. However, an 
interesting finding emerges as the number of empty channels 
increases: the CLTC model starts to outperform the CCfC 
model. This suggests that the CLTC model may exhibit bet-
ter robustness when faced with more empty channels.

Discussion

The results provide a comprehensive analysis of the models’ 
performance, their generalizability, and robustness.

Regarding the performance of the models, both the CLTC 
and CCfC models achieved similar results in terms of F1 
scores and AUROC values. The CCfC model exhibits pro-
ficient handling of both noise and empty channels when 
applied to individual channels. The CCfC model demon-
strated slightly higher accuracy compared to the CLTC 
model but with an increasing number of empty channels, 
the CLTC model showed a higher accuracy, which means 
the CLTC model had a better robustness when faced with 
a higher number of empty channels compared to the CCfC 
model. The training process showed that the models con-
sistently improved their performance during training, with 
decreasing loss and increasing accuracy. The validation 
results also indicated that both models performed well, with 
the CCfC model slightly outperforming the CLTC model.

The models were successfully deployed on a resource-con-
strained microcontroller, the STM32F746G Discovery board, 
demonstrating the feasibility of running complex deep learn-
ing models on edge devices. The deployed models achieved 
commendable precision and recall, resulting in the CCfC 
model exhibiting faster training speed than the CLTC model.

The generalization performance of the models was evalu-
ated on the CPSC dataset, which included abnormalities not 
present in the training data. Both models demonstrated good 
generalization capabilities, with the CCfC model showing 
slightly better performance regarding F1 scores and AUROC 
values.

Table 6 presents a comparative analysis of our work 
alongside other contributions in the field. In the investiga-
tion led by [23], they utilized an advanced deep Q-learning 
NAS framework, yielding an impressive F1 score of 0.83 for 
atrial fibrillation detection on a microcontroller. Similarly, 
[24] employed a multi-layer perceptron, achieving a com-
mendable F1 score surpassing 0.8 in their atrial fibrillation 

Table 5   CCfC model generalization results (P precision, R recall)

Class P R F1 AUROC

1dAVb 72.9% 57.9% 64.6% 88.9%
RBBB 90.4% 61.0% 72.9% 84.7%
LBBB 88.2% 82.6% 85.3% 97.2%
AF 50.6% 94.1% 65.8% 94.4%
Average 75.5% 73.9% 72.1% 91.3%
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detection model on a microcontroller. While these models 
exhibit performance comparable to ours, it is essential to 
underscore that both are confined to single-class classifica-
tion, setting them apart from our current work. Our research 
surpasses these constraints by extending its capabilities to 
effectively handle multiple classes.

Overall, the results demonstrate the effectiveness and 
potential of the proposed models for abnormality identifi-
cation. The models showed promising performance, gener-
alization capabilities, and the ability to handle incomplete 
or missing input information. Further improvements can be 
explored, such as deploying the models with optimized infer-
ence libraries for edge devices, which may enhance their 
accuracy in resource-constrained environments.

Limitations

While the CLTC and CCfC models exhibit promising results 
in abnormality identification using ECG data, certain limita-
tions should be acknowledged:

Scalability concerns: The proposed models were pri-
marily designed and evaluated for resource-constrained 
microcontroller environments. While successful in 
these settings, their scalability to larger computational 
platforms or diverse hardware configurations remains 
unexplored. Future research may investigate adaptations 
or optimizations to ensure efficient performance across 
a broader range of computing resources.

Fig. 6   a An analysis of the 
model’s performance (F1 and 
AUROC) when subjected to 
white noise with a standard 
deviation of 0.1 introduced in 
each channel. b A visualization 
of the model’s performance (F1 
and AUROC) in response to the 
intentional blanking out of each 
channel. The left side corre-
sponds to the CLTC, while the 
right side represents the CCfC 
model

a)

b)
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Interpretability challenges: The simplicity of the pro-
posed model architecture, especially the single recur-
rent neural network (RNN) layer in the form of Con-
vLSTM2D, connected to a limited number of neurons, 
enhances efficiency but may compromise interpretability. 
RNN architectures, such as ConvLSTM2D, inherently 
pose challenges for interpretability. Understanding the 
decisions of complex deep learning models is particu-
larly challenging, and further efforts may be required to 
enhance transparency, especially in healthcare applica-
tions where comprehending model decisions is crucial.
Limited exploration of hyperparameter space: The 
determination of hyperparameters, while conducted sys-
tematically, may not cover the entirety of the hyperparam-
eter space. A more exhaustive exploration could provide 
additional insights into optimal configurations for diverse 
datasets or different edge device specifications.
Focused evaluation: The evaluation primarily empha-
sizes abnormality identification in ECG data, and the 
models’ generalizability is demonstrated on the CPSC 
dataset. However, a more comprehensive evaluation 
across a wider array of diverse healthcare datasets could 
provide a more nuanced understanding of the models’ 
performance across various clinical scenarios.
Optimization opportunities for edge devices: Although 
the models were deployed on a resource-constrained 

microcontroller, further exploration into deploying the 
models with optimized inference libraries for edge devices 
could enhance their accuracy and efficiency in real-world, 
resource-constrained healthcare environments.
Incomplete exploration of edge device constraints: While 
the models were successfully deployed on the STM32F746G 
Discovery board, the study does not extensively explore vari-
ous edge device constraints or potential challenges that may 
arise in real-world deployment scenarios. Future research 
could delve deeper into the adaptability of the models to 
different edge devices with varying capabilities.

Acknowledging these limitations, the CLTC and CCfC mod-
els present a valuable contribution to abnormality identi-
fication in ECG data, laying the groundwork for further 
advancements in scalable and interpretable deep learning 
models for healthcare applications.

Conclusion

In conclusion, using ECG data, this study demonstrated two 
models, CLTC and CCfC, for abnormality identification. 
Both models demonstrated comparable performance and 
good generalization capabilities on unseen data. The mod-
els were successfully deployed on a resource-constrained 
microcontroller, showcasing their potential for edge device 
applications. The findings highlight the effectiveness of the 
models in abnormality detection and their ability to handle 
incomplete input. Further improvements can be explored, 
such as optimizing inference libraries and expanding 
the training data. Overall, these models contribute to the 
advancement of AI in healthcare and hold promise for the 
early detection and treatment of cardiac conditions.

Clinical Relevance

This study introduces CLTC and CCfC models to enhance 
ECG abnormality identification in real-world clinical set-
tings, catering to specific clinical needs and demonstrating 
comparable performance metrics.

In practical healthcare applications, the choice between 
real-time classification and off-line evaluation depends on 
the clinical use case. Immediate decision-making, as in 
emergencies, benefits from real-time classification. Con-
versely, scenarios like retrospective analyses or continuous 
monitoring align with off-line evaluation.

The adaptability of these models to resource-constrained 
microcontrollers makes them promising for edge device 
deployment, addressing concerns of data privacy, latency, 
and network connectivity in real-world clinical settings. For 

Fig. 7   The F1 metrics of the models were evaluated based on the 
number of empty channels in the 12-lead CPSC ECG data

Table 6   Comparison with state-of-the-art works in the field

References Models F1

Mukhopadhyay et al. [23] Deep Q-learning NAS framework 0.83
Chen et al. [24] Multi-layer perceptron (MLP) > 0.8
Our work CLTC and CCfC 0.83
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instance, processing ECG data on the edge allows timely 
abnormality identification without continuous cloud con-
nectivity, ideal for remote or point-of-care settings.

Validation on the CPSC dataset highlights the models’ ver-
satile application in various clinical contexts. Their efficient 
resource utilization positions them as potential contributors to 
improving clinical diagnostics and patient care, especially in 
settings with limited computational resources. This research 
aims to integrate advanced AI technologies, contributing to 
the ongoing evolution of healthcare practices by addressing 
specific needs and constraints in real-world clinical scenarios.
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